lnxcls.zip | (1005 kb) | GNU/Linux executables |
wincls.zip | (595 kb) | Windows console executables |
cluster.zip | (304 kb) | C sources, package version 5.6 (2022.04.17) |
cluster.tar.gz | (271 kb) |
Note: The table package contains some auxiliary programs for preprocessing the data files.
Cluster is a set of programs to do probabilistic clustering
(expectation maximization algorithm to find a mixture of Gaussians)
and fuzzy clustering (fuzzy c-means algorithm, Gustafson-Kessel
algorithm, and Gath-Geva / FMLE algorithm) and to execute the induced
set of clusters on new data. The programs are highly parameterizable,
so that a large variety of clustering approaches can be carried out.
Since version 2.4 the program also contains a competitive learning /
learning vector quantization mode, which will eventually supersede
the learning vector quantization programs.
A brief description of how to apply these programs can be found
in the file cluster/ex/readme
in the source package.
If you have trouble executing the programs on Microsoft Windows, check whether you have the Microsoft Visual C++ Redistributable for Visual Studio 2022 (see under "Other Tools and Frameworks") installed, as the programs were compiled with Microsoft Visual Studio 2022.
An extensive treatment of the clustering approaches supported by the programs can be found in my habilitation thesis:
A description of the ideas underlying the neural network based update methods can also be found in:
A description of the regularization methods can also be found in:
A description of learning vector quantization with size and shape parameters can be found in: