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Introduction

• Today every enterprise uses electronic information processing systems.

◦ Production and distribution planning

◦ Stock and supply management

◦ Customer and personnel management

• Usually these systems are coupled with a database system
(e.g. databases of customers, suppliers, parts etc.).

• Every possible individual piece of information can be retrieved.

• However: Data alone are not enough.

◦ In a database one may “not see the wood for the trees”.

◦ General patterns, structures, regularities go undetected.

◦ Often such patterns can be exploited to increase turnover
(e.g. joint sales in a supermarket).
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Data

Examples of Data

• “Columbus discovered America in 1492.”

• “Mr Jones owns a Volkswagen Golf.”

Characteristics of Data

• refer to single instances
(single objects, persons, events, points in time etc.)

• describe individual properties

• are often available in huge amounts (databases, archives)

• are usually easy to collect or to obtain
(e.g. cash registers with scanners in supermarkets, Internet)

• do not allow us to make predictions
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Knowledge

Examples of Knowledge

• “All masses attract each other.”

• “Every day at 5 pm there runs a train from Hannover to Berlin.”

Characteristic of Knowledge

• refers to classes of instances
(sets of objects, persons, points in time etc.)

• describes general patterns, structure, laws, principles etc.

• consists of as few statements as possible (this is an objective!)

• is usually difficult to find or to obtain
(e.g. natural laws, education)

• allows us to make predictions
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Criteria to Assess Knowledge

• Not all statements are equally important, equally substantial, equally useful.

⇒ Knowledge must be assessed.

Assessment Criteria

• Correctness (probability, success in tests)

• Generality (range of validity, conditions of validity)

• Usefulness (relevance, predictive power)

• Comprehensibility (simplicity, clarity, parsimony)

• Novelty (previously unknown, unexpected)

Priority

• Science: correctness, generality, simplicity

• Economy: usefulness, comprehensibility, novelty
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Tycho Brahe (1546–1601)

Who was Tycho Brahe?

• Danish nobleman and astronomer

• In 1582 he built an observatory on the island of Ven (32 km NE of Copenhagen).

• He determined the positions of the sun, the moon and the planets
(accuracy: one angle minute, without a telescope!).

• He recorded the motions of the celestial bodies for several years.

Brahe’s Problem

• He could not summarize the data he had collected
in a uniform and consistent scheme.

• The planetary system he developed (the so-called Tychonic system)
did not stand the test of time.
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Johannes Kepler (1571–1630)

Who was Johannes Kepler?

• German astronomer and assistant of Tycho Brahe.

• He advocated the Copernican planetary system.

• He tried all his life to find the laws that govern the motion of the planets.

• He started from the data that Tycho Brahe had collected.

Kepler’s Laws

1. Each planet moves around the sun in an ellipse, with the sun at one focus.

2. The radius vector from the sun to the planet sweeps out equal areas
in equal intervals of time.

3. The squares of the periods of any two planets are proportional to the cubes
of the semi-major axes of their respective orbits: T2 ∼ a3.
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How to find Knowledge?

We do not know any universal method to discover knowledge.

Problems

• Today huge amounts of data are available in databases.

We are drowning in information,
but starving for knowledge. John Naisbett

• Manual methods of analysis have long ceased to be feasible.

• Simple aids (e.g. displaying data in charts) are too limited.

Attempts to Solve the Problems

• Data Science / Intelligent Data Analysis

• Knowledge Discovery in Databases

• Data Mining
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Knowledge Discovery and Data Mining
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Knowledge Discovery and Data Mining

As a response to the challenge raised by the growing volume of data, a new research
area has emerged, which is usually characterized by one of the following phrases:

• Knowledge Discovery in Databases (KDD)

Usual characterization:

KDD is the non-trivial process of identifying valid, novel, potentially useful,
and ultimately understandable patterns in data. [Fayyad et al. 1996]

• Data Mining (DM)

◦ Data mining is that step of the knowledge discovery process
in which data analysis methods are applied to find interesting patterns.

◦ It can be characterized by a set of types of tasks that have to be solved.

◦ It uses methods from a variety of research areas.
(statistics, databases, machine learning, artificial intelligence, soft computing etc.)
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The Knowledge Discovery Process (KDD Process)

Preliminary Steps

• estimation of potential benefit

• definition of goals, feasibility study

Main Steps

• check data availability, data selection, if necessary: data collection

• preprocessing (60–80% of total overhead, sometimes even more)

◦ unification and transformation of data formats

◦ data cleaning (error correction, outlier detection, imputation of missing values)

◦ reduction / focusing (sample drawing, feature selection, prototype generation)

• Data Mining (using a variety of methods)

• visualization (also in parallel to preprocessing, data mining, and interpretation)

• interpretation, evaluation, and test of results

• deployment and documentation
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The Knowledge Discovery Process (KDD Process)

pictures not available in online version

Typical depictions of the KDD Process

top: [Fayyad et al. 1996]
Knowledge Discovery and Data Mining:
Towards a Unifying Framework

right: CRISP-DM [Chapman et al. 1999]
CRoss Industry Standard Process
for Data Mining
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Data Analysis / Data Mining Tasks

• Classification
Is this customer credit-worthy?

• Segmentation, Clustering
What groups of customers do I have?

• Concept Description
Which properties characterize fault-prone vehicles?

• Prediction, Trend Analysis
What will the exchange rate of the dollar be tomorrow?

• Dependence/Association Analysis
Which products are frequently bought together?

• Deviation Analysis
Are there seasonal or regional variations in turnover?
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Data Analysis / Data Mining Methods 1

• Classical Statistics ⇒ other lectures, e.g. “Regression Methods & Computational Statistics”

(characteristic measures, parameter estimation, hypothesis testing, regression, model selection)

tasks: classification, prediction, trend analysis

• k-nearest Neighbor / Case-based Reasoning blue: in this lecture

(lazy learning, similarity measures, neighbor weighting, data structures for fast search)

tasks: classification, prediction

• Bayes Classifiers blue: in this lecture

(probabilistic classification, naive and Gaussian Bayes classifiers, Bayesian network classifiers)

tasks: classification, prediction

• Decision and Regression Trees blue: in this lecture

(top down induction, attribute selection measures, pruning, regression trees)

tasks: classification, prediction

• Rule Learning ⇒ Lecture “Advanced Data Mining”

(extraction from decision trees, Aq, CN2, version spaces, inductive logic programming)

tasks: classification, prediction
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Data Analysis / Data Mining Methods 2

• Support Vector Machines ⇒ Lecture “Advanced Data Mining”

(linear and non-linear classification and regression, kernel trick, support vectors)

tasks: classification, prediction, clustering

• Artificial Neural Networks ⇒ Lecture “Artificial Neural Networks and Deep Learning”

(multilayer perceptrons, radial basis function networks, learning vector quantization)

tasks: classification, prediction, clustering

• Ensemble Methods (especially Random Forests) ⇒ Lecture “Advanced Data Mining”

(Bayesian voting, bagging, boosting (AdaBoost), injecting randomness, stacking)

tasks: classification, prediction

• Cluster Analysis green: ⇒ Lecture “Advanced Data Mining”

(k-means and fuzzy clustering, Gaussian mixtures, hierarchical agglomerative clustering)

tasks: segmentation, clustering

• Association Rule Induction ⇒ Lecture “Frequent Pattern Mining”

(frequent item set mining, rule generation)

tasks: association analysis
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Principles of Modeling
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Principles of Modeling

• The Data Mining step of the KDD Process consists mainly of
model building for specific purposes (e.g. prediction, segmentation).

• What type of model is to be built depends on the task, e.g.,

◦ if the task is numeric prediction, one may use a regression function,

◦ if the task is classification, one may use a decision tree,

◦ if the task is clustering, one may use a set of cluster prototypes,

◦ etc.

• Most data analysis methods comprise the following four steps:

◦ Select the Model Class (e.g. decision tree)

◦ Select the Objective Function (e.g. misclassification rate)

◦ Apply an Optimization Algorithm (e.g. top-down induction)

◦ Validate the Results (e.g. cross validation)
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Model Classes

• In order to extract information from data,
it is necessary to specify the general form the analysis result should have.

• We call this the model class or architecture of the analysis result.

• Attention: In Data Mining / Machine Learning the notion of a model class
is considerably more general than, e.g., in statistics, where it reflects
a structure inherent in the data or represents the process of data generation.

• Typical distinctions w.r.t. model classes:

◦ Type of Model (e.g. linear function, rules, decision tree, clusters etc.)

◦ Global versus Local Model
(e.g. regression models usually cover the whole data space while
rules are applicable only in the region where their antecedent is satisfied)

◦ Interpretable versus Black Box
(rules and decision trees are usually considered as interpretable,
artificial neural networks as black boxes)
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Supervised and Unsupervised Model Building

Fundamental Distinction for Model Building / Model Classes

• Supervised Model Building / Supervised Learning

◦ There is a target variable that the model is supposed to predict.
(nominal target: classification, metric target: regression)

◦ The data D consists of pairs (x⃗, y), where
x⃗ is a tuple of descriptive attribute values and y is the target value.

◦ The objective is to find a model m : X→ Y
that predicts the target y from the values x⃗ of the descriptive attributes.

• Unsupervised Model Building / Unsupervised Learning

◦ There is no target variable that the model is supposed to predict.
Rather model outputs are to be chosen by the model.

◦ The data D consists of tuples x⃗ of descriptive attributes.

◦ Typical objective: similar inputs should produce similar outputs.
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Scale Types / Attribute Types

Scale Type Possible Operations Examples

nominal test for equality sex
(categorical, qualitative) blood group

ordinal test for equality exam grade
(rank scale, comparative) greater/less than wind strength

metric test for equality length
(interval scale, quantitative) greater/less than weight

difference time
maybe ratio temperature

• Nominal scales are sometimes divided into dichotomic (binary, two values)
and polytomic (more than two values).

• Metric scales may or may not allow us to form a ratio of values:
weight and length do, temperature (in ◦C) does not (it does in ◦K).
time as duration does, time as calender time does not.

• Counts may be considered as a special type (e.g. number of children).
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Model Evaluation

• After a model has been constructed, one would like to know how “good” it is.

⇒ How can we measure the quality of a model?

• Desired: The model should generalize well and thus yield, on new data,
an error (to be made precise) that is as small as possible.

• However, due to possible overfitting to the induction / training data
(i.e. adaptations to features that are not regular, but accidental),
the error on the training data is usually not very indicative.

⇒ How can we assess the (expected) performance on new data?

• General idea: Evaluate on a hold-out data set (validation data / test data),
that is, on data not used for building / training the predictor.

◦ It is (highly) unlikely that the validation data exhibits
the same accidental features as the training data.

◦ Hence an evaluation on the validation data can provide
a good indication of the performance on new data.
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Fitting Criteria and Score / Loss Functions

• In order to find the best or at least a good model for the given data,
a fitting criterion is needed, usually in the form of an objective function

f :M→ IR,

whereM is the set of considered models.

• The objective function f may also be referred to as

◦ Score Function (usually to be maximized),

◦ Loss Function (usually to be minimized).

• Typical examples of objective functions are (m ∈ M is a model, D the data)

◦ Mean squared error (MSE): f (m, D) = 1
|D|∑(x⃗,y)∈D

(m(x⃗)− y)2

◦ Mean absolute error (MAE): f (m, D) = 1
|D|∑(x⃗,y)∈D

|m(x⃗)− y|

◦ Accuracy: f (m, D) = 1
|D|∑(x⃗,y)∈D

δm(x⃗),y
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Regression Evaluation (metric target)

mean squared error (MSE) f (m, D) = 1
|D| ∑(x⃗,y)∈D (m(x⃗)− y)2

most commonly used loss function, emphasizes large distances / errors

root mean squared error (RMSE) f (m, D) =
√

1
|D| ∑(x⃗,y)∈D (m(x⃗)− y)2

emphasizes large distances / errors, same unit as the target values

R2 (R-squared) f (m, D) = 1− ∑(x⃗,y)∈D (m(x⃗)−y)2

∑(x⃗,y)∈D (y−y)2

universal range [0, 1], closer to 1 is better; y is the mean of the target values: y = 1
|D| ∑(x⃗,y)∈D y

mean absolute error (MAE) f (m, D) = 1
|D| ∑(x⃗,y)∈D |m(x⃗)− y|

equal weights for all distances / errors, same unit as the target values

mean absolute percentage error (MAPE) f (m, D) = 100%
|D| ∑(x⃗,y)∈D

∣∣∣m(x⃗)−y
y

∣∣∣
requires non-zero target values

mean signed difference f (m, D) = 1
|D| ∑(x⃗,y)∈D (m(x⃗)− y)

only useful for detecting a bias of the error
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Classification Evaluation (nominal target)

• The most common loss function for classification is the misclassification rate

E(m, D) = 1
|D|∑(x⃗,y)∈D

(1− δm(x⃗),y),

and (alternatively) its dual, the score function accuracy

A(m, D) = 1
|D|∑(x⃗,y)∈D

δm(x⃗),y = 1− E(m, D).

• A confusion matrix displays the misclassifications in more detail. It is a table in
which the rows represent the true classes and the columns the predicted classes.

• Entries specify how many objects from the true class of the corresponding row
are classified as belonging to the class of the corresponding column.

• The accuracy is the sum of the diagonal entries divided by the sum of all entries.

The misclassification rate (or simply error rate) is the sum of
the off-diagonal entries divided by the sum of all entries.

• An ideal classifier has non-zero entries only on the diagonal.
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What about Ordinal Target Attributes?

• There are only few approaches that can explicitly treat ordinal targets.
(These approaches are not covered in this lecture.)

• Hence ordinal attributes often pose an unpleasant problem.

• Of course, one may treat ordinal targets like nominal targets,
and this is actually what is most commonly done.

• However, this discards the ordinal structure of the domain of such a target.
As a consequence, a lot of information is lost.

• On the other hand, if we represent the values of an ordinal target by numbers
that reflect the ordering, it will be treated as if it were a metric target,
implicitly assuming that at least differences can be computed meaningfully.

• Unfortunately there seems to be no perfect solution for this problem.

• One has to choose for the application at hand
which drawback is easier to tolerate.
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Reminder: The Iris Data

pictures not available in online version

• Collected by Edgar Anderson on the Gaspé Peninsula (Canada).

• First data-analyzed by Ronald Aylmer Fisher (famous statistician).

• 150 cases in total, 50 cases per Iris flower type (specie).

• Measurements of sepal length and width and petal length and width (in cm).

• Most famous data set in pattern recognition and data analysis.

Christian Borgelt Elementary Data Mining 28



Reminder: The Iris Data
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• Scatter plots of the iris data set for sepal length vs. sepal width (left)
and for petal length vs. petal width (right).
All quantities are measured in centimeters (cm).
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Classification Evaluation: Confusion Matrix

• The table below shows a possible confusion matrix for the Iris data set.

predicted class

true class Iris setosa Iris versicolor Iris virginica

Iris setosa 50 0 0

Iris versicolor 0 47 3

Iris virginica 0 2 48

• From this matrix, we can see that all cases of the class Iris setosa are classified
correctly and no case of another class is wrongly classified as Iris setosa.

• A few cases of the other classes are wrongly classified:
three cases of Iris versicolor are (wrongly) classified as Iris virginica,
two cases of Iris virginica are (wrongly) classified as Iris versicolor.

• The misclassification rate is E = 2+3
50+47+3+2+48 = 5

150 ≈ 3.33%.

• The accuracy is A = 50+47+48
50+47+3+2+48 = 145

150 ≈ 96.67%.
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Classification Evaluation: Two Classes

• For many classification problems there are only two classes
that the classifier is supposed to distinguish.

• Let us call the two classes plus (or positive) and minus (or negative).

• Then the classifier can make two different kinds of mistakes:

◦ Cases of the class minus may be wrongly assigned to the class plus.
These cases are called false positives (fp).

◦ Vice versa, cases of the class plus may be wrongly classified as minus.
Such cases are called false negatives (fn).

• The cases that are classified correctly are called true positives (tp)
and true negatives (tn), respectively.

• error rate: E =
fp + fn

tp + fn + fp + tn

• accuracy: A =
tp + tn

tp + fn + fp + tn

Confusion matrix:

true predicted class

class plus minus

plus tp fn p

minus fp tn n
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Classification Evaluation: Precision and Recall

• Sometimes one wants to capture not merely the overall classification accuracy,
but how well the individual classes are recognized.

• Especially if the class distribution is skewed, that is, if there are large differences
in the class frequencies, overall measures may give a wrong impression.

• For example, if in a two class problem

◦ one class occurs in 98% of all cases,
◦ while the other covers only the remaining 2%,

a classifier that always predicts the first class reaches an impressive accuracy
of 98% — without distinguishing between the classes at all.

• Such unpleasant situations are fairly common in practice, for example:

◦ illnesses are (fortunately) rare and
◦ replies to mailings are (unfortunately?) scarce.

Hence: predict that everyone is healthy or a non-replier.

• However, such a classifier is useless to a physician or a product manager.
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Classification Evaluation: Precision and Recall

• In such cases (skewed class distribution) higher error rates are usually accepted
in exchange for a better coverage of the minority class.

• In order to allow for this, the following two measures may be used:

◦ Precision: π =
tp

tp + fp
◦ Recall: ρ =

tp

tp + fn

[Perry, Kent & Berry 1955]

• In other words:
precision is the ratio of true positives to all data points classified as positive;
recall is the ratio of true positives to all actually positive data points.

• In yet other words:
precision is the fraction of cases for which a positive classification is correct;
recall is the fraction of positive cases that is identified by the classifier.

• Precision and recall are usually complementary quantities:
higher precision may be obtained at the price of lower recall and vice versa.
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Classification Evaluation: Precision and Recall

• Attention: Precision and recall evaluate the performance of a classifier
w.r.t. one class, namely the plus or positive class!

• If the two classes are exchanged (plus becomes minus and vice versa),
the values of precision and recall (usually) change, maybe even considerably.

• Example: 980 cases in one class and 20 cases in another class (very skewed!).
Consider a classifier that always predicts the majority class.

Majority is class plus (or positive):

true ↓ plus minus ← pred.

plus 980 0 980

minus 20 0 20

π =
980

1000
= 98%

ρ =
980

980
= 100%

very
good!

Minority is class plus (or positive):

true ↓ plus minus ← pred.

plus 0 20 20

minus 0 980 980

π =
0

0
[= 0%]

ρ =
0

20
= 0%

horribly
bad!
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Classification Evaluation: Other Quantities I

• recall, sensitivity, hit rate, or true positive rate (TPR)

TPR =
tp

p
=

tp

tp + fn
= 1− FNR

• specificity, selectivity or true negative rate (TNR)

TNR =
tn

n
=

tn

tn + fp
= 1− FPR

• precision or positive predictive value (PPV)

PPV =
tp

tp + fp

• negative predictive value (NPV)

NPV =
tn

tn + fn

• miss rate or false negative rate (FNR)

FNR =
fn

p
=

fn

fn + tp
= 1− TPR
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Classification Evaluation: Other Quantities II

• fall-out or false positive rate (FPR)

FPR =
fp

n
=

fp

fp + tn
= 1− TNR

• false discovery rate (FDR)

FDR =
fp

fp + tp
= 1− PPV

• false omission rate (FOR)

FOR =
fn

fn + tn
= 1−NPV

• accuracy (ACC)

ACC =
tp + tn

p + n
=

tp + tn

tp + tn + fp + fn

• misclassification rate or error rate (ERR)

ERR =
fp + fn

p + n
=

fp + fn

tp + tn + fp + fn
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Classification Evaluation: F-Measure

• With precision and recall two numbers describe the quality of a classifier.

• A common way to combine them into one number is to compute the F1-measure
[Rijsbergen 1979], which is the harmonic mean of precision and recall:

F1 =
2

1
π
+ 1

ρ

=
2πρ

π + ρ
=

2tp

2tp + fn + fp
.

In this formula precision and recall have the same weight.

• The generalized F-measure [Rijsbergen 1979] introduces a mixing parameter.
It can be found in several different, but equivalent versions, for example:

Fα =
1

α
π
+ 1−α

ρ

=
πρ

αρ + (1− α)π
, α ∈ [0, 1],

or

Fβ =
1 + β2

1
π
+ β2

ρ

=
πρ(1 + β2)

ρ + β2π
, β ∈ [0, ∞).

Obviously, the standard F1-measure results for α = 1
2 or β = 1, respectively.
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Classification Evaluation: F-Measure

• The generalized F-measure is [Rijsbergen 1979]:

Fα =
πρ

αρ + (1− α)π
, α ∈ [0, 1], Fβ =

πρ(1 + β2)

ρ + β2π
, β ∈ [0, ∞).

• By choosing the mixing parameters α or β it can be controlled
whether the focus should be more on precision or more on recall:

◦ For α >
1
2 or β > 1 the focus is more on precision;

for α = 1 or β = 0 we have Fα = Fβ = π.

◦ For α <
1
2 or β < 1 the focus is more on recall;

for α = 0 or β→ ∞ we have Fα = Fβ = ρ.

• However, this possibility is rarely used, presumably,
because precision and recall are usually considered to be equally important.

• Note that precision and recall and thus the generalized F-measure as well as
its special case, the F1-measure, focus on one class (namely the positive class).
Exchanging the two classes usually changes all of these measures.
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Classification Evaluation: More Than Two Classes

• The misclassification rate (or error rate) and the accuracy
can be used regardless of the number of classes (whether only two or more).

• In contrast, precision, recall and F-measure are defined only for two classes.

• However, they can be generalized to more than two classes
by computing them for each class separately and averaging the results.

• In this approach, each class in turn is seen as the positive class (plus)
while all other classes together form the negative class (minus).

• Macro-averaging (1st possibility of averaging) [Sebastini 2002]

◦ precision: πmacro =
1

c

c

∑
k=1

πk =
1

c

c

∑
k=1

tp(k)

tp(k) + fp(k)

◦ recall: ρ macro =
1

c

c

∑
k=1

ρk =
1

c

c

∑
k=1

tp(k)

tp(k) + fn(k)

Here c is the number of classes. All classes have equal weight.
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Classification Evaluation: More Than Two Classes

• Class-weighted averaging (2nd possibility of averaging)

◦ precision: πwgt =
c

∑
k=1

nk

n
πk =

1

n

c

∑
k=1

tp(k) + fn(k)

tp(k) + fp(k)
· tp(k)

◦ recall: ρ wgt =
c

∑
k=1

nk

n
ρk =

1

n

c

∑
k=1

tp(k)

Here c is again the number of classes,
nk is the number of cases belonging to class k, k = 1, . . . , c, and
n is the total number of cases, n = ∑

c
k=1 nk.

• While macro-averaging treats each class as having the same weight
(thus ignoring the (possibly skewed) class frequencies)
class-weighted averaging takes the class frequencies into account.

• Note that class-weighted average recall is equivalent to accuracy, since

∑
c
k=1 tp(k) is simply the sum of the diagonal elements of the confusion matrix

and n, the total number of cases, is the sum over all entries.
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Classification Evaluation: More Than Two Classes

• Micro-averaging (3rd possibility of averaging) [Sebastini 2002]

◦ precision: πmicro =
∑

c
k=1 tp(k)

∑
c
k=1

(
tp(k) + fp(k)) =

1

n

c

∑
k=1

tp(k)

◦ recall: ρ micro =
∑

c
k=1 tp(k)

∑
c
k=1

(
tp(k) + fn(k)) =

1

n

c

∑
k=1

tp(k)

Here c is again the number of classes and n is the total number of cases.
This averaging renders precision and recall identical and equal to accuracy.

• As a consequence, micro-averaging is not useful in this setting,
but it may be useful, e.g., for averaging results over different data sets.

• For all different averaging approaches, the F1-measure may be computed
as the harmonic mean of (averaged) precision and recall.

• Alternatively, the F1-measure may be computed for each class separately
and then averaged in analogy to the above methods.
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Classification Evaluation: Misclassification Costs

• Misclassifications may also be handled via misclassification costs.

• Misclassification costs are specified in a matrix analogous to a confusion matrix,
that is, as a table, the rows of which refer to the true class
and the columns of which refer to the predicted class.

◦ The diagonal of a misclassification cost matrix is zero (correct class).

◦ The off-diagonal elements specify the costs of a specific misclassification:
entry xi,j specifies the costs of misclassifying class i as class j.

• If a cost matrix Z = (zij)1≤i,j≤c is given
(like the one on the right), the expected
loss is used as the objective function:

L(m, D) =
c

∑
i=1

c

∑
j=1

pij · zij

Here pi,j is the (relative) frequency with
which class i is misclassified as class j.

true predicted class

class 1 2 . . . c

1 0 z12 . . . z1c

2 z21 0 . . . z2c
... ... ... . . . ...
c zc1 zc2 . . . 0

(Note: generally zij ̸= zji!)
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Classification Evaluation: Misclassification Costs

• Misclassification costs generalize the misclassification rate,
which results as the special case of equal misclassification costs.

• With misclassification costs one can avoid the problems caused by skewed class
distributions, because it can take into account that certain misclassifications can
have more severe consequences or higher costs than others.

◦ Misclassifying a sick patient as healthy has high costs
(as this leaves the disease untreated).

◦ Misclassifying a healthy patient as sick has low costs
(although the patient may have to endure additional tests,
it will finally be revealed that he/she is healthy).

◦ Not sending an ad to a prospective buyer has high costs
(because the seller loses the revenue from the sale).

◦ Sending an ad to a non-buyer has low costs
(only the cost of the mailing is lost, which may be very low).

• However, specifying proper costs can be tedious and time consuming.
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Classification Evaluation: ROC Curves

• Some classifiers (can) yield for every case to be classified
a (formal) probability or confidence for each class.

• In such a case it is common to assign a case to the class
for which the highest confidence / probability is produced (more later).

• In the case of two classes, plus and minus, one may assign a case to class plus
if the probability for this class exceeds 0.5 and to class minus otherwise.

• However, one may also be more careful and assign a case to class plus only
if the probability exceeds, e.g., τ = 0.8, leading to fewer false positives.

• On the other hand, choosing a threshold τ < 0.5 leads to more true positives.

• The trade-off between true positives and false positives is illustrated
by the receiver operating characteristic curve (ROC curve)
that shows the true positive rate versus the false positive rate.

• The area under the (ROC) curve (AUC) may be used as an indicator of
how well a classifier solves a given problem.
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Classification Evaluation: ROC Curves
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• ROC curve: For all choices of the threshold τ
a new point is drawn at the respective coordinates
of false positive rate and true positive rate.

• These dots are connected to form a curve.

• The curves on the left are idealized;
actual ROC curves are (usually) step functions.

• Diagonal segments may be used if the same confi-
dence is assigned to cases of different classes.

• An ideal ROC curve (green) jumps to 100% true positives without producing
any false positives, then adds the remaining cases as false positives.

• A random classifier, which assigns random confidence values to the cases,
is represented by the (idealized) red ROC curve (“expected” ROC curve).

• An actual classifier may produce an ROC curve like the blue one.
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Classification Evaluation: ROC Curves
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• A random classifier, which assigns random confidence values to the cases,
is represented by the (idealized) red ROC curve (“expected” ROC curve).

• This line is idealized, because different random classifiers
produce different ROC curves that scatter around this diagonal.

• middle: 50 positive, 50 negative cases; right: 250 positive, 250 negative cases;
the diagrams show 100 random ROC curves each, with one highlighted in red.
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Classification Evaluation: Area Under the (ROC) Curve
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AUC version 2

• The Area Under the (ROC) Curve (AUC) may be defined in two ways:

◦ the area extends down to the horizontal axis (more common),
◦ the area extends down to the diagonal and is doubled (more intuitive).

• It is AUC2 = 2(AUC1− 1
2) and AUC1 =

1
2AUC2 +

1
2.

• For a random ROC curve it is AUC1 ≈ 0.5, but AUC2 ≈ 0.
Note: AUC2 may become negative, AUC1 is always non-negative!
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Classification Evaluation: Area Under the (ROC) Curve
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• The Area Under the (ROC) Curve (AUC) may be defined in two ways:

◦ the area extends down to the horizontal axis (more common),
◦ the area extends down to the diagonal and is doubled (more intuitive).

• The first version may also be fairly intuitively interpreted as the probability
that a randomly chosen positive example is rated higher
than a randomly chosen negative example.
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Causes of Errors

• One may distinguish between four types of errors:

◦ the pure / intrinsic / experimental / Bayes error,

◦ the sample / variance error or scatter,

◦ the lack of fit / model error / bias error,

◦ the algorithmic error.

• Pure / Intrinsic / Experimental / Bayes Error

◦ Inherent in the data, impossible to overcome by any model.

◦ Due to noise, random variations, imprecise measurements,
or the influence of hidden (unobservable / unobserved) variables.

◦ For any data points usually several classes (if classification)
or numeric values (if numeric prediction) have a non-vanishing probability.

However, usually a predictor has to produce a single class / specific value;
hence it cannot yield correct predictions all of the time.
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Causes of Errors: Bayes Error

• The term “Bayes error” is usually used in the context of classification.

• It describes a situation, in which for any data point more than one class
is possible (multiple classes have a non-vanishing probability).

perfect class separation more difficult problem strongly overlapping
classes

• If classes overlap in the data space, no model can perfectly separate them.
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Causes of Errors: Bayes Error

• In the (artificial) example on the previous slide, the samples of each class
are drawn from two bivariate normal distributions (four in total).

• In all three cases, the means of the distributions are the same, only the variances
differ, leading to a greater overlap of the classes the greater the variances.

• However, this is not necessarily the only (relevant) situation.
Classes may have similar means and rather differ in their variances.

• Example: Three darts players try to hit the center
of the dartboard (the so-called bull’s eye).

• Assume one of the players is a professional, one
is a hobby player and one is an absolute beginner.

• Objective: Predict who has thrown the dart,
given the point where the dart hit the dartboard.
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Causes of Errors: Bayes Error

• Example: Three darts players try to hit the center
of the dartboard (the so-called bull’s eye).

• Assume one of the players is a professional, one
is a hobby player and one is an absolute beginner.

• Objective: Predict who has thrown the dart,
given the point where the dart hit the dartboard.

professional hobby player beginner
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Causes of Errors: Bayes Error

• Example: Three darts players try to hit the center
of the dartboard (the so-called bull’s eye).

• Assume one of the players is a professional, one
is a hobby player and one is an absolute beginner.

• Objective: Predict who has thrown the dart,
given the point where the dart hit the dartboard.

• Simple classification rule: Assuming
equal frequency of the three classes,
assign the class with the highest likelihood.
(one-dimensional normal distributions⇒)

• Attention: Do not confuse
classification boundaries
with class boundaries
(which may not even exist). –8 –4 0 4 8
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Causes of Errors: Bayes Error

• Example: Three darts players try to hit the center
of the dartboard (the so-called bull’s eye).

• Assume one of the players is a professional, one
is a hobby player and one is an absolute beginner.

• Objective: Predict who has thrown the dart,
given the point where the dart hit the dartboard.

• Simple classification rule: Assuming
equal frequency of the three classes,
assign the class with the highest likelihood.
(two-dimensional normal distributions⇒)

• Attention: Do not confuse
classification boundaries
with class boundaries
(which may not even exist).
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Causes of Errors: Sample Error

• Sample / Variance Error or Scatter

◦ The sample error is caused by the fact that the given data
is only an imperfect representation of the underlying distribution.

◦ According to the laws of large numbers, the sample distribution converges
in probability to the true distribution if the sample size approaches infinity.

◦ However, a finite sample can deviate significantly from the true distribution
although the probability for such a deviation might be small.

• The bar chart on the right shows the result
for throwing a fair die 60 times.

• In the ideal case, one would expect each of
the numbers 1, . . . , 6 to occur 10 times.

• But for this sample, the distribution
does not look uniform. 1 2 3 4 5 6
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Causes of Errors: Sample Error

• Another source for sample errors are measurements with limited precision
and round-off errors in features derived by computations.

(Remark: Precise and imprecise numbers, Harry Kemelman: “The Nine Mile Walk”, 1967)

• Sometimes the sample is also (systematically) biased or censored.

◦ Consider a bank that supplies loans to customers.

◦ Based on historical data available on customers who have obtained loans,
the bank wants to estimate a new customer’s credit-worthiness
(i.e., the probability that the customer will pay back a loan).

◦ The collected data will be biased towards better customers,
because customers with a more problematic financial status
have not been granted loans.

◦ Therefore, no information is available for such customers
whether they might have paid back the loan nevertheless.

◦ In statistical terms: the sample is not representative, but biased.
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Causes of Errors: Model Error

• A large error might be caused by a high pure error,
but it might also be due to a lack of fit.

• If the set of considered models is too simple for the structure in the data,
no model (from this set) will yield a small error.

• Such an error is also called model error or bias error.
(Because an improper choice of the model class introduces a bias into the fit.)

• The chart on the right shows a regression line
fitted to data with no pure and no sample error.

• However, the data points originate from
a quadratic and not from a linear relationship.

• As a consequence,
there is a considerable lack of fit.
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Model Selection

• Objective: select the model that best fits the data,
taking the model complexity into account.

The more complex the model, the better it usually fits the data.

x

y

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7 black line:
regression line
(2 free parameters)

blue curve:
7th order regression polynomial
(8 free parameters)

• The blue curve fits the data points perfectly, but it is not a good model.

• On the other hand, too simple a model can lead to a lack of fit.
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Model Capacity: Under- and Overfitting

Underfitting [here: linear]

• Caused by model error / lack of fit.

• Model has not enough capacity
to fit the regularities in the data.

(Proper) Fitting [here: quadratic]

• Model has the proper capacity
to fit regularities, but not enough
to fit accidental properties.

Overfitting [here: degree 6]

• Caused by pure & sample error and ...

• ... model has too much capacity
and thus fits not only regularities,
but also accidental properties.
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Model Capacity: Under- and Overfitting

added

Underfitting [here: linear]

• Caused by model error / lack of fit.

• Model has not enough capacity
to fit the regularities in the data.

added

(Proper) Fitting [here: quadratic]

• Model has the proper capacity
to fit regularities, but not enough
to fit accidental properties.

added

Overfitting [here: degree 6]

• Caused by pure & sample error and ...

• ... model has too much capacity
and thus fits not only regularities,
but also accidental properties.
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Causes of Errors: Algorithmic Error

• The algorithmic error is caused by the method
that is used to fit the model or the model parameters.

• In the ideal case, if an analytical solution for the optimum of the objective func-
tion exists, the algorithmic error is zero or only caused by numerical problems.

• However, in many cases an analytical solution cannot be provided
and heuristic strategies are needed to fit the model to the data.

• Even if a model exists with a very good fit—the global optimum of the objective
function—the heuristic optimization strategy might only be able to find a local
optimum with a much larger error.

• This error is neither caused by the pure error
nor by the error due to the lack of fit (model error).

• Most of the time, the algorithmic error will not be considered and
it is assumed that the heuristic optimization strategy is chosen well enough
to find an optimum that is at least close to the global optimum.
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Machine Learning Bias and Variance

• The four types of errors can be grouped into two categories.

• The algorithmic and the model error can be controlled to a certain extend,
since we are free to choose a suitable model and algorithm.

These errors are also called machine learning bias.

• On the other hand, we have no influence on the pure / intrinsic error or the
sample error (at least if the data to be analyzed have already been collected).

These errors are also called machine learning variance.

• Note that this decomposition differs from the one commonly known in statistics,
where, for example, the mean squared error of an estimator θ̂ for a parameter θ
can be decomposed in terms of the variance of the estimator and its bias:

MSE = Var(θ̂) + (Bias(θ̂))2.

Here the variance depends on the intrinsic error, i.e. on the variance of the ran-
dom variable from which the sample is generated, but also on the choice of the
estimator θ∗ which is considered part of the model bias in machine learning.
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Learning Without Bias? No Free Lunch Theorem

• The different types of errors or biases have an interesting additional impact
on the ability to find a suitable model for a given data set:

If we have no model bias, we will not be able to generalize.

• The model bias is actually essential to put some sort of a-priori knowledge
into the model learning process.

• Essentially this means that we need to constrain

◦ either the types of models that are available

◦ or the way we are searching for a suitable model (or both).

• The technical reason for this need is the No Free Lunch Theorem.
[Wolpert and MacReady 1997]

• Intuitively, this theorem states that if an algorithm (e.g. a machine learning or
optimization algorithm) performs well on a certain class of problems, then it
must pay for that with degraded performance on the set of remaining problems.
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Algorithms for Model Fitting

• An objective function (score / loss function) does not tell us directly
how to find the best or at least a good model.

• To find a good model, an optimization method is needed
(i.e., a method that optimizes the objective function).

• Typical examples of optimization methods are

◦ Analytical / Closed Form Solutions
Sometimes a solution can be obtained in closed form (e.g. linear regression).

◦ Combinatorial Optimization
If the model space is (very) small, exhaustive search may be feasible.

◦ Gradient Methods
If the objective function is differentiable, a gradient method (gradient ascent
or descent) may be applied to find a (possibly only local) optimum.

◦ Random Search, Greedy Strategies and Other Heuristics
For example, hill climbing, greedy search, alternating optimization,
widening, evolutionary and swarm-based algorithms etc.
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Model Validation

• Due to possible overfitting to the induction / training data
(i.e. adaptations to features that are not regular, but accidental),
the error on the training data is not very indicative of the error on new data.

• General idea of model validation:
Evaluate on a hold-out data set (validation data),
that is, on data not used for building / training the model.

◦ Split the data into two parts: training data and validation data
(often recommended: training data 80%, validation data 20%).

◦ Train a model on the training data and evaluate it on the validation data.

• It is (highly) unlikely that the validation data exhibits
the same accidental features as the training data.

• However, we might be lucky (unlucky) that the validation data contains easy
(difficult) examples leading to an over-optimistic (-pessimistic) evaluation.

• Solution approach: repeat the split, the training and the evaluation.

Christian Borgelt Elementary Data Mining 65



Model Validation: Cross Validation

• General method to assess / to predict the performance of models
created by a given model building procedure (not of a specific model!).

• Serves the purpose to estimate the error (rate) on new example cases.

• Procedure of cross validation:

◦ Split the given data set into k so-called folds of equal size
(k-fold cross validation). Often recommended: k = 10.

◦ Combine k− 1 folds into a training data set,
build a classifier, and test it on the k-th fold (the hold-out fold).

◦ Do this for all k possible selections of k− 1 folds
and average the error (rates) (or some other quality measure).

• Special case: leave-1-out cross validation (also known as jackknife method).
(use as many folds as there are example cases)

• The final classifier is generated from the full data set
(in order to exploit all available information).
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Model Validation: Cross Validation

training validation

run 1:

run 2:

run 3:

· · · · · ·

run k:

quality

q1

q2

q3

qk

Build and evaluate a model in each run, then average their quality. q̂ =

1

k

k

∑
i=1

qi

• Cross validation does not assess a single model (since k models are built).

It assesses the expected performance of models built with a certain procedure.
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Cross Validation: Stratified and Grouped Splits

• Stratified Split / Stratification (from the Latin stratum: layer, level, tier)

◦ If the target is nominal, the split should maintain in the created folds
the relative frequency of the target values in the whole data set.

◦ Shuffle the examples of the data set, then sort them w.r.t. the target attribute.

1st fold: [d0 , dk , d2k , . . .]
2nd fold: [d1 , dk+1 , d2k+1, . . .]
. . .
kth fold: [dk−1, d2k−1, d3k−1, . . .]

In this way the frequencies
of the target values differ
by at most 1 between folds.

• Grouped Split (sample cases are not independent)

◦ In some situations certain groups of sample cases should not be separated
(e.g. different episodes of illness of the same patient).

◦ In this case the split has to be done on groups, assigning them to folds,
rather than on individual sample cases. (possible problem: fold sizes)

• Stratified Grouped Splits can be very tricky. (NP-hard in general)
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Model Validation: Cross Validation

• Cross validation is also a method that may be used to determine good
so-called hyper-parameters of a model building method.

• Distinction between parameters and hyper-parameters:

◦ parameter refers to parameters of a model
as it is produced by an algorithm, for example, regression coefficients;

◦ hyper-parameter refers to the parameters of a model-building method,
for example, the maximum height of a decision tree, the number of trees
in a random forest, the number of neurons in a neural network etc.

• Hyper-parameters are commonly chosen by running
a cross validation for various choices of the hyper-parameter(s)
and finally choosing the one that produced the best models
(in terms of their evaluation on the validation data sets).

• A final model is built using the found values for the hyper-parameters
on the whole data set (to maximize the exploitation of information).
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Model Validation: Bootstrapping

• Bootstrapping is a resampling technique from statistics
that does not directly evaluate the model error,
but aims at estimating the variance of the estimated model parameters.

• Therefore, bootstrapping is suitable for models with real-valued parameters.

• Like in cross-validation the model is computed multiple times.

• For this purpose, k bootstrap samples, each of size n, are drawn randomly
with replacement from an original data set with n records.

• A model is fitted to each of these bootstrap samples,
so that we obtain k estimates for the model parameters.

• Based on these k estimates the empirical standard deviation can be computed
for each parameter to provide an assessment of how reliable its estimation is.

• It is also possible to compute confidence intervals for the parameters
based on bootstrapping.

Christian Borgelt Elementary Data Mining 70



Model Validation: Bootstrapping

• The figure on the right shows a data set
with n = 20 data points from which
k = 10 bootstrap samples were drawn.

• For each of the bootstrap samples
the corresponding regression line is shown.
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sample intercept slope

1 0.3801791 0.3749113

2 0.5705601 0.3763055

3 −0.2840765 0.4078726

4 0.9466432 0.3532497

5 1.4240513 0.3201722

6 0.9386061 0.3596913

7 0.6992394 0.3417433

8 0.8300100 0.3385122

9 1.1859194 0.3075218

10 0.2496341 0.4213876

mean 0.6940766 0.3601367

std. dev. 0.4927206 0.0361004

• The resulting parameter estimates for the
intercept and the slope of the regression line
are listed in the table on the left.

• The standard deviation for the slope
is much lower than for the intercept, so that
the estimation for the slope is more reliable.
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k-Nearest Neighbors
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k-Nearest Neighbors

• Basic Principle and Simple Examples

• Ingredients of k-Nearest Neighbor Methods

◦ Distance Metric

◦ Number of Neighbors

◦ Weighting Function for the Neighbors

◦ Prediction Function

• Weighting with Kernel Functions

• Locally Weighted Polynomial Regression

• Implementation Aspects

• Feature / Attribute Weights

• Data Set Reduction and Prototype Building

• Summary
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k-Nearest Neighbors: Principle

• The nearest neighbor algorithm [Cover and Hart 1967] is one of the simplest
and most natural classification and numeric prediction methods.

• It derives the class labels or the (numeric) target values of new input objects
from the most similar training examples,
where similarity is measured by distance in the feature space.

• The prediction is computed by a majority vote of the nearest neighbors
or by averaging their (numeric) target values.

• The number k of neighbors to be taken into account
is a parameter of the algorithm, the best choice of which
depends on the data and the prediction task.

• In a basic nearest neighbor approach only one neighbor object,
namely the closest one, is considered,
and its class or target value is directly transferred to the query object.

Christian Borgelt Elementary Data Mining 74



k-Nearest Neighbors: Principle

• Constructing nearest neighbor classifiers and numeric predictors
is a special case of case- or instance-based learning [Aha et al. 1991].

• As such, it is a lazy learning method in the sense that it is not tried
to construct a model that generalizes beyond the training data
(as eager learning methods do).

• Rather, the training examples are merely stored.

• Predictions for new cases are derived directly from these stored examples
and their (known) classes or target values,
usually without any intermediate model construction.

• (Partial) Exception: lazy decision trees construct from the stored cases
the single path in the decision tree along which the query object is passed down.

• This can improve on standard decision trees in the presence of missing values.

• However, this comes at the price of higher classification costs.
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k-Nearest Neighbors: Simple Examples

input

output

• In both example cases it is k = 1.

• Classification works with a Voronoi tesselation of the data space.

• Numeric prediction leads to a piecewise constant function.

• Using more than one neighbor changes the classification/prediction.
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Delaunay Triangulations and Voronoi Diagrams

Dots represent
data points

• Triangulation: Maximum selection of connecting edges without intersections.

• Left: Delaunay Triangulation
The circle through the corners of a triangle does not contain another point.

• Right: Voronoi Diagram / Tesselation
Midperpendiculars of the Delaunay triangulation: boundaries of the regions
of points that are closest to the enclosed data points (Voronoi cells).
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k-nearest Neighbors: Simple Examples

input

output

• Note: neither the Voronoi tessellation nor the piecewise constant function are
actually computed in the learning process; no model is built at training time.

• The prediction is determined only in response to a query for the class or target
value of a new input object, namely by finding the closest neighbor of the query
object and then transferring its class or target value.

Christian Borgelt Elementary Data Mining 78



Using More Than One Neighbor

• A straightforward generalization of the nearest neighbor approach is to use not
just the one closest, but the k nearest neighbors (usually abbreviated as k-NN).

• If the task is classification, the prediction is then determined by a majority vote
among these k neighbors (breaking ties arbitrarily).

• If the task is numeric prediction, the average of the target values
of these k neighbors is computed.

• Not surprisingly, using more than one neighbor improves the robustness
of the algorithm, since it is not so easily fooled by individual training instances
that are labeled incorrectly or are outliers for a class
(i.e. data points that have an unusual location for the class assigned to them).

• Outliers for the complete data set, on the other hand,
do not affect nearest neighbor predictors much, because
they can only change the prediction for data points that should not occur
or should occur only very rarely (provided the rest of the data is representative).
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Using More Than One Neighbor

• However, using too many neighbors can reduce the capability of the algorithm
as it may smooth the classification boundaries or the interpolation
too much to yield good results.
(Extreme example: Use all available training data points as neighbors.)

• As a consequence, apart from the core choice of the distance function
that determines which training examples are the nearest,
the choice of the number of neighbors to consider is crucial.

• Once multiple neighbors are considered, further extensions become possible.

• For example, the (relative) influence of a neighbor on the prediction
may be made dependent on its distance from the query point
(distance-weighted k-nearest neighbors).

• Or the prediction may be computed from a local model that
is constructed on the fly for a given query point (i.e. from its nearest neighbors)
rather than by a simple majority or averaging rule.
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k-Nearest Neighbors: Basic Ingredients

• Distance Metric
The distance metric, together with a possible task-specific scaling or weighting
of the attributes, determines which training example(s) are nearest to a query
point and thus selects the training example(s) used to compute a prediction.

• Number of Neighbors
The number of neighbors of the query point that are considered can range from
only one (the basic nearest neighbor approach) through a few (like k-nearest
neighbor approaches) to, in principle, all data points as an extreme case.

• Weighting Function for the Neighbors
If multiple neighbors are considered, it is plausible that closer (more similar)
neighbors should have a stronger influence on the prediction result. This can be
expressed by a weighting function yielding higher values for smaller distances.

• Prediction Function
If multiple neighbors are considered, one needs a procedure to compute
the prediction from the classes or target values of these neighbors,
since they may differ and thus may not yield a unique prediction directly.
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k-Nearest Neighbors: More Than One Neighbor

input

output

3-nearest neighbor predictor,
using a simple averaging
of the target values
of the nearest neighbors.

Note that the prediction is still
a piecewise constant function.

• The main effect of the number k of considered neighbors is
how much the class boundaries or the numeric prediction is smoothed.

• If only one neighbor is considered, the prediction is constant
in the Voronoi cells of the training data set and meeting the data points.
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k-Nearest Neighbors: Number of Neighbors

• If only one neighbor is considered, the prediction is constant
in the Voronoi cells of the training data set.

• This makes the prediction highly susceptible to the deteriorating effects
of incorrectly labeled instances or outliers w.r.t. their class, because a single
data point with the wrong class spoils the prediction in its whole Voronoi cell.

• Considering several neighbors (k > 1) mitigates this problem,
since neighbors having the correct class can override the influence of an outlier.

• However, choosing a very large k is also not generally advisable,
because it can prevent the classifier from being able to properly approximate
narrow class regions or narrow peaks or valleys in a numeric target function.

• The example of 3-nearest neighbor prediction on the preceding slide
(using a simple averaging of the target values of these nearest neighbors)
shows the smoothing effect (especially at the borders of the input range).

• The interpolation deviates considerably from the data points.
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k-Nearest Neighbors: Number of Neighbors

• A common method to automatically determine an appropriate value
for the number k of neighbors is cross validation (brief reminder...).

• The training data set is divided into r cross validation folds
of (approximately) equal size.

• The fold sizes may differ by one data point,
to account for the fact that the total number of training examples
may not be divisible by r, the number of folds.

• Then r classification or prediction experiments are performed:
each combination of r− 1 folds is once chosen as the training set, with which
the remaining fold is classified or the (numeric) target value is predicted,
using all numbers k of neighbors from a user-specified range.

• The classification accurracy or the prediction error is aggregated,
for the same value k, over these experiments.

• Finally the number k of neighbors with the lowest aggregated error is chosen.
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k-Nearest Neighbors: Weighting

• Approaches that weight the considered neighbors differently
based on their distance to the query point are known as
distance-weighted k-nearest neighbor or
(for numeric targets) locally weighted regression or
locally weighted scatterplot smoothing (LOWESS or LOESS).

• Such weighting is mandatory in the extreme case
in which all n training examples are used as neighbors,
because otherwise only the majority class or the global average
of the target values can be predicted.

• However, it is also recommended for k < n, since it can,
at least to some degree, counteract the smoothing effect of a large k,
because the excess neighbors are likely to be farther away
and thus will influence the prediction less.

• It should be noted though, that distance-weighted k-NN
is not a way of avoiding the need to find a good value
for the number k of neighbors.
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k-Nearest Neighbors: Weighting

• A typical example of a weighting function for the nearest neighbors
is the so-called tricubic weighting function, which is defined as

w(si, q, k) =

(
1−

(
d(si, q)

dmax(q, k)

)3
)3

.

• q is the query point,

k is the number of considered neighbors,

si is (the input vector of) the i-th nearest neighbor of q in the training data set,

d is the employed distance function, and

dmax(q, k) is the maximum distance between
any two points from the set {q, s1, . . . , sk},
that is, dmax(q, k) = maxa,b∈{q,s1,...,sk} d(a, b).

• The function w yields the weight with which the target value
of the i-th nearest neighbor si of q enters the prediction computation.
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k-Nearest Neighbors: Weighting

input

output

2-nearest neighbor predictor,
using a distance-weighted averaging
of the nearest neighbors.

This ensures that the prediction
meets the data points.

• Note that the interpolation is mainly linear
(because two nearest neighbors are used),
except for some small plateaus close to the data points.

• These result from the weighting, and certain jumps at points
where the two closest neighbors are on the same side of the query point.
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k-Nearest Neighbors: Weighting

• An alternative approach to distance-weighted k-NN consists in abandoning
the requirement of a predetermined number of nearest neighbors.

• Rather a data point is weighted with a kernel function K that is defined
on its distance d to the query point and that satisfies the following properties:
(1) K(d) ≥ 0, (2) K(0) = 1 (or at least that K has its mode at 0), and
(3) K(d) decreases monotonically for d→ ∞.

• In this case all training examples for which the kernel function yields
a non-vanishing value w.r.t. a given query point are used for the prediction.

• Since the density of training examples may, of course, differ
for different regions of the feature space, this may lead to a different
number of neighbors being considered, depending on the query point.

• If the kernel function has an infinite support
(that is, does not vanish for any finite argument value),
all data points are considered for any query point.
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k-Nearest Neighbors: Weighting

• By using a kernel function, we try to mitigate the problem of choosing a good
value for the number k of neighbors, which is now taken care of by the fact that
instances that are farther away have a smaller influence on the prediction.

• On the other hand, we now face the problem of having to decide how quickly
the influence of a data point should decline with increasing distance,
which is analogous to choosing the right number of neighbors
and can be equally difficult to solve.

• Examples of kernel functions with a finite support, given as a radius σ around
the query point within which training examples are considered, are

Krect(d) = τ(d ≤ σ),

Ktriangle(d) = τ(d ≤ σ) · (1− d/σ),

Ktricubic(d) = τ(d ≤ σ) · (1− d3/σ3)3,

where τ(ϕ) is 1 if ϕ is true and 0 otherwise.
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k-Nearest Neighbors: Weighting

• A typical kernel function with infinite support is the Gaussian function

Kgauss(d) = exp

(
− d2

2σ2

)
,

where d is the distance of the training example to the query point and
σ2 is a parameter that determines the spread of the Gaussian function.

• The advantage of a kernel with infinite support is that
the prediction function is smooth (has no jumps) if the kernel is smooth,
because then a training case does not suddenly enter the prediction
if a query point is moved by an infinitesimal amount,
but its influence rises smoothly in line with the kernel function.

• One also does not have to choose a number of neighbors.

• However, the disadvantage is, as already pointed out,
that one has to choose an appropriate radius σ for the kernel function,
which can be more difficult to choose than an appropriate number of neighbors.
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k-Nearest Neighbors: Weighting

input

output
Kernel weighted regression,
using a Gaussian kernel function.
with two different values of σ
(σblue < σblack).

This ensures that the prediction
is smooth, though possibly
not very close to
the training data points.

• Note that the regression function is smooth, because the kernel function
is smooth and always refers to all data points as neighbors,
so that no jumps occur due to a change in the set of nearest neighbors.

• The price is an increased computational cost, since the kernel function
has to be evaluated for all data points, not only for the nearest neighbors.

Christian Borgelt Elementary Data Mining 91



k-Nearest Neighbors: Prediction Function

• The most straightforward choices for the prediction function
are a simple (weighted) majority vote for classification or
a simple (weighted) average for numeric prediction.

• However, especially for numeric prediction,
one may also consider more complex prediction functions,
like building a local regression model from the neighbors
(usually with a linear function or a low-degree polynomial),
thus arriving at locally weighted polynomial regression.

• The prediction is then computed from this local model.

• Not surprisingly, distance weighting may also be used in such a setting.

• Such an approach should be employed with a larger number of neighbors,
so that a change of the set of nearest neighbors
leads to less severe changes of the local regression line.

(Although there will still be jumps of the predicted value in this case, they are just less high.)
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k-Nearest Neighbors: Locally Weighted Regression

input

output

4-nearest neighbor distance-weighted
locally linear regression
(using a tricubic weighting function).

Although linear regression is used,
the nearest neighbors do not enter
with unit weight!

• Note how the distance weighting leads to deviations
from straight lines between the data points.

• Note also the somewhat erratic behavior of the resulting regression function
(jumps at points where the set of nearest neighbors changes).
This will be less severe, the larger the number of neighbors.
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k-Nearest Neighbors: Locally Weighted Regression

• Locally weighted regression is usually applied with simple polynomials:

◦ most of the time linear,

◦ rarely quadratic,

◦ basically never any higher order.

• The reason is that the local character of the regression
is supposed to take care of the global shape of the function,
so that the regression function is not needed to model it.

• The advantage of locally weighted polynomial regression is that no global
regression function, derived from a data generation model, needs to be found.

• This makes the method applicable to a broad range of prediction problems.

• Its disadvantages are that its prediction can be less reliable
in sparsely sampled regions of the feature space, where
the locally employed regression function is stretched to a larger area
and thus may fit the actual target function badly.
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Feature / Distance Weights

• It is crucial for the success of a nearest neighbor approach
that a proper distance function is chosen.

• A very simple and natural way of adapting a distance function
to the needs of the prediction problem is to use distance weights,
thus giving certain features a greater influence than others.

• If prior information is available about which features are most informative w.r.t.
the target, this information can be incorporated into the distance function.

• One may also try to determine appropriate feature weights automatically.

• The simplest approach is to start with equal feature weights
and to modify them iteratively in a hill climbing fashion:

◦ apply a (small) random modification to the feature weights,

◦ check with cross validation whether this improves the prediction quality;

◦ if it does, accept the new weights, otherwise keep the old.

◦ Repeat until some termination criterion is met.
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k-Nearest Neighbors: Implementation

• A core issue of implementing nearest neighbor prediction
is the data structure used to store the training examples.

• In a naı̈ve implementation they are simply stored as a list,
which requires merely O(n) time, where n is the number of training examples.

• However, though fast at training time, this approach
has the serious drawback of being very slow at execution time,
because a linear traversal of all training examples is needed
to find the nearest neighbor(s), requiring O(nm) time,
where m is the dimensionality of the data.

• As a consequence, this approach becomes quickly infeasible
with a growing number of training examples or for high-dimensional data.

• Better approaches rely on data structures like a kd-tree
(short for k-dimensional tree, where the k refers to the number of dimensions,
not the number of neighbors), an R- or R∗-tree, a UB-tree etc.
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k-Nearest Neighbors: Implementation

• With such data structures the query time
can be reduced to O(log n) per query data point.

• The time to store the training examples
(that is, the time to construct an efficient access structure for them)
is, of course, worse than for storing them in a simple list.

• However, with a good data structure and algorithm
it is usually acceptably longer.

• For example, a kd-tree is constructed by iterative bisections
in different dimensions that split the set of data points (roughly) equally.

• As a consequence, constructing it from n training examples
takes O(n log n) time if a linear time algorithm
for finding the median in a dimension is employed.

• Whether such an approach pays off, depends also on the expected number
of query points compared to the number of training data points.
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Data Set Reduction and Prototype Building

• A core problem of nearest neighbor approaches is to quickly find the nearest
neighbors of a given query point.

• This becomes an important practical problem if the training data set is large and
predictions must be computed (very) quickly.

• In such a case one may try to reduce the set of training examples in a prepro-
cessing step, so that a set of relevant or prototypical data points is found, which
yields basically the same prediction quality.

• Note that this set may or may not be a subset of the training examples, depend-
ing on whether the algorithm used to construct this set merely samples from
the training examples or constructs new data points if necessary.

• Note also that there are usually no or only few actually redundant data points,
which can be removed without affecting the prediction at all.

• This is obvious for the numerical case and a 1-nearest neighbor classifier, but
also holds for a k-nearest neighbor classifier with k > 1, because any removal of
data points may change the vote at some point and potentially the classification.
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Data Set Reduction and Prototype Building

• A straightforward approach is based on a simple iterative merge scheme:

◦ At the beginning each training example is considered as a prototype.

◦ Then successively two nearest prototypes are merged as long as
the prediction quality on some hold-out test data set is not reduced.

◦ Prototypes can be merged, for example, by simply computing a weighted
sum, with the relative weights determined by how many original training
examples a prototype represents.

◦ This is similar to hierarchical agglomerative clustering (discussed later).

• More sophisticated approaches may employ, for example, genetic algorithms or
any other method for solving a combinatorial optimization problem.

• This is possible, since the task of finding prototypes can be viewed as the task
to find a subset of the training examples that yields the best prediction quality
(on a given test data set, not the training data set):
finding best subsets is a standard combinatorial optimization problem.
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Summary k-Nearest Neighbors

• Predict with Target Values of k Nearest Neighbors

◦ classification: majority vote

◦ numeric prediction: average value

• Special Case of Case- or Instance-based Learning

◦ method is easy to understand

◦ intuitive and plausible prediction principle

◦ lazy learning: no model is constructed

• Ingredients of k-Nearest Neighbors

◦ Distance Metric / Feature Weights

◦ Number of Neighbors

◦ Weighting Function for the Neighbors

◦ Prediction Function
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Bayes Classifiers
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Bayes Classifiers

• Probabilistic Classification and Bayes’ Rule

• Naive Bayes Classifiers (conditional independence)

◦ Derivation of the classification formula

◦ Probability estimation and Laplace correction

◦ Simple examples of naive Bayes classifiers

◦ A naive Bayes classifier for the Iris data

• Full or Gaussian Bayes Classifiers (linear conditional dependence)

◦ Derivation of the classification formula

◦ Comparison to naive Bayes classifiers

◦ A simple example of a full Bayes classifier

◦ A full Bayes classifier for the Iris data

• Summary
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Probabilistic Classification

• A classifier is an algorithm that assigns a class from a predefined set
to a case or object, based on the values of descriptive attributes.

• An optimal classifier maximizes the probability of a correct class assignment.

◦ Let C be a class attribute with dom(C) = {c1, . . . , cnC
},

which occur with probabilities pi, 1 ≤ i ≤ nC.

◦ Let qi be the probability with which a classifier assigns class ci to some case.
(It is qi ∈ {0, 1} for a deterministic classifier.)

◦ The probability of a correct class assignment is

P(correct assignment) =
nC

∑
i=1

piqi.

◦ Therefore the best choice for the qi is

qi =

{
1, if i = argmax

nC
k=1 pk,

0, otherwise.
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Probabilistic Classification

• Consequence: An optimal classifier should assign the most probable class.

• This argument does not change if we take descriptive attributes into account.

◦ Let U = {A1, . . . , Am} be a set of descriptive attributes
with domains dom(Ak), 1 ≤ k ≤ m.

◦ Let A1 = a1, . . . , Am = am be an instantiation of the attributes.

◦ An optimal classifier should assign the class ci for which

P(C = ci | A1 = a1, . . . , Am = am) =

max
nC
j=1 P(C = cj | A1 = a1, . . . , Am = am)

(Ties are broken arbitrarily.)

• Problem: We cannot store a class (or the class probabilities) for every
possible instantiation A1 = a1, . . . , Am = am of the descriptive attributes.
(The table size grows exponentially with the number of attributes.)

• Therefore: Simplifying assumptions are necessary.
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Reminder: Probability and Notation

• A probability is an additive, non-negative measure on a sample space Ω,
which is a set of elementary events.

• A probability assigns a number in [0, 1] to a set of elementary events.

For example, P(E) = p means that the set E ⊆ Ω has the probability p ∈ [0, 1].

• A random variable is a mapping from a sample space Ω to some domain D,
most often the real numbers (i.e. D = IR).

• For a random variable X : Ω→ D one often writes P(X = x) = p.

This is formally incorrect (since “X = x” is a logical expression and not a set).
However, it is meant as a shorthand for P({ω ∈ Ω | X(ω) = x}).

• P(A1 = a1, . . . , Am = am) is a shorthand for P(A1 = a1 ∧ . . . ∧ Am = am),
which in turn is a shorthand for P({ω ∈ Ω | A1(ω) = a1 ∧ . . . ∧ Am(ω) = am}).

• This may be further shortened to P(A1, . . . , Am), leaving a1, . . . , am implicit.

(May also occur in implicitly all-quantified statements, that is, ∀a1 : . . . ∀am :)
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Bayes’ Rule and Bayes’ Classifiers

• Bayes’ rule is a formula that can be used to “invert” conditional probabilities:
Let X and Y be events, i.e. X, Y ⊆ Ω, with P(X) > 0. Then

P(Y | X) =
P(X | Y) · P(Y)

P(X)
.

• Bayes’ rule follows directly from the definition of conditional probability:

P(Y | X) =
P(X ∩Y)

P(X)
and P(X | Y) = P(X ∩Y)

P(Y)
.

• Bayes’ classifiers: Compute the class probabilities as

P(C = ci | A1 = a1, . . . , Am = am) =

P(A1 = a1, . . . , Am = am | C = ci) · P(C = ci)

P(A1 = a1, . . . , Am = am)
.

• Looks unreasonable at first sight: Even more probabilities to store.
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Reminder: Chain Rule of Probability

• The chain rule of probability is based on the product rule of probability:

P(X ∩Y) = P(X | Y) · P(Y)
(Simply multiply the definition of conditional probability with P(Y).)

• Multiple application of the product rule yields:

P(A1, . . . , Am) = P(Am | A1, . . . , Am−1) · P(A1, . . . , Am−1)

= P(Am | A1, . . . , Am−1)

· P(Am−1 | A1, . . . , Am−2) · P(A1, . . . , Am−2)

= ...

=
m

∏
k=1

P(Ak | A1, . . . , Ak−1)

• The scheme also works if there is already a condition in the original expression:

P(A1, . . . , Am | C) =
m

∏
i=1

P(Ak | A1, . . . , Ak−1, C)
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Conditional Independence

• Reminder: stochastic independence (unconditional)

P(X ∩Y) = P(X) · P(Y)
(Joint probability is the product of the individual probabilities.)

• Comparison to the product rule

P(X ∩Y) = P(X | Y) · P(Y)
shows that this is equivalent to

P(X | Y) = P(X)

• The same formulae hold conditionally, i.e.

P(X ∩Y | Z) = P(X | Z) · P(Y | Z) and

P(X | Y ∩ Z) = P(X | Z).

• ⇒ Conditional independence allows us to cancel some conditions.
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Conditional Independence: An Example
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Conditional Independence: An Example
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Conditional Independence: An Example
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Conditional and Marginal Independence

A B

C

causal chain

Example:

A – accelerator pedal
B – engine speed
C – fuel supply

A ⊥̸⊥ B | ∅

A⊥⊥ B | C

A B

C

common cause

Example:

A – ice cream sales
B – bathing accidents
C – temperature

A ⊥̸⊥ B | ∅

A⊥⊥ B | C

A B

C

common effect

Example:

A – influenza
B – measles
C – fever

A⊥⊥ B | ∅

A ⊥̸⊥ B | C

A⊥⊥ B | C means A is conditionally independent of B given C.

A⊥⊥ B | ∅ means A is marginally independent of B (“independent given nothing”).
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Naive Bayes Classifiers: Cookbook Recipe

Naive (some even say: “idiotic”) Assumption:
The descriptive attributes are conditionally independent given the class.

Bayes’ Rule: (ω is shorthand for A1 = a1, . . . , Am = am)

P(C = ci | ω) =
P(A1 = a1, . . . , Am = am | C = ci) · P(C = ci)

P(A1 = a1, . . . , Am = am) ← p0

Chain Rule of Probability:

P(C = ci | ω) =
P(C = ci)

p0
·

m

∏
k=1

P(Ak = ak |A1 = a1, . . . , Ak−1 = ak−1, C = ci)

Conditional Independence Assumption:

P(C = ci | ω) =
P(C = ci)

p0
·

m

∏
k=1

P(Ak = ak | C = ci)

Christian Borgelt Elementary Data Mining 113



Naive Bayes Classifiers

• Consequence: Manageable amount of data to store.
Store distributions P(C = ci) and ∀1 ≤ k ≤ m : P(Ak = ak | C = ci).

• It is not necessary to compute p0 explicitely, because it can be computed
implicitly by normalizing the computed values to sum 1.

Estimation of Probabilities:

• Nominal/Categorical/Symbolic Attributes

P̂(Ak = ak | C = ci) =
#(Ak = ak, C = ci) + γ

#(C = ci) + nAk
γ

#() refers to the number of sample cases satisfying its argument.

γ is called Laplace correction (to prevent vanishing probabilities).

γ = 0: Maximum likelihood estimation (probabilities may vanish).

Common choices: γ = 1 or γ = 1
2.
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Naive Bayes Classifiers

Estimation of Probabilities:

• Metric/Numeric Attributes: Assume a normal distribution.

f (Ak = ak | C = ci) =
1√

2πσk(ci)
exp

(
−(ak − µk(ci))2

2σ2
k (ci)

)

• Estimate of mean value

µ̂k(ci) =
1

#(C = ci)

#(C=ci)

∑
j=1

ak(j)

• Estimate of variance

σ̂2
k (ci) =

1

ξ

#(C=ci)

∑
j=1

(ak(j)− µ̂k(ci))
2

ξ = #(C = ci) : Maximum likelihood estimation
ξ = #(C = ci)− 1: Unbiased estimation (Bessel’s correction)

(Bessel’s correction is named after Friedrich Wilhelm Bessel, 1784–1846.)
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Reminder: Variance and Standard Deviation

• Special Case: Normal/Gaussian Distribution

The variance/standard deviation provides information about
the height of the mode and the width of the probability density function.

x

µ

σ σ

2σ 2σ

1
√

2πσ2

1
√

2πσ2e

1
√

2πσ2e2

fX(x; µ, σ2) = 1
√

2πσ2
· exp

(

−
(x−µ)2

2σ2

)

• µ: expected value, estimated by mean value x̄,

σ2: variance, estimated by (empirical) variance s2,

σ: standard deviation, estimated by (empirical) standard deviation s.

Important: the standard deviation has the same “unit” as the expected value.
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Naive Bayes Classifiers: Simple Example 1

No Sex Age Blood pr. Drug

1 male 20 normal A
2 female 73 normal B
3 female 37 high A
4 male 33 low B
5 female 48 high A
6 male 29 normal A
7 female 52 normal B
8 male 42 low B
9 male 61 normal B

10 female 30 normal A
11 female 26 low B
12 male 54 high A

P(Drug) A B

0.5 0.5

P(Sex | Drug) A B

male 0.5 0.5
female 0.5 0.5

P(Age | Drug) A B

µ 36.3 47.8
σ2 161.9 311.0

P(Blood Pr. | Drug) A B

low 0 0.5
normal 0.5 0.5
high 0.5 0

A simple database and estimated (conditional) probability distributions.

The conditional probability tables on the right form the classifier.
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Naive Bayes Classifiers: Simple Example 1

P(Drug A | male, 61, normal)

= c1 · P(Drug A) · P(male | Drug A) · f (61 | Drug A) · P(normal | Drug A)

≈ c1 · 0.5 · 0.5 · 0.004787 · 0.5 = c1 · 5.984 · 10−4 = 0.219

P(Drug B | male, 61, normal)

= c1 · P(Drug B) · P(male | Drug B) · f (61 | Drug B) · P(normal | Drug B)

≈ c1 · 0.5 · 0.5 · 0.017120 · 0.5 = c1 · 2.140 · 10−3 = 0.781

c1 · 5.984 · 10−4 + c1 · 2.140 · 10−3 ≈ 1 ⇒ c1 ≈ 365.18

P(Drug A | female, 30, normal)

= c2 · P(Drug A) · P(female | Drug A) · f (30 | Drug A) · P(normal | Drug A)

≈ c2 · 0.5 · 0.5 · 0.027703 · 0.5 = c2 · 3.471 · 10−3 = 0.671

P(Drug B | female, 30, normal)

= c2 · P(Drug B) · P(female | Drug B) · f (30 | Drug B) · P(normal | Drug B)

≈ c2 · 0.5 · 0.5 · 0.013567 · 0.5 = c2 · 1.696 · 10−3 = 0.329

c2 · 3.471 · 10−3 + c2 · 1.696 · 10−3 ≈ 1 ⇒ c2 ≈ 193.54
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Naive Bayes Classifiers: Simple Example 2

• 100 data points, 2 classes

• Small squares: mean values

• Inner ellipses:
one standard deviation

• Outer ellipses:
two standard deviations

• Classes overlap:
classification is not perfect

• Color saturation
indicates probability density Naive Bayes Classifier
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Naive Bayes Classifiers: Simple Example 3

• 20 data points, 2 classes

• Small squares: mean values

• Inner ellipses:
one standard deviation

• Outer ellipses:
two standard deviations

• Attributes are not conditionally
independent given the class

• Color saturation
indicates probability density Naive Bayes Classifier

Christian Borgelt Elementary Data Mining 120



Reminder: The Iris Data

pictures not available in online version

• Collected by Edgar Anderson on the Gaspé Peninsula (Canada).

• First data-analyzed by Ronald Aylmer Fisher (famous statistician).

• 150 cases in total, 50 cases per Iris flower type (specie).

• Measurements of sepal length and width and petal length and width (in cm).

• Most famous data set in pattern recognition and data analysis.
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Naive Bayes Classifiers: Iris Data

• 150 data points, 3 classes

Iris setosa (red)
Iris versicolor (green)
Iris virginica (blue)

• Shown: 2 out of 4 attributes

sepal length
sepal width
petal length (horizontal)
petal width (vertical)

• 6 misclassifications
on the training data
(with all 4 attributes) Naive Bayes Classifier
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Full or Gaussian Bayes Classifiers

• Restricted to metric/numeric attributes (only the class is nominal/symbolic).

• Allow for linear conditional dependences between attributes.

• Simplifying Assumption:
Each class can be described by a multivariate normal distribution.

f (A1 = a1, . . . , Am = am | C = ci)

=
1√

(2π)m|Σi|
exp

(
−1

2
(⃗a− µ⃗i)

⊤
Σ
−1
i (⃗a− µ⃗i)

)

µ⃗i: mean value vector for class ci

Σi: covariance matrix for class ci

• Intuitively: Each class has a bell-shaped probability density.

• Naive Bayes classifiers: Covariance matrices are diagonal matrices.
(Details about this relation are given below.)

Christian Borgelt Elementary Data Mining 123



Reminder: Variance and Standard Deviation

• Special Case: Normal/Gaussian Distribution

The variance/standard deviation provides information about
the height of the mode and the width of the probability density function.

x

µ

σ σ

2σ 2σ

1
√

2πσ2

1
√

2πσ2e

1
√

2πσ2e2

fX(x; µ, σ2) = 1
√

2πσ2
· exp

(

−
(x−µ)2

2σ2

)

• µ: expected value, estimated by mean value x̄,

σ2: variance, estimated by (empirical) variance s2,

σ: standard deviation, estimated by (empirical) standard deviation s.

Important: the standard deviation has the same “unit” as the expected value.
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Reminder: Vector Products

• A covariance matrix is a multivariate generalization of the variance.

Inner Product
Scalar Product

v⃗⊤v⃗




v1

v2
...

vm




(v1, v2, . . . , vm) ∑
m
i=1 v2

i

Outer Product
Matrix Product

v⃗v⃗⊤ ( v1, v2, . . . , vm )



v1

v2
...

vm







v2
1 v1v2 · · · v1vm

v1v2 v2
2 · · · v2vm

... . . . ...
v1vm v2vm · · · v2

m




• In principle both vector products may be used
for a generalization of the variance to multiple dimensions.

• The second, however, yields more information about the distribution:

◦ a measure of the (linear) dependence of the attributes,

◦ a description of the direction dependence of the dispersion.
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Covariance Matrix

• Covariance Matrix
Compute variance formula with vectors (square: outer product v⃗v⃗⊤):

S =
1

n− 1

n

∑
i=1

((
xi

yi

)
−
(

x̄

ȳ

))((
xi

yi

)
−
(

x̄

ȳ

))⊤
=

(
s2

x sxy

syx s2
y

)

where s2
x and s2

y are variances and sxy is the covariance of x and y:

s2
x = sxx =

1

n− 1

n

∑
i=1

(xi − x̄)2 =
1

n− 1

(
n

∑
i=1

x2
i − nx̄2

)

s2
y = syy =

1

n− 1

n

∑
i=1

(yi − ȳ)2 =
1

n− 1

(
n

∑
i=1

y2
i − nȳ2

)

sxy = syx =
1

n− 1

n

∑
i=1

(xi − x̄)(yi − ȳ) =
1

n− 1

(
n

∑
i=1

xiyi − nx̄ȳ

)

(Using n− 1 instead of n is called Bessel’s correction, after Friedrich Wilhelm Bessel, 1784–1846.)
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Reminder: Variance and Standard Deviation

• Special Case: Normal/Gaussian Distribution

The variance/standard deviation provides information about
the height of the mode and the width of the probability density function.

x

µ

σ σ

2σ 2σ

1
√

2πσ2

1
√

2πσ2e

1
√

2πσ2e2

fX(x; µ, σ2) = 1
√

2πσ2
· exp

(

−
(x−µ)2

2σ2

)

• µ: expected value, estimated by mean value x̄,

σ2: variance, estimated by (empirical) variance s2,

σ: standard deviation, estimated by (empirical) standard deviation s.

Important: the standard deviation has the same “unit” as the expected value.
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Multivariate Normal Distribution

• A univariate normal distribution has the density function

fX(x; µ, σ2) =
1√

2πσ2
· exp

(
−(x− µ)2

2σ2

)

µ: expected value, estimated by mean value x̄,
σ2: variance, estimated by (empirical) variance s2,
σ: standard deviation, estimated by (empirical) standard deviation s.

• A multivariate normal distribution has the density function

fX⃗(x⃗; µ⃗, Σ) =
1√

(2π)m|Σ|
· exp

(
−1

2
(x⃗− µ⃗)⊤Σ

−1(x⃗− µ⃗)

)

m: size of the vector x⃗ (it is m-dimensional),
µ⃗: expected value vector, estimated by mean value vector ¯⃗x,
Σ: covariance matrix, estimated by (empirical) covariance matrix S,
|Σ|: determinant of the covariance matrix Σ.
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Interpretation of a Covariance Matrix

• The variance/standard deviation relates the spread of the distribution to
the spread of a standard normal distribution (σ2 = σ = 1).

• The covariance matrix relates the spread of the distribution to
the spread of a multivariate standard normal distribution (Σ = 1).

• Example: bivariate normal distribution

–2
–1

0
1

2–2

–1
0

1
2

–2
–1

0
1

2–2

–1
0

1
2

standard general

• Question: Is there a multivariate analog of standard deviation?
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Interpretation of a Covariance Matrix

Question: Is there a multivariate analog of standard deviation?

First insight:
If the covariances vanish,
the contour lines are axes-parallel ellipses.
The upper ellipse is inscribed into the
rectangle [−σx, σx]× [−σy, σy].

Σ =

(
σ2

x 0
0 σ2

y

)
−σx σx

σy

−σy

Second insight:
If the covariances do not vanish,
the contour lines are rotated ellipses.
Still the upper ellipse is inscribed into the
rectangle [−σx, σx]× [−σy, σy].

Σ =

(
σ2

x σxy

σxy σ2
y

)

−σx σx
σy

−σy

Consequence: A covariance matrix describes a scaling and a rotation.
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Interpretation of a Covariance Matrix

A covariance matrix is always positive semi-definite.

• positive semi-definite (or non-negative definite): ∀v⃗ ∈ IRm : v⃗⊤M v⃗ ≥ 0,
negative semi-definite (or non-positive definite): ∀v⃗ ∈ IRm : v⃗⊤M v⃗ ≤ 0,

• For any x⃗ ∈ IRm the outer product x⃗x⃗⊤ yields a positive semi-definite matrix:

∀v⃗ ∈ IRm : v⃗⊤x⃗x⃗⊤v⃗ = (⃗v⊤x⃗)2 ≥ 0.

• If Mi, i = 1, . . . , k, are positive (negative) semi-definite matrices,
then M = ∑

k
i=1 Mi is a positive (negative) semi-definite matrix.

∀v⃗ ∈ IRm : v⃗⊤Mv⃗ = v⃗⊤
(

∑
k
i=1 Mi

)
v⃗ = ∑

k
i=1 v⃗⊤Mi⃗v︸ ︷︷ ︸

≥0

≥ 0.

• A(n empirical) covariance matrix is computed as

S =
1

n− 1

n

∑
i=1

(x⃗i − ¯⃗x )(x⃗i − ¯⃗x )⊤.

As the sum of positive semi-definite matrices, it is positive semi-definite itself.
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Interpretation of a Covariance Matrix

A covariance matrix is generally positive definite,
unless all data points lie in a lower-dimensional (linear) subspace.

• positive definite: ∀v⃗ ∈ IRm−{⃗0} : v⃗⊤M v⃗ > 0,
negative definite: ∀v⃗ ∈ IRm−{⃗0} : v⃗⊤M v⃗ < 0,

• A(n empirical) covariance matrix is computed as S = 1
n−1 ∑

n
i=1(x⃗i− ¯⃗x )(x⃗i− ¯⃗x )⊤.

• Let z⃗i = (x⃗i − ¯⃗x ), i = 1, . . . , n, and suppose that

∃v⃗ ∈ IRm−{⃗0} : ∀i; 1 ≤ i ≤ n : v⃗⊤⃗zi = 0 (implying v⃗⊤⃗zi⃗z
⊤
i v⃗ = (⃗v⊤⃗zi)2 = 0).

Furthermore, suppose that the set {⃗z1, . . . , z⃗n} of difference vectors spans IRm.

Then there exist α1, . . . , αn ∈ IR such that v⃗ = α1⃗z1 + . . . + αn⃗zn.

Hence v⃗⊤⃗v = v⃗⊤⃗z1︸︷︷︸
=0

α1 + . . . + v⃗⊤⃗zn︸︷︷︸
=0 (by assumption)

αn = 0, implying v⃗ = 0⃗, contradicting v⃗ ̸= 0⃗.

• Therefore, if the z⃗i, i = 1, . . . , n, span IRm, then S is positive definite.
Only if the z⃗i, i = 1, . . . , n, do not span IRm, that is, if the data points lie
in a lower-dimensional (linear) subspace, S is only positive semi-definite.
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Covariance Matrix Decomposition

• Intuitively: Compute an analog of standard deviation.

• In the univariate case, standard deviation is the square root of the variance.

• Question: Can we compute a “square root” of a covariance matrix?

(Not all matrices, not even all square matrices, allow for computing a “square root”,
but positive definite matrices, and hence covariance matrices, do.)

• General idea: Given a positive definite matrix S, find a matrix M
such that MM⊤ = S (intuitively: “square” of M is S).

• Problem: Generally, the equation MM⊤ = S does not have a unique solution.
Generally, there are multiple matrices M that satisfy the equation.

• A unique solution can be enforced by additional constraints / requirements.

◦ Cholesky Decomposition: M is a lower/left triangular matrix.

◦ Eigenvalue Decomposition: M is composed of a scaling and a rotation.
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Cholesky Decomposition

• Intuitively: Compute an analog of standard deviation.

• Let S be a symmetric, positive definite matrix (e.g. a covariance matrix).
Cholesky decomposition serves the purpose to compute a “square root” of S.

◦ symmetric: ∀1 ≤ i, j ≤ m : Sij = Sji or S⊤ = S.
(S⊤ is the transpose of the matrix S.)

◦ positive definite: ∀v⃗ ∈ IRm−{0} : v⃗⊤S v⃗ > 0

• Formally: Compute a left/lower triangular matrix L such that LL⊤ = S.
(L⊤ is the transpose of the matrix L.)

Lii =

(
Sii −

i−1

∑
k=1

L2
ik

)1
2

Lji =
1

Lii

(
Sij−

i−1

∑
k=1

LikLjk

)
, j = i + 1, i + 2, . . . , q.
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Cholesky Decomposition

Special Case: Two Dimensions

• Covariance matrix

Σ =

(
σ2

x σxy

σxy σ2
y

)

• Cholesky decomposition

L =




σx 0

σxy

σx

1

σx

√
σ2

xσ2
y − σ2

xy




1

2

3

4

unit
circle

mapping with L

v⃗ ′ = Lv⃗

1
2

3
4
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Eigenvalue Decomposition

• Eigenvalue decomposition also yields an analog of standard deviation.

• It is computationally more expensive than Cholesky decomposition.

• Let S be a symmetric, positive definite matrix (e.g. a covariance matrix).

◦ S can be written as

S = R diag(λ1, . . . , λm) R−1,

where the λj, j = 1, . . . , m, are the eigenvalues of S
and the columns of R are the (normalized) eigenvectors of S.

◦ The eigenvalues λj, j = 1, . . . , m, of S are all positive
and the eigenvectors of S are orthonormal (→ R−1 = R⊤).

• Due to the above, S can be written as S = T T⊤, where

T = R diag
(√

λ1, . . . ,
√

λm

)
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Eigenvalue Decomposition

Special Case: Two Dimensions

• Covariance matrix

Σ =

(
σ2

x σxy

σxy σ2
y

)

• Eigenvalue decomposition

T =

(
c −s

s c

)(
σ1 0

0 σ2

)
,

s = sin ϕ, c = cos ϕ, ϕ = 1
2 arctan

2σxy

σ2
x−σ2

y
,

σ1 =
√

c2σ2
x + s2σ2

y + 2scσxy,

σ2 =
√

s2σ2
x + c2σ2

y − 2scσxy.

1

2

3

4

unit
circle

mapping with T

v⃗ ′ = Tv⃗

1

2

3

4

φ

σ1

σ2
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Eigenvalue Decomposition

Eigenvalue decomposition enables us to write a covariance matrix Σ as

Σ = TT⊤ with T = R diag
(√

λ1, . . . ,
√

λm

)
.

As a consequence we can write its inverse Σ
−1 as

Σ
−1 = U⊤U with U = diag

(
λ
−1

2
1 , . . . , λ

−1
2

m

)
R⊤.

U describes the inverse mapping of T, i.e., rotates the ellipse so that its axes coincide
with the coordinate axes and then scales the axes to unit length. Hence:

(x⃗− y⃗)⊤Σ
−1(x⃗− y⃗) = (x⃗− y⃗)⊤U⊤U(x⃗− y⃗) = (x⃗ ′− y⃗ ′)⊤(x⃗ ′− y⃗ ′),

where x⃗ ′ = Ux⃗ and y⃗ ′ = Uy⃗.

Result: (x⃗ − y⃗)⊤Σ
−1(x⃗ − y⃗) is equivalent to the squared Euclidean distance in the

properly scaled eigensystem of the covariance matrix Σ.

d(x⃗, y⃗) =
√
(x⃗− y⃗)⊤Σ−1(x⃗− y⃗) is called Mahalanobis distance.
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Eigenvalue Decomposition

Eigenvalue decomposition also shows that the determinant of the covariance
matrix Σ provides a measure of the (hyper-)volume of the (hyper-)ellipsoid. It is

|Σ| = |R| |diag(λ1, . . . , λm)| |R⊤| = |diag(λ1, . . . , λm)| =
m

∏
i=1

λi,

since |R| = |R⊤| = 1 as R is orthogonal with unit length columns, and thus

√
|Σ| =

m

∏
i=1

√
λi,

which is proportional to the (hyper-)volume of the (hyper-)ellipsoid.

To be precise, the volume of the m-dimensional (hyper-)ellipsoid, to which a (hyper-
)sphere with radius r is mapped with the eigenvalue decomposition of a covariance
matrix Σ, is

Vm(r) =
π

m
2 rm

Γ
(

m
2 + 1

)
√
|Σ|, where

Γ(x) =
∫ ∞

0
e−ttx−1 dt, x > 0,

Γ(x + 1) = x · Γ(x), Γ(1
2) =

√
π, Γ(1) = 1.
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Eigenvalue Decomposition

Special Case: Two Dimensions

• Covariance matrix and its eigenvalue decomposition:

Σ =

(
σ2

x σxy

σxy σ2
y

)
and T =

(
cos ϕ − sin ϕ

sin ϕ cos ϕ

)(
σ1 0

0 σ2

)
.

1

2

3

4

unit
circle

mapping with T

v⃗ ′ = Tv⃗

1

2

3

4

φ

σ1

σ2

• The area of the ellipse, to which the unit circle (area π) is mapped, is

A = πσ1σ2 = π
√
|Σ|.
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Full or Gaussian Bayes Classifiers

Estimation of Probabilities:

• Estimate of mean value vector

ˆ⃗µi =
1

#(C = ci)

#(C=ci)

∑
j=1

a⃗(j)

• Estimate of covariance matrix

Σ̂i =
1

ξ

#(C=ci)

∑
j=1

(
a⃗(j)− ˆ⃗µi

) (
a⃗(j)− ˆ⃗µi

)⊤

ξ = #(C = ci) : Maximum likelihood estimation

ξ = #(C = ci)− 1: Unbiased estimation (Bessel’s correction)

x⃗⊤ denotes the transpose of the vector x⃗.

x⃗x⃗⊤ is the so-called outer product or matrix product of x⃗ with itself.
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Comparison of Naive and Full/Gaussian Bayes Classifiers

Naive Bayes classifiers for metric/numeric data are equivalent
to full Bayes classifiers with diagonal covariance matrices:

f (A1 = a1, . . . , Am = am | C = ci)

=
1√

(2π)m|Σi|
· exp

(
−1

2
(⃗a− µ⃗i)

⊤
Σ
−1
i (⃗a− µ⃗i)

)

=
1√

(2π)m ∏
m
k=1 σ2

i,k

· exp

(
−1

2
(⃗a− µ⃗i)

⊤ diag
(
σ−2

i,1 , . . . , σ−2
i,m

)
(⃗a− µ⃗i)

)

=
1

∏
m
k=1

√
2πσ2

i,k

· exp

(
−1

2

m

∑
k=1

(ak − µi,k)
2

σ2
i,k

)

=
m

∏
k=1

1√
2πσ2

i,k

· exp

(
−(ak − µi,k)

2

2σ2
i,k

)
=̂

m

∏
k=1

f (Ak = ak | C = ci),

where f (Ak = ak | C = ci) are the density functions of a naive Bayes classifier.
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Comparison of Naive and Full/Gaussian Bayes Classifiers

Naive Bayes Classifier Full/Gaussian Bayes Classifier
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Full/Gaussian Bayes Classifiers: Iris Data

• 150 data points, 3 classes

Iris setosa (red)
Iris versicolor (green)
Iris virginica (blue)

• Shown: 2 out of 4 attributes

sepal length
sepal width
petal length (horizontal)
petal width (vertical)

• 2 misclassifications
on the training data
(with all 4 attributes) Full/Gaussian Bayes Classifier
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Tree-Augmented Naive Bayes Classifiers

• A naive Bayes classifier can be seen as a special Bayesian network.

• Intuitively, Bayesian networks are a graphical language for expressing condi-
tional independence statements: A directed acyclic graph encodes, by a vertex
separation criterion, which conditional independence statements hold in the
joint probability distribution on the space spanned by the vertex attributes.

Definition (d-separation):
Let G⃗ = (V, E⃗) be a directed acyclic graph and X, Y, and Z three disjoint subsets of
vertices. Z d-separates X and Y in G⃗, written ⟨X | Z | Y⟩G⃗, iff there is no path from
a vertex in X to a vertex in Y along which the following two conditions hold:

1. every vertex with converging edges (from its predecessor and its successor on
the path) either is in Z or has a descendant in Z,

2. every other vertex is not in Z.

A path satisfying the conditions above is said to be active, otherwise it is said to be
blocked (by Z); so separation means that all paths are blocked.
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Tree-Augmented Naive Bayes Classifiers

C

A1

A2

A3

A4 An

· · ·

C

A1

A2

A3

A4 An

· · ·

• If in a directed acyclic graph all paths from a vertex set X to a vertex set Y are
blocked by a vertex set Z (according to d-separation), this expresses that the
conditional independence X⊥⊥Y | Z holds in the probability distribution that
is described by a Bayesina network having this graph structure.

• A star-like network, with the class attribute in the middle, represents a naive
Bayes classifier: All paths are blocked by the class attribute C.

• The strong conditional independence assumptions can be mitigated by allow-
ing for additional edges between attributes. Restricting them to a (directed) tree
allows for efficient learning (tree-augmented naive Bayes classifiers).
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Summary Bayes Classifiers

• Probabilistic Classification: Assign the most probable class.

• Bayes’ Rule: “Invert” the conditional class probabilities.

• Naive Bayes Classifiers

◦ Simplifying Assumption:
Attributes are conditionally independent given the class.

◦ Can handle nominal/symbolic as well as metric/numeric attributes.

• Full or Gaussian Bayes Classifiers

◦ Simplifying Assumption:
Each class can be described by a multivariate normal distribution.

◦ Can handle only metric/numeric attributes.

• Tree-Augmented Naive Bayes Classifiers

◦ Mitigate the strong conditional independence assumptions.
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Decision and Regression Trees
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Decision and Regression Trees

• Classification with a Decision Tree

• Top-down Induction of Decision Trees

◦ A simple example

◦ The general algorithm

◦ Attribute selection measures

◦ Treatment of numeric attributes and missing values

• Pruning Decision Trees

◦ General approaches

◦ A simple example

• Regression Trees

• Summary
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A Very Simple Decision Tree

Assignment of a drug to a patient:

Blood pressure

AgeDrug A Drug B

Drug A Drug B

normalhigh low

≤ 40 > 40
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Classification with a Decision Tree

Recursive Descent:

• Start at the root node.

• If the current node is an leaf node:

◦ Return the class assigned to the node.

• If the current node is an inner node:

◦ Test the attribute associated with the node.

◦ Follow the branch/edge labeled with the outcome of the test.

◦ Apply the classification algorithm recursively.
(Make the node reached by following the branch the current node.)

Intuitively: Follow the path corresponding to the case to be classified.

The followed path may be interpreted as a classification rule:

If the attributes tested in the inner nodes have the branch/edge labels as values,
then the example/case belongs to the class of the leaf node reached by the path.
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Classification in the Example

Assignment of a drug to a patient:

Blood pressure

AgeDrug A Drug B

Drug A Drug B

normalhigh low

≤ 40 > 40
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Classification in the Example

Assignment of a drug to a patient:

Blood pressure

AgeDrug A Drug B

Drug A Drug B

normalhigh low

≤ 40 > 40
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Classification in the Example

Assignment of a drug to a patient:

Blood pressure

AgeDrug A Drug B

Drug A Drug B

normal

≤ 40

high low

> 40
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Induction of Decision Trees

• Top-down approach

◦ Build the decision tree from top to bottom
(from the root to the leaves).

• Greedy Selection of a Test Attribute

◦ Compute an evaluation measure for all attributes.

◦ Select the attribute with the best evaluation.

• Divide and Conquer / Recursive Descent

◦ Divide the example cases according to the values of the test attribute.

◦ Apply the procedure recursively to the subsets.

◦ Terminate the recursion if – all cases belong to the same class

– no more test attributes are available

– some other termination criterion is satisfied
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Induction of a Decision Tree: Example

Patient database

• 12 example cases

• 3 descriptive attributes

• 1 class attribute

Assignment of drug

(without patient attributes)

always drug A or always drug B:

50% correct (in 6 of 12 cases)

No Sex Age Blood pr. Drug

1 male 20 normal A
2 female 73 normal B
3 female 37 high A
4 male 33 low B
5 female 48 high A
6 male 29 normal A
7 female 52 normal B
8 male 42 low B
9 male 61 normal B

10 female 30 normal A
11 female 26 low B
12 male 54 high A
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Induction of a Decision Tree: Example

Sex of the patient

• Division w.r.t. male/female.

Assignment of drug

male: 50% correct (in 3 of 6 cases)

female: 50% correct (in 3 of 6 cases)

total: 50% correct (in 6 of 12 cases)

No Sex Drug

1 male A
6 male A

12 male A
4 male B
8 male B
9 male B

3 female A
5 female A

10 female A
2 female B
7 female B

11 female B

Christian Borgelt Elementary Data Mining 157



Induction of a Decision Tree: Example

Age of the patient

• Sort according to age.

• Find best age threshold.
here: ca. 40 years

Assignment of drug

≤ 40: A 67% correct (in 4 of 6 cases)

> 40: B 67% correct (in 4 of 6 cases)

total: 67% correct (in 8 of 12 cases)

No Age Drug

1 20 A
11 26 B

6 29 A
10 30 A

4 33 B
3 37 A

8 42 B
5 48 A
7 52 B

12 54 A
9 61 B
2 73 B
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Induction of a Decision Tree: Example

Age of the patient: Consider all possible thresholds and choose best.

No Age Drug

1 20 A

11 26 B
6 29 A

10 30 A
4 33 B
3 37 A
8 42 B
5 48 A
7 52 B

12 54 A
9 61 B
2 73 B

No Age Drug

1 20 A
11 26 B

6 29 A
10 30 A
4 33 B
3 37 A
8 42 B
5 48 A
7 52 B

12 54 A
9 61 B
2 73 B

No Age Drug

1 20 A
11 26 B

6 29 A

10 30 A
4 33 B
3 37 A
8 42 B
5 48 A
7 52 B

12 54 A
9 61 B
2 73 B

No Age Drug

1 20 A
11 26 B

6 29 A
10 30 A

4 33 B
3 37 A
8 42 B
5 48 A
7 52 B

12 54 A
9 61 B
2 73 B

· · ·

• A metric attribute is turned into multiple dichotomic / binary attributes
by considering all possible thresholds. The best threshold / attribute is chosen.

• The best threshold is never between cases with the same class.
(at least there is one of equal quality between cases of different classes).
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Induction of a Decision Tree: Example

Blood pressure of the patient

• Division w.r.t. high/normal/low.

Assignment of drug

high: A 100% correct (in 3 of 3 cases)

normal: 50% correct (in 3 of 6 cases)

low: B 100% correct (in 3 of 3 cases)

total: 75% correct (in 9 of 12 cases)

No Blood pr. Drug

3 high A
5 high A

12 high A

1 normal A
6 normal A

10 normal A
2 normal B
7 normal B
9 normal B

4 low B
8 low B

11 low B
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Induction of a Decision Tree: Example

Current Decision Tree:

Blood pressure

?Drug A Drug B

normalhigh low
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Induction of a Decision Tree: Example

Blood pressure and Sex

• Only patients
with normal blood pressure.

• Division w.r.t. male/female.

Assignment of drug

male: A 67% correct (2 of 3)

female: B 67% correct (2 of 3)

total: 67% correct (4 of 6)

No Blood pr. Sex Drug

3 high A
5 high A

12 high A

1 normal male A
6 normal male A
9 normal male B

2 normal female B
7 normal female B

10 normal female A

4 low B
8 low B

11 low B
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Induction of a Decision Tree: Example

Blood pressure and age

• Only patients
with normal blood pressure.

• Sort according to age.

• Find best age threshold.
here: ca. 40 years

Assignment of drug

≤ 40: A 100% correct (3 of 3)

> 40: B 100% correct (3 of 3)

total: 100% correct (6 of 6)

No Blood pr. Age Drug

3 high A
5 high A

12 high A

1 normal 20 A
6 normal 29 A

10 normal 30 A

7 normal 52 B
9 normal 61 B
2 normal 73 B

11 low B
4 low B
8 low B
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Result of Decision Tree Induction

Assignment of a drug to a patient:

Blood pressure

AgeDrug A Drug B

Drug A Drug B

normalhigh low

≤ 40 > 40
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Decision Tree Induction: Notation

D a set of case or object descriptions (data)

C the class attribute

A(1), . . . , A(m) other attributes (index dropped in the following)

dom(C) = {c1 , . . . , cnC
}, nC: number of classes

dom(A) = {a1, . . . , anA
}, nA: number of attribute values

N.. total number of case or object descriptions i.e. N.. = |D|
Ni. absolute frequency of the class ci

N.j absolute frequency of the attribute value aj

Nij absolute frequency of the combination of the class ci and the attribute value aj

It is Ni. = ∑
nA
j=1 Nij and N.j = ∑

nC
i=1 Nij

pi. relative frequency of the class ci, pi. =
Ni.
N..

p.j relative frequency of the attribute value aj, p.j =
N.j

N..

pij relative frequency of the combination of class ci and attribute value aj, pij =
Nij

N..

pi|j relative frequency of the class ci in cases having attribute value aj, pi|j =
Nij

N.j
=

pij

p.j
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Decision Tree Induction: Notation

No Sex Age Blood pr. Drug

1 male 20 normal A
2 female 73 normal B
3 female 37 high A
4 male 33 low B
5 female 48 high A
6 male 29 normal A
7 female 52 normal B
8 male 42 low B
9 male 61 normal B

10 female 30 normal A
11 female 26 low B
12 male 54 high A

C =̂ Drug
dom(C) = {A, B}
A(1) =̂ Sex
dom(A(1)) = {female, male}
A(2) =̂ Age
dom(A(2)) = IN or dom(A(2)) = IR

A(3) =̂ Blood pressure
dom(A(3)) = {low, normal, high}
N.. = 12

C : N1. = 6, N2. = 6

A(1): N.1 = 6, N.2 = 6,
N11 = 3, N12 = 3,
N21 = 3, N22 = 3.

A(2): (depends on threshold/discretization)

A(3): N.1 = 3, N.2 = 6, N.3 = 3,
N11 = 3, N12 = 3, N13 = 0,
N21 = 0, N22 = 3, N23 = 3.
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Decision Tree Induction: General Algorithm

function grow tree (D : set of cases) : node;
begin

best v := WORTHLESS;
for all untested attributes A do

compute frequencies Nij, Ni., N.j for 1 ≤ i ≤ nC and 1 ≤ j ≤ nA;
compute value v of an evaluation measure using Nij, Ni., N.j;
if v > best v then best v := v; best A := A; end;

end
if best v = WORTHLESS
then create leaf node x;

assign majority class of D to x;
else create test node x;

assign test on attribute best A to x;
for all a ∈ dom(best A) do x.child[a] := grow tree(D|best A=a); end;

end;
return x;

end;
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Evaluation Measures

• Evaluation measure used in the above example:
rate of correctly classified example cases.

◦ Advantage: simple to compute, easy to understand.

◦ Disadvantage: works well only for two classes.

• If there are more than two classes, the rate of misclassified example cases
neglects a lot of the available information.

◦ Only the majority class—that is, the class occurring most often
in (a subset of) the example cases—is really considered.

◦ The distribution of the other classes has no influence. However,
a good choice here can be important for deeper levels of the decision tree.

• Therefore: Study also other evaluation measures. Here:

◦ Information gain and its various variants and normalizations.

◦ χ2 measure (well-known in statistics).
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An Information-theoretic Evaluation Measure

Information Gain (used in ID3) [Kullback and Leibler 1951, Quinlan 1986]

Based on Shannon Entropy H = −
n

∑
i=1

pi log2 pi (Shannon 1948)

Igain(C, A) = H(C) − H(C|A)

=

︷ ︸︸ ︷

−
nC

∑
i=1

pi. log2 pi. −

︷ ︸︸ ︷
nA

∑
j=1

p.j

(
−

nC

∑
i=1

pi|j log2 pi|j

)

H(C) Entropy of the class distribution (C: class attribute)

H(C|A) Expected entropy of the class distribution
if the value of the attribute A becomes known

H(C)− H(C|A) Expected entropy reduction or information gain
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Interpretation of Shannon Entropy

• Let S = {s1, . . . , sn} be a finite set of alternatives having positive probabilities
Ps(si), i = 1, . . . , n, satisfying ∑

n
i=1 Ps(si) = 1 (i.e., S is exhaustive).

• Shannon Entropy:

H(S) = −
n

∑
i=1

Ps(si) log2 Ps(si) = IEs∼Ps(− log2 Ps(s))

• Intuitively: Expected number of yes/no questions that have to be asked
in order to determine the obtaining alternative.

◦ Suppose there is an oracle, which knows the obtaining alternative,
but responds only if the question can be answered with “yes” or “no”.

◦ A better question scheme than asking for one alternative after the other
can easily be found: Divide the set into two subsets of about equal size.

◦ Ask for containment in an arbitrarily chosen subset.

◦ Apply this scheme recursively→ number of questions bounded by ⌈log2 n⌉.
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Question/Coding Schemes

Ps(s1) = 0.10, Ps(s2) = 0.15, Ps(s3) = 0.16, Ps(s4) = 0.19, Ps(s5) = 0.40

Shannon entropy: −∑i Ps(si) log2 Ps(si) = 2.15 bit/symbol

Linear Traversal

s4, s5

s3, s4, s5

s2, s3, s4, s5

s1, s2, s3, s4, s5

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5

1 2 3 4 4

Code length: 3.24 bit/symbol
Code efficiency: 0.664

Equal Size Subsets

s1, s2, s3, s4, s5

0.25 0.75
s1, s2 s3, s4, s5

0.59
s4, s5

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5

2 2 2 3 3

Code length: 2.59 bit/symbol
Code efficiency: 0.830
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Question/Coding Schemes

• Splitting into subsets of about equal size can lead to a bad arrangement of the
alternatives into subsets→ high expected number of questions.

• Good question schemes take the probability of the alternatives into account.

• Shannon-Fano Coding (1948)

◦ Build the question/coding scheme top-down.

◦ Sort the alternatives w.r.t. their probabilities.

◦ Split the set so that the subsets have about equal probability
(splits must respect the probability order of the alternatives).

• Huffman Coding (1952)

◦ Build the question/coding scheme bottom-up.

◦ Start with one element sets.

◦ Always combine those two sets that have the smallest probabilities.
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Question/Coding Schemes

Ps(s1) = 0.10, Ps(s2) = 0.15, Ps(s3) = 0.16, Ps(s4) = 0.19, Ps(s5) = 0.40

Shannon entropy: −∑i Ps(si) log2 Ps(si) = 2.15 bit/symbol

Shannon–Fano Coding (1948)

s1, s2, s3, s4, s5

0.25

0.41

s1, s2

s1, s2, s3

0.59
s4, s5

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5

3 3 2 2 2

Code length: 2.25 bit/symbol
Code efficiency: 0.955

Huffman Coding (1952)

s1, s2, s3, s4, s5

0.60
s1, s2, s3, s4

0.25 0.35
s1, s2 s3, s4

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5

3 3 3 3 1

Code length: 2.20 bit/symbol
Code efficiency: 0.977
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Question/Coding Schemes

• It can be shown that Huffman coding is optimal if we have to determine
the obtaining alternative in a single instance.
(No question/coding scheme has a smaller expected number of questions.)

• Only if the obtaining alternative has to be determined in a sequence of
(independent) situations, this scheme can be improved upon.

• Idea: Process the sequence not instance by instance,
but combine two, three or more consecutive instances and
ask directly for the obtaining combination of alternatives.

• Although this enlarges the question/coding scheme, the expected number
of questions per identification is reduced (because each interrogation identifies
the obtaining alternative for several situations).

• However, the expected number of questions per identification
cannot be made arbitrarily small.
Shannon showed that there is a lower bound, namely the Shannon entropy.
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Interpretation of Shannon Entropy

Ps(s1) =
1
2, Ps(s2) =

1
4, Ps(s3) =

1
8, Ps(s4) =

1
16, Ps(s5) =

1
16

Shannon entropy: −∑i Ps(si) log2 Ps(si) = 1.875 bit/symbol

If the probability distribution allows
for a perfect Huffman code (code ef-
ficiency 1), the Shannon entropy can
easily be interpreted as follows:

−∑
i

Ps(si) log2 Ps(si)

= ∑
i

Ps(si)
︸ ︷︷ ︸

occurrence
probability

· log2

1

Ps(si)︸ ︷︷ ︸
path length

in tree

.

In other words, it is the expected
number of needed yes/no questions.

Perfect Question Scheme

s4, s5

s3, s4, s5

s2, s3, s4, s5

s1, s2, s3, s4, s5

1
2

1
4

1
8

1
16

1
16

s1 s2 s3 s4 s5

1 2 3 4 4

Code length: 1.875 bit/symbol
Code efficiency: 1
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Kullback–Leibler (Information) Divergence

• Let p1 and p2 be two strictly positive probability distributions
on the same space E of events. Then [Kullback and Leibler 1951]

IKLdiv(p1, p2, E) = ∑
E∈E

p1(E) log2

p1(E)

p2(E)
= IEE∼p1

(
log2

p1(E)

p2(E)

)

is called the Kullback-Leibler (information) divergence of p1 and p2.

• The Kullback-Leibler information divergence is non-negative.

• It is zero if and only if p1 ≡ p2; it is generally not symmetric.

• Information gain is the Kullback–Leibler information divergence of
p1(ci, aj) = pij and p2(ci, aj) = pi.p.j for E = {c1, . . . , cnC

} × {a1, . . . , anA
}.

I
(Shannon)
gain (C, A) = −

nC

∑
i=1

pi. log2 pi.−
nA

∑
j=1

p.j

(
−

nC

∑
i=1

pi|j log2 pi|j

)

=
nC

∑
i=1

nA

∑
j=1

pij log2

pij

pi.p.j
= IE(ci,aj)∼PCA

(
log2

pij

pi.p.j

)
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Other Information-theoretic Evaluation Measures

Normalized Information Gain

• Information gain is biased towards many-valued attributes.

• Normalization removes / reduces this bias.

Information Gain Ratio (used in C4.5) [Quinlan 1986 / 1993]

Igr(C, A) =
Igain(C, A)

H(A)
=

Igain(C, A)

−∑
nA
j=1 p.j log2 p.j

Symmetric Information Gain Ratio [López de Mántaras 1991]

I
(1)
sgr(C, A) =

Igain(C, A)

H(A, C)
or I

(2)
sgr(C, A) =

Igain(C, A)

H(A) + H(C)

“Symmetric” means that I
(1)
sgr(C, A) = I

(1)
sgr(A, C) and I

(2)
sgr(C, A) = I

(2)
sgr(A, C).
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Bias of Information Gain

• Information gain is biased towards many-valued attributes,
i.e., of two attributes having about the same information content
it tends to select the one having more values.

• The reasons are quantization effects caused by the finite number of example
cases (due to which only a finite number of different probabilities can result in
estimations) in connection with the following theorem:

• Theorem: Let A, B, and C be three attributes with finite domains
and let their joint probability distribution be strictly positive, i.e.,
∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) : P(A = a, B = b, C = c) > 0.
Then it is always

Igain(C, AB) ≥ Igain(C, B),

with equality holding only if the attributes C and A are conditionally indepen-
dent given B, i.e., if P(C = c | A = a, B = b) = P(C = c | B = b).

(A detailed proof of this theorem can be found, for example, in [Borgelt and Kruse 2002], p. 311ff.)
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Generalized Entropy and Gini Impurity

• Shannon entropy can be generalized, for example, as: [Daróczy 1970]

H
(general)
β =

2β−1

2β−1− 1

n

∑
i=1

pi(1− p
β−1
i ) =

2β−1

2β−1− 1

(
1−

n

∑
i=1

p
β
i

)

• Shannon entropy results as a special case in the limit for β→ 1:

H(Shannon) = lim
β→1

H
(general)
β = −

n

∑
i=1

pi log2 pi

• Another commonly used variant is quadratic entropy, which results for β = 2:

H(quadratic) = H
(general)
2 = 2

n

∑
i=1

pi(1− pi) = 2− 2
n

∑
i=1

p2
i

• Intuitively: choosing each alternative si with its probability pi leads to:

P(wrong guess) =
n

∑
i=1

pi(1− pi) =
1

2
H(quadratic) = G

This is also known as Gini impurity (= half of quadratic entropy).
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Evaluation Measures based on Quadratic Entropy

• Shannon information gain may be written in two ways:

I
(Shannon)
gain (C, A) = H(Shannon)(C)− H(Shannon)(C|A)

= −
nC

∑
i=1

pi. log2 pi.−
nA

∑
j=1

p.j

(
−

nC

∑
i=1

pi|j log2 pi|j

)

= −
nC

∑
i=1

pi. log2 pi.−
nA

∑
j=1

p.j log2 p.j +
nC

∑
i=1

nA

∑
j=1

pij log2 pij

= H(Shannon)(C) + H(Shannon)(A)− H(Shannon)(CA)

• For quadratic entropy the two versions differ: [Breiman, Olshen, Stone 1980]
Using the former variant leads to the Gini index: (used in CART)

Gini(C, A) =
1

2

(
H(quadratic)(C)− H(quadratic)(C|A)

)
=

nA

∑
j=1

p.j

nC

∑
i=1

p2
i|j−

nC

∑
i=1

p2
i.

• Using the latter leads to what may be called quadratic information gain:

I
(quadratic)
gain (C, A) = H(quadratic)(C) + H(quadratic)(A)− H(quadratic)(CA)
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A Statistical Evaluation Measure

χ2 Measure

• Compares the actual joint distribution
with a hypothetical independent distribution.

• Uses absolute comparison.

• Can be interpreted as a difference measure.

χ2(C, A) = N..

nC

∑
i=1

nA

∑
j=1

(pi.p.j− pij)2

pi.p.j
=

nC

∑
i=1

nA

∑
j=1

(Ni.N.j− NijN..)2

Ni.N.jN..

• Reminder: Information gain can also be interpreted as a difference measure.

Igain(C, A) =
nC

∑
i=1

nA

∑
j=1

pij log2

pij

pi.p.j
=

nC

∑
i=1

nA

∑
j=1

pij

(
log2 pij− log2(pi.p.j)

)

Information gain uses relative comparison (ratio or difference of logarithms).
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Treatment of Numeric Attributes

General Approach: Discretization

• Preprocessing I

◦ Form equally sized or equally populated intervals.

• During the tree construction

◦ Sort the example cases according to the attribute’s values.

◦ Construct a binary symbolic attribute for every possible split
(values: “≤ threshold” and “> threshold”).

◦ Compute the evaluation measure for these binary attributes.

◦ Possible improvements: Add a penalty depending on the number of splits.

• Preprocessing II / Multisplits during tree construction

◦ Build a decision tree using only the numeric attribute.

◦ Flatten the tree to obtain a multi-interval discretization.
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Data Space Partitioning

A decision tree partitions the data space.

temperature [◦C]

humidity [%]

temperature [◦C]

cold

comfortable

comfortable unbearable

≤ 20 > 20

≤ 50 > 50

≤ 35 > 35

35

20

50 humidity [%]

te
m

p
er

at
u

re
[◦

C
]

comfortable

unbearable

comfortable

cold

• Each inner node (test node) cuts a dimension at the given threshold.

• If there are parent / ancestor nodes, only a subspace is cut.
(The “humidity” test only cuts above “temperature = 20◦”,
the bottom “temperature” test only to the right of “humidity = 50%”).
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Treatment of Numeric Attributes

So-called “oblique” decision trees
are able to find the yellow line.

• Problem: If the class boundary is oblique
in the space spanned by two or more nu-
meric attributes, decision trees construct
a step function as the decision boundary.

• Green: data points of class A
Blue: data points of class B
Yellow: actual class boundary
Red: decision boundary

built by a decision tree
Gray: subdivision of the space

used by a decision tree
(threshold values)

• Note: the complex decision boundary
even produces an error!
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Treatment of Numeric Attributes

So-called “oblique” decision trees
are able to find the yellow line.

• For the data set on the preceding slide a
decision tree builds a proper step func-
tion as the decision boundary. Although
suboptimal, this may still be acceptable.

• Unfortunately, other data point config-
urations can lead to strange anomalies,
which do not approximate the actual de-
cision boundary well.

• Green: data points of class A
Blue: data points of class B
Yellow: actual class boundary
Red: decision boundary

built by a decision tree
Gray: subdivision of the space

used by a decision tree
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Treatment of Missing Values

Induction

• Weight the evaluation measure with the fraction of cases with known values.

◦ Idea: The attribute provides information only if it is known.

• Try to find a surrogate test attribute with similar properties
(CART, Breiman et al. 1984)

• Assign the case to all branches, weighted in each branch with the relative fre-
quency of the corresponding attribute value (C4.5, Quinlan 1993).

Classification

• Use the surrogate test attribute found during induction.

• Follow all branches of the test attribute, weighted with their relative number
of cases, aggregate the class distributions of all leaves reached, and assign the
majority class of the aggregated class distribution.
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Pruning Decision Trees

Pruning decision trees serves the purpose

• to simplify the tree (improve interpretability),

• to avoid overfitting (improve generalization).

Basic ideas:

• Replace “bad” branches (subtrees) by leaves (from bottom/leaves upward).

• Replace a subtree by its largest branch if it is better.

Common approaches:

• Limiting the number of leaf cases

• Reduced error pruning

• Pessimistic pruning

• Confidence level pruning

• Minimum description length pruning
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Limiting the Number of Leaf Cases

• A decision tree may be grown until either the set of sample cases is class-pure
or the set of descriptive attributes is exhausted.

• However, this may lead to leaves that capture only very few,
in extreme cases even just a single sample case.

• Thus a decision tree may become very similar to a 1-nearest-neighbor classifier.

• In order to prevent such results, it is common to let a user
specify a minimum number of sample cases per leaf.

• In such an approach, splits are usually limited to binary splits.
(nominal attributes: usually one attribute value against all others)

• A split is then adopted only if on both sides of the split
at least the minimum number of sample cases are present.

• Note that this approach is not an actual pruning method,
as it is already applied during induction, not after.
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Reduced Error Pruning

• Classify a set of new example cases with the decision tree.
(These cases must not have been used for the induction!)

• Determine the number of errors for all leaves.

• The number of errors of a subtree is the sum of the errors of all of its leaves.

• Determine the number of errors for leaves that replace subtrees.

• If such a leaf leads to the same or fewer errors than the subtree,
replace the subtree by the leaf.

• If a subtree has been replaced,
recompute the number of errors of the subtrees it is part of.

Advantage: Very good pruning, effective avoidance of overfitting.

Disadvantage: Additional example cases needed.
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Pessimistic Pruning

• Classify a set of example cases with the decision tree.
(These cases may or may not have been used for the induction.)

• Determine the number of errors for all leaves and
increase this number by a fixed, user-specified amount r.

• The number of errors of a subtree is the sum of the errors of all of its leaves.

• Determine the number of errors for leaves that replace subtrees
(also increased by r).

• If such a leaf leads to the same or fewer errors than the subtree,
replace the subtree by the leaf and recompute subtree errors.

Advantage: No additional example cases needed.

Disadvantage: Number of cases in a leaf has no influence.
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Confidence Level Pruning

• Like pessimistic pruning, but the number of errors is computed as follows:

◦ See classification in a leaf as a Bernoulli experiment (error / no error).

◦ Estimate an interval for the error probability based on a user-specified con-
fidence level α.
(use approximation of the binomial distribution by a normal distribution)

◦ Increase error number to the upper level of the confidence interval
times the number of cases assigned to the leaf.

◦ Formal problem: Classification is not a random experiment.

Advantage: No additional example cases needed, good pruning.

Disadvantage: Statistically dubious foundation.
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Pruning a Decision Tree: A Simple Example

Pessimistic Pruning with r = 0.8 and r = 0.4:

c1: 13, c2: 7

c1: 5, c2: 2 c1: 6, c2: 2 c1: 2, c2: 3

a1 a2 a3

leaf:

r = 0.8:

r = 0.4:

7.0 errors

7.8 errors (prune subtree)

7.4 errors (keep subtree)

2.8 errors

2.4 errors

2.8 errors

2.4 errors

2.8 errors

2.4 errors

total: 6.0 errors

r = 0.8:

r = 0.4:

8.4 errors

7.2 errors

• Confidence level pruning follows essentially the same scheme,
but estimates the expected number of errors by increasing
the observed number to the upper bound of a confidence interval.

Christian Borgelt Elementary Data Mining 192



Reminder: The Iris Data

pictures not available in online version

• Collected by Edgar Anderson on the Gaspé Peninsula (Canada).

• First analyzed by Ronald Aylmer Fisher (famous statistician).

• 150 cases in total, 50 cases per Iris flower type.

• Measurements of sepal length and width and petal length and width (in cm).

• Most famous data set in pattern recognition and data analysis.
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Decision Trees: An Example

A decision tree for the Iris data
(induced with information gain ratio, unpruned)
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Decision Trees: An Example

A decision tree for the Iris data
(induced with information gain ratio, unpruned)

1 2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

petal length / cm

p
et
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w
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th

/
cm

Iris setosa
Iris versicolor
Iris virginica

partitioning of the data space
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Decision Trees: An Example

Decision trees for the Iris data
(pruned with confidence level pruning, α = 0.8, and pessimistic pruning, r = 2)

• Left: 7 instead of 11 nodes, 4 instead of 2 misclassifications.

• Right: 5 instead of 11 nodes, 6 instead of 2 misclassifications.

• The right tree is “minimal” for the three classes (only three leaf nodes).
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Regression Trees

• Target variable is not a class,
but a numeric quantity.

• Simple regression trees:
predict constant values in leaves.
(blue lines)

• More complex regression trees:
predict linear functions in leaves.
(red line)

x

y

30 60

30

65

99

x: input variable, y: target variable
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Regression Trees: Attribute Selection

a1 a2

distributions of
the target value

split w.r.t.
a test attribute

• The variance / standard deviation is compared to
the variance / standard deviation in the branches.

• The attribute that yields the largest reduction is selected.
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Regression Trees: An Example

A regression tree for the Iris data (petal width→ petal length)
(induced with reduction of sum of squared errors; restricted to height 4)

1 2 3 4 5 6 7
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petal length / cm

p
et

al
w

id
th

/
cm

Iris setosa
Iris versicolor
Iris virginica
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Summary Decision and Regression Trees

• Decision Trees are Classifiers with Tree Structure

◦ Inner node: Test of a descriptive attribute

◦ Edge/branch: Labeled with the outcome of a test

◦ Leaf node: Assignment of a class

• Induction of Decision Trees from Data

(Top-Down Induction of Decision Trees, TDIDT)

◦ Divide and conquer approach / recursive descent

◦ Greedy selection of the test attributes

◦ Attributes are selected based on an evaluation measure,
e.g. information gain, χ2 measure

◦ Recommended: Pruning of the decision tree

• Numeric Target: Regression Trees
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Clustering

Christian Borgelt Elementary Data Mining 201



Clustering

• General Idea of Clustering

◦ Similarity and distance measures

• Prototype-based Clustering

◦ Classical c-means (or k-means) clustering

◦ Cluster center initialization

◦ (Fuzzy c-means clustering)⇒ Data Mining 2

◦ (Expectation maximization for Gaussian mixtures)⇒ Data Mining 2

• Hierarchical Agglomerative Clustering

◦ Merging clusters: Dendrograms

◦ Measuring the distance of clusters

◦ Choosing the clusters

• Summary

Christian Borgelt Elementary Data Mining 202



General Idea of Clustering

• Goal: Arrange the given data tuples into classes or clusters.

• Data tuples assigned to the same cluster should be as similar as possible.

• Data tuples assigned to different clusters should be as dissimilar as possible.

• Similarity is most often measured with the help of a distance function.
(The smaller the distance, the more similar the data tuples.)

• Often: restriction to data points in IRm (although this is not mandatory).

d : IRm× IRm → IR+
0 is a distance function if it satisfies ∀x⃗, y⃗, z⃗ ∈ IRm :

(i) d(x⃗, y⃗) = 0 ⇔ x⃗ = y⃗,

(ii) d(x⃗, y⃗) = d(⃗y, x⃗) (symmetry),

(iii) d(x⃗, z⃗) ≤ d(x⃗, y⃗) + d(⃗y, z⃗) (triangle inequality).
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Distance Functions

Illustration of distance functions: Minkowski Family

dk(x⃗, y⃗) = k

√
m

∑
i=1

|xi − yi|k =

(
m

∑
i=1

|xi − yi|k
)1

k

Well-known special cases from this family are:

k = 1 : Manhattan or city block distance,
k = 2 : Euclidean distance (the only isotropic distance),
k→ ∞ : maximum distance, i.e. d∞(x⃗, y⃗) = max n

i=1|xi − yi|.

k = 1 k = 2 k→ ∞

circle: set of points
having the same
distance from
a given point,
called the center.
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c-Means Clustering (a.k.a. k-Means Clustering)

• Choose a number c (or k) of clusters to be found (user input).

• Initialize the cluster centers randomly
(for instance, by randomly selecting c data points — more details later).

• Data point assignment:
Assign each data point to the cluster center that is closest to it
(i.e. closer than any other cluster center).

• Cluster center update:
Compute new cluster centers as the mean vectors of the assigned data points.
(Intuitively: center of gravity if each data point has unit mass/weight.)

• Repeat these two steps (data point assignment and cluster center update)
until the clusters centers do not change anymore (convergence).

• It can be shown that this scheme must converge,
i.e., the update of the cluster centers cannot go on forever.
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c-Means Clustering: Example

Data set to cluster.

Choose c = 3 clusters.
(From visual inspection, can be
difficult to determine in general.)

Initial position of cluster centers.

Randomly selected data points.
(Alternative methods include
e.g. latin hypercube sampling)
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Delaunay Triangulations and Voronoi Diagrams

• Dots represent cluster centers (quantization vectors).

• Left: Delaunay Triangulation
(The circle through the corners of a triangle does not contain another point.)

• Right: Voronoi Diagram
(Midperpendiculars of the Delaunay triangulation: boundaries of the regions
of points that are closest to the enclosed cluster center (Voronoi cells)).
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Delaunay Triangulations and Voronoi Diagrams

• Delaunay Triangulation: simple triangle (shown in grey on the left)

• Voronoi Diagram: midperpendiculars of the triangle’s edges
(shown in blue on the left, in grey on the right)
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c-Means Clustering: Example
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c-Means Clustering: Local Minima

• Clustering is successful in this example:
The clusters found are those that would have been formed intuitively.

• Convergence is achieved after only 5 steps.
(This is typical: convergence is usually very fast.)

• However: The clustering result is fairly sensitive to the initial positions
of the cluster centers (see examples on next slides).

• With a bad initialization clustering may fail
(the alternating update process gets stuck in a local minimum).

• Fuzzy c-means clustering and the estimation of a mixture of Gaussians
are much more robust (to be discussed later).

• Research issue: Can we determine the number of clusters automatically?
(Some approaches exists, resampling is most successful.)
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c-Means Clustering: Local Minima
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c-Means Clustering: Local Minima

0 1 2 3 4 5 6 7 8 9
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3
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7

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

A simple data set with three clusters and 300 data points (100 per cluster).

Result of a successful c-means clustering (left) and a local optimum (right).

Red diamonds mark cluster centers.

In an unsuccessful clustering, actual clusters are split or merged.
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c-Means Clustering: Formal Description

• We are given a data set X = {x⃗1, . . . , x⃗n} with n data points.

Each data point is an m-dimensional real-valued vector,
that is, ∀j; 1 ≤ j ≤ n : x⃗j = (xj1, . . . , xjm) ∈ R

m.

• These data points are to be grouped into c clusters,
each of which is described by a prototype ci, i = 1, . . . , c.

The set of all prototypes is denoted by C = {c1, . . . , cc}.

• We (first) confine ourselves here to cluster prototypes that consist merely
of a cluster center, that is, ∀i; 1 ≤ i ≤ c : ci = c⃗i = (ci1, . . . , cim) ∈ R

m.

• The assignment of data points to cluster centers is encoded as a c× n matrix
U = (uij)1≤i≤c;1≤j≤n, which is often called the partition matrix.

• In the crisp case, a matrix element uij ∈ {0, 1} states whether data point x⃗j

belongs to cluster c⃗i or not.

In the fuzzy case (discussed later), uij ∈ [0, 1] states the degree to which x⃗j

belongs to c⃗i (degree of membership).
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c-Means Clustering: Formal Description

• We confine ourselves (first) to the (squared) Euclidean distance as the measure
for the distance between a data point x⃗j and a cluster center c⃗i, that is,

d2
ij = d2(⃗ci, x⃗j) = (x⃗j− c⃗i)

⊤(x⃗j− c⃗i) =
m

∑
k=1

(xjk − cik)
2.

• The objective of (hard) c-means clustering is to minimize the objective function

J(X, C, U) =
c

∑
i=1

n

∑
j=1

uij d2
ij

under the constraints

◦ ∀j; 1 ≤ j ≤ n : ∀i; 1 ≤ i ≤ c : uij ∈ {0, 1} and

◦ ∀j; 1 ≤ j ≤ n : ∑
c
i=1 uij = 1.

⇒ hard/crisp data point assignment:
each data point is assigned to one cluster and one cluster only.

(“Fuzzy” and probabilistic data point assignments are considered later.)
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c-Means Clustering: Formal Description

• Since the minimum cannot be found directly using analytical means,
an alternating optimization scheme is employed.

• At the beginning the cluster centers are initialized (discussed in detail later).

• Then the two steps of partition matrix update (data point assignment)
and cluster center update are iterated until convergence,
that is, until the cluster centers do not change anymore.

• The partition matrix update assigns each data point x⃗j to the cluster ci,
the center c⃗i of which is closest to it:

uij =

{
1, if i = argminc

k=1 d2
kj,

0, otherwise.

• The cluster center update recomputes each cluster center as the mean
of the data points that were assigned to it, that is,

c⃗i =
∑

n
j=1 uij x⃗j

∑
n
j=1 uij

.
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Cluster Center Initialization

• Random Data Points (this was assumed up to now)

◦ Choose c data points uniformly at random without replacement.

Advantages:

◦ Very simple and efficient
(time complexity O(c), no distance computations needed).

Disadvantages:

◦ Prone to the local optimum problem:
Often leads to fairly bad clustering results.

◦ May actually be less efficient than other initialization methods,
because it usually requires more update steps until convergence.

◦ Repeating the initialization (and clustering) several times helps,
but results are usually still inferior compared to other methods.
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Cluster Center Initialization

• Maximin Initialization [Hathaway, Bezdek, and Huband 2006]

◦ Choose first cluster center uniformly at random from the data points.

◦ For the remaining centers always choose the data point that has
the maximum minimum distance to the already chosen cluster centers.

◦ Formally: For 0 < k ≤ c, define ∀j; 1 ≤ j ≤ n : dj(k) = mink
i=1 dij.

Then choose c⃗k+1 = x⃗ℓ where ℓ = argmaxn
j=1 dj(k).

Advantages:

◦ Cluster centers are guaranteed to have some distance from each other.

◦ Guarantees a fairly good coverage of the data points.
(Reduces the tendency to find local optima.)

Disadvantages:

◦ Tends to choose outliers/extreme data points as cluster centers.
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Cluster Center Initialization

• Maximin Initialization

◦ A naive implementation (following the above formal description)
needs O(nc) distance computations (time complexity O(ncm)).

◦ An improved computation relies on the following simple insight:

∀r; 1 ≤ r ≤ k : dj(k) ≤ drj and ∀I ⊆ {1, . . . , k} : dj(k) ≤ min
r∈I

drj.

◦ For t ∈ {1, . . . , n}, define dk(t) = maxt
j=1 dj(k).

If dk(t) > dt+1(s) for some s ≤ k,

then x⃗t+1 will certainly not be chosen as the next cluster center.

◦ Implementation: for each data point x⃗j, note sj and dj(sj).

◦ Traverse the data points and in each step update t and dk(t).

◦ As long as st+1 < k and dt+1(st+1) > dk(t) (possible maximin point),

set dt+1(st+1 + 1) = min{dt+1(st+1), d(st+1+1)j} and increment st+1.

Finally compute dk(t + 1) accordingly.
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Cluster Center Initialization

• Maximin Initialization: Python code (using NumPy)

ctrs[0] = data[npr.randint(n))] # choose first cluster center randomly

dsts = np.array([dist(ctrs[0], x) for x in data])

cids = np.zeros(n, dtype=int) # init. highest used cluster indices

for i in range(1,c): # select the remaining clusters

dmax = m = 0 # init. max. distance and corresp. index

for j in range(n): # traverse the data points

if dsts[j] <= dmax: # if less than current maximum,

continue # data point will not be selected

while cids[j] < i-1: # traverse skipped clusters

cids[j] += 1 # go to the next cluster

d = dist(ctrs[cids[j]], data[j])

if d < dsts[j]: # if less than known distance,

dsts[j] = d # update the minimum distance

if d < dmax: # if less than current maximum,

break # data point will not be selected

if dsts[j] > dmax: # if larger than current maximum

dmax = dsts[j] # note new maximum distance and

m = j # corresponding data point index

dsts[m] = 0.0 # mark the data point as selected

ctrs[i] = data[m] # and add it to the set of centers

Christian Borgelt Elementary Data Mining 219



Cluster Center Initialization

• kmeans++ (or cmeans++) Initialization [Arthur and Vassilvitskii 2007]

◦ Choose first cluster center uniformly at random from the data points.

◦ For the remaining centers sample data points according to the squared dis-
tance a data point has to its closest already chosen cluster center.

◦ Formally: For 1 ≤ k ≤ c, define ∀j; 1 ≤ j ≤ n : dj(k) = mink
i=1 dij.

Then sample c⃗k+1 from the data points according to Pk+1(x⃗j) =
d2

j (k)

∑
n
r=1 d2

r (k)
.

Advantages:

◦ Selects, with fairly high probability, cluster centers that have some distance
from each otherand thus centers that cover the data fairly well.

◦ Less likely to select outliers/extreme data points than maximin.

Disadvantages:

◦ High costs: needs O(nc) distance computations (time complexity O(ncm)).
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Cluster Center Initialization

• kmeans++ (or cmeans++) Initialization: Python code (using NumPy)

ctrs[0] = data[npr.randint(n))] # choose first cluster center randomly

dsts = np.array([sqrdist(ctrs[0], x) for x in data])

# compute distances to first center

for i in range(1,c): # select the remaining clusters

if i > 1: # update the minimum distances

dsts = np.minimum(dsts, [sqrdist(ctrs[i], x) for x in data])

dcum = np.cumsum(dsts) # compute cumulated distance sums

m = np.searchsorted(dcum, dcum[-1] *npr.random())

if m >= size: # sample randomly from d^2 distribution

m = size-1 # and ensure that the index is in range

dsts[m] = 0.0 # mark the data point as selected

ctrs[i] = data[m] # and add it to the set of centers

• The computational costs may be reduced
by using a Markov Chain Monte Carlo approach for the sampling.

[Bachem, Lucic, Hassani and Krause 2016]
This approach avoids having to compute all n · c distances.
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Hierarchical Agglomerative Clustering

• Start with every data point in its own cluster.
(i.e., start with so-called singletons: single element clusters)

• In each step merge those two clusters that are closest to each other.

• Keep on merging clusters until all data points are contained in one cluster.

• The result is a hierarchy of clusters that can be visualized in a tree structure
(a so-called dendrogram — from the Greek δέντϱων (dendron): tree)

• Measuring the Distances

◦ The distance between singletons is simply the distance
between the (single) data points contained in them.

◦ However: How do we compute the distance between clusters
that contain more than one data point?
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Measuring the Distance between Clusters

• Centroid (red)
Distance between the centroids (mean value vectors) of the two clusters.

• Average Linkage
Average distance between two points of the two clusters.

• Single Linkage (green)
Distance between the two closest points of the two clusters.

• Complete Linkage (blue)
Distance between the two farthest points of the two clusters.
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Measuring the Distance between Clusters

• Single linkage can “follow chains” in the data
(may be desirable in certain applications).

• Complete linkage leads to very compact clusters, but may also “bridge gaps.”

• Average linkage also tends clearly towards compact clusters.

Single Linkage Complete Linkage

(These are the actual results that are computed for this data set; see also below.)
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Dendrograms

• The cluster merging process arranges the data points in a binary tree.

• Draw the data tuples at the bottom or on the left
(equally spaced if they are multi-dimensional).

• Draw a connection between clusters that are merged, with the distance to the
data points representing the distance between the clusters.

data
tuples

distance between clusters

Christian Borgelt Elementary Data Mining 225



Dendrograms

• Example: Clustering of the 1-dimensional data set {2, 12, 16, 25, 29, 45}.

• All three approaches to measure the distance between clusters
lead to different dendrograms.

2 12 16 25 29 45 2 12 16 25 29 45 2 12 16 25 29 45

Centroid

14 27

10

16.8

21.5

Single Linkage Complete Linkage
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Dendrograms for “Half Circle” Data

• Single linkage can “follow chains” in the data.

• Complete linkage leads to very compact clusters,
but may also “bridge gaps.”

• These dendrograms use centroids.

Single Linkage Complete Linkage
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Implementation Aspects

• Hierarchical agglomerative clustering can be implemented by processing the
matrix D = (dκ

ij)1≤i,j≤n containing the pairwise (squared) distances of the data
points. (The data points themselves are actually not needed.)

• In each step the rows and columns corresponding to the two clusters
that are closest to each other are deleted.

• A new row and column corresponding to the cluster formed
by merging these clusters is added to the matrix.

• The elements of this new row/column are computed according to (κ ∈ {1, 2}):

∀k : dκ
k∗ = dκ

∗k = αid
κ
ik + αjd

κ
jk + βdκ

ij + γ|dκ
ik − dκ

jk|

i, j indices of the two clusters that are merged
k indices of the old clusters that are not merged
∗ index of the new cluster (result of merger)
αi, αj, β, γ parameters specifying the method (single linkage etc.)
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Implementation Aspects

• The parameters defining the different methods are [Lance & Williams 1967]
(ni, nj, nk are the numbers of data points in the clusters):

method κ αi αj β γ

centroid method 2
ni

ni+nj

nj

ni+nj
− ninj

(ni+nj)
2 0

median method 1 1
2

1
2 −1

4 0

single linkage 1 or 2 1
2

1
2 0 −1

2

complete linkage 1 or 2 1
2

1
2 0 +1

2

average linkage 1
ni

ni+nj

nj

ni+nj
0 0

Ward’s method 2
ni+nk

ni+nj+nk

nj+nk

ni+nj+nk
0 0
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Implementation Aspects: Centroid Formula

Application of the (planar) cosine theorem

ϕ

~xk

~xi

~xj

~x∗ =
ni

ni+nj
~xi +

nj

ni+nj
~xj

dk∗

dij

ni
ni+nj

dik

nj

ni+nj
djk

in its two forms (parallelogram diagonals):

(a) d2
ij = d2

ik + d2
jk − 2dikdjk cos φ

⇔ 2dikdjk cos φ = d2
ik + d2

jk − d2
ij

(b) d2
k∗ =

(
ni

ni + nj
dik

)2

+

(
nj

ni + nj
djk

)2

+ 2
ni

ni + nj
dik

nj

ni + nj
djk cos φ

︸ ︷︷ ︸

=
ninj

(ni+nj)
2

(
d2

ik
+d2

jk
−d2

ij

)
; see (a)

=
ni

ni + nj︸ ︷︷ ︸
αi

d2
ik +

nj

ni + nj︸ ︷︷ ︸
αj

d2
jk−

ninj

(ni + nj)2

︸ ︷︷ ︸
β

d2
ij + 0

︸︷︷︸
γ

|d2
ik − d2

jk|
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Implementation Aspects: Single/Complete Linkage

Single Linkage:

dκ
k∗ =

1

2
dκ

ik +
1

2
dκ

jk −
1

2
|dκ

ik − dκ
jk|

=
1

2
dκ

ik +
1

2
dκ

jk +

{
1
2dκ

ik − 1
2dκ

jk if dκ
ik > dκ

jk,
1
2dκ

jk − 1
2dκ

ik otherwise

= min{dκ
ik, dκ

jk}

Complete Linkage:

dκ
k∗ =

1

2
dκ

ik +
1

2
dκ

jk +
1

2
|dκ

ik − dκ
jk|

=
1

2
dκ

ik +
1

2
dκ

jk +

{
1
2dκ

jk − 1
2dκ

ik if dκ
ik > dκ

jk,
1
2dκ

ik − 1
2dκ

jk otherwise

= max{dκ
ik, dκ

jk}
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Choosing the Clusters

• Simplest Approach:

◦ Specify a minimum desired distance between clusters.

◦ Stop merging clusters if the closest two clusters
are farther apart than this distance.

• Visual Approach:

◦ Merge clusters until all data points are combined into one cluster.

◦ Draw the dendrogram and find a good cut level.

◦ Advantage: Cut need not be strictly horizontal.

• More Sophisticated Approaches:

◦ Analyze the sequence of distances in the merging process.

◦ Try to find a step in which the distance between the two clusters merged
is considerably larger than the distance of the previous step.

◦ Several heuristic criteria exist for this step selection.
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Summary Clustering

• Prototype-based Clustering

◦ Alternating adaptation of data point assignments and cluster parameters.

◦ Crisp/hard assignment of a datum to a cluster (data partitioning).

◦ Local minima of the objective function can pose problems.

◦ A good initialization of the cluster centers is important.

◦ (Fuzzy/probabilistic approaches are more robust.) ⇒ Data Mining 2

• Hierarchical Agglomerative Clustering

◦ Start with singletons (one element clusters).

◦ Always merge those clusters that are closest.

◦ Different ways to measure the distance of clusters.

◦ Cluster hierarchy can be depicted as a dendrogram.
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