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Reminder: (Elementary) Data Mining
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Reminder: The Knowledge Discovery Process (KDD Process)

pictures not available in online version

Typical depictions of the KDD Process

top: [Fayyad et al. 1996]
Knowledge Discovery and Data Mining:
Towards a Unifying Framework

right: CRISP-DM [Chapman et al. 1999]
CRoss Industry Standard Process
for Data Mining
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Reminder: The Knowledge Discovery Process (KDD Process)

Preliminary Steps

• estimation of potential benefit

• definition of goals, feasibility study

Main Steps

• check data availability, data selection, if necessary: data collection

• preprocessing (60–80% of total overhead)

◦ unification and transformation of data formats

◦ data cleaning (error correction, outlier detection, imputation of missing values)

◦ reduction / focusing (sample drawing, feature selection, prototype generation)

• Data Mining (using a variety of methods)

• visualization (also in parallel to preprocessing, data mining, and interpretation)

• interpretation, evaluation, and test of results

• deployment and documentation
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Reminder: Data Analysis / Data Mining Tasks

• Classification
Is this customer credit-worthy?

• Segmentation, Clustering
What groups of customers do I have?

• Concept Description
Which properties characterize fault-prone vehicles?

• Prediction, Trend Analysis
What will the exchange rate of the dollar be tomorrow?

• Dependence/Association Analysis
Which products are frequently bought together?

• Deviation Analysis
Are there seasonal or regional variations in turnover?
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Reminder: Data Analysis / Data Mining Methods 1

• Classical Statistics ⇒ other lectures, e.g. “Regression Methods & Computational Statistics”

(characteristic measures, parameter estimation, hypothesis testing, regression, model selection)

tasks: classification, prediction, trend analysis

• k-nearest Neighbor / Case-based Reasoning ⇒ Lecture “Elementary Data Mining”

(lazy learning, similarity measures, neighbor weighting, data structures for fast search)

tasks: classification, prediction

• Bayes Classifiers ⇒ Lecture “Elementary Data Mining”

(probabilistic classification, naive and Gaussian Bayes classifiers, Bayesian network classifiers)

tasks: classification, prediction

• Decision and Regression Trees ⇒ Lecture “Elementary Data Mining”

(top down induction, attribute selection measures, pruning, regression trees)

tasks: classification, prediction

• Rule Learning blue: in this lecture

(extraction from decision trees, Aq, CN2, version spaces, inductive logic programming)

tasks: classification, prediction
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Reminder: Data Analysis / Data Mining Methods 2

• Support Vector Machines blue: in this lecture

(linear and non-linear classification and regression, kernel trick, support vectors)

tasks: classification, prediction, clustering

• Artificial Neural Networks ⇒ Lecture “Artificial Neural Networks and Deep Learning”

(multilayer perceptrons, radial basis function networks, learning vector quantization)

tasks: classification, prediction, clustering

• Ensemble Methods (especially Random Forests) ⇒ Lecture “Advanced Data Mining 2”

(Bayesian voting, bagging, boosting (AdaBoost), injecting randomness, stacking)

tasks: classification, prediction

• Cluster Analysis dijon: ⇒ Lecture “Advanced Data Mining 2”

green: ⇒ Lecture “Elementary Data Mining”

(k-means and fuzzy clustering, Gaussian mixtures, hierarchical agglomerative clustering)

tasks: segmentation, clustering

• Association Rule Induction ⇒ Lecture “Frequent Pattern Mining”

(frequent item set mining, rule generation)

tasks: association analysis
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Reminder: Principles of Modeling

• The Data Mining step of the KDD Process consists mainly
of model building for specific purposes (e.g. prediction, segmentation).

• What type of model is to be built depends on the task, e.g.,

◦ if the task is numeric prediction, one may use a regression function,

◦ if the task is classification, one may use a decision tree,

◦ if the task is clustering, one may use a set of cluster prototypes,

◦ etc.

• Most data analysis methods comprise the following four steps:

◦ Select the Model Class (e.g. decision tree)

◦ Select the Objective Function (e.g. misclassification rate)

◦ Apply an Optimization Algorithm (e.g. top-down induction)

◦ Validate the Results (e.g. cross validation)
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Reminder: Supervised and Unsupervised Model Building

Fundamental Distinction for Model Building / Model Classes

• Supervised Model Building / Supervised Learning

◦ There is a target variable that the model is supposed to predict.
(nominal target: classification, metric target: regression)

◦ The data D consists of pairs (x⃗, y), where
x⃗ is a tuple of descriptive attribute values and y is the target value.

◦ The objective is to find a model m : X→ Y
that predicts the target y from the values x⃗ of the descriptive attributes.

• Unsupervised Model Building / Unsupervised Learning

◦ There is no target variable that the model is supposed to predict.
Rather model outputs are to be chosen by the model.

◦ The data D consists of tuples x⃗ of descriptive attributes.

◦ Typical objective: similar inputs should produce similar outputs.
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Reminder: Fitting Criteria and Score / Loss Functions

• In order to find the best or at least a good model for the given data,
a fitting criterion is needed, usually in the form of an objective function

f :M→ IR,

whereM is the set of considered models.

• The objective function f may also be referred to as

◦ Score Function (usually to be maximized),

◦ Loss Function (usually to be minimized).

• Typical examples of objective functions are (m ∈ M is a model, D the data)

◦ Mean squared error (MSE): f (m, D) = 1
|D|∑(x⃗,y)∈D

(m(x⃗)− y)2

◦ Mean absolute error (MAE): f (m, D) = 1
|D|∑(x⃗,y)∈D

|m(x⃗)− y|

◦ Accuracy: f (m, D) = 1
|D|∑(x⃗,y)∈D

δm(x⃗),y
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Reminder: Model Evaluation

• After a model has been constructed, one would like to know how “good” it is.

⇒ How can we measure the quality of a model?

• Desired: The model should generalize well and thus yield, on new data,
an error (to be made precise) that is as small as possible.

• However, due to possible overfitting to the induction / training data
(i.e. adaptations to features that are not regular, but accidental),
the error on the training data is usually not very indicative.

⇒ How can we assess the (expected) performance on new data?

• General idea: Evaluate on a hold-out data set (validation data / test data),
that is, on data not used for building / training the predictor.

◦ It is (highly) unlikely that the validation data exhibits
the same accidental features as the training data.

◦ Hence an evaluation on the validation data can provide
a good indication of the performance on new data.
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Reminder: Causes of Errors

One may distinguish between four types of errors:

• pure / intrinsic / experimental / Bayes error

Inherent in the data, independent of the choice of the model;
no model can yield an error less than this error (on new data).

• sample / variance error or scatter

Caused by the fact that the given data is only a sample and
thus an imperfect representation of the underlying distribution.

• lack of fit / model error / bias error

Caused by an improper choice of the model class.
(see also: under- and overfitting)

• algorithmic error

Caused by the method used to fit the model or its parameters;
heuristic optimization strategy may not find global optimum.
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Reminder: Under- and Overfitting

Underfitting [here: linear]

• Caused by model error / lack of fit.

• Model has not enough capacity
to fit the regularities in the data.

(Proper) Fitting [here: quadratic]

• Model has the proper capacity
to fit regularities, but not enough
to fit accidental properties.

Overfitting [here: degree 6]

• Caused by pure & sample error and ...

• ... model has too much capacity
and thus fits not only regularities,
but also accidental properties.
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Reminder: Under- and Overfitting

added

Underfitting [here: linear]

• Caused by model error / lack of fit.

• Model has not enough capacity
to fit the regularities in the data.

added

(Proper) Fitting [here: quadratic]

• Model has the proper capacity
to fit regularities, but not enough
to fit accidental properties.

added

Overfitting [here: degree 6]

• Caused by pure & sample error and ...

• ... model has too much capacity
and thus fits not only regularities,
but also accidental properties.

Christian Borgelt Advanced Data Mining 1 15



Rule Learning
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The Reason of Rules

• Rules are logical implications, often expressed in a natural language form:

◦ If a customer buys bread and wine, (antecedent of the rule)

then she/he will probably also buy cheese. (consequent of the rule)

• Many domain experts are in favor of rules as a data mining result,
because they view them as more comprehensible than other model types.

• Rules certainly look comprehensible, but are also easily misinterpreted.

• Suppose: 200 customers bought something at a supermarket.

140 customers bought cheese.

100 customers bought both bread and wine.

70 customers bought bread, wine and cheese.

Then: P̂(cheese) = 140
200 = 70% and P̂(cheese | bread, wine) = 70

100 = 70%.

⇒ The presence of the items in the antecedent does not change the probability.

(Side remark: The title of this slide is a play on the title of the book
Geoffrey Brennan and James M. Buchanan: “The Reason of Rules: Constitutional Political Economy”, 1985)
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The Reason of Rules

• However, a rule implicitly conveys the impression that the antecedent
causes (or at least significantly changes the probability of) the consequent.

• A simple measure commonly used to assess this is the so-called lift value.

Consider a rule R : X → Y. Then lift(R) =
P̂(Y | X)

P̂(Y | ∅)
=

P̂(X ∧Y)

P̂(X)P̂(Y)
.

Given a rule R, we assume at least lift(R) > 1, although this might be false.

• The lift value already helps to filter out many uninformative rules.

• Furthermore, contrasting several rules is usually helpful to gain insights.
(Example rules induced on the 1994 Census/Adult data set; numbers after are lift values.)

◦ If education = Bachelors, then salary > $50K (1.73)

◦ If education = Masters, then salary > $50K (2.29)

◦ If education = Masters, then hours = overtime (1.58)

◦ If education = Bachelors and hours = overtime, then salary > $50K (2.29)
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Rule Extraction from Decision Trees
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Reminder: Decision Trees

• A classifier is an algorithm that assigns a class from a predefined set
to a case or object, based on the values of descriptive attributes.

• A decision tree is a classifier with tree structure, in which
the classification process starts at the root node and
proceeds down the branches until a leaf is reached.

◦ In inner nodes, descriptive attributes are tested Blood pressure

AgeDrug A Drug B

Drug A Drug B

normal

high low

≤ 40 > 40

and the case to classify is directed down the
branch corresponding to the test outcome.

◦ When finally a leaf node is reached, the
leaf node class is assigned to the case.

• Decision tree induction is characterized by:

◦ Top-down approach (from root to leaves).

◦ Greedy selection of test attributes / tests.

◦ Divide-and-conquer / recursive descent.
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Rule Extraction from Decision Trees

• Each of the paths from the root to the various leaf nodes can be seen as a rule.

• Extracting these rules allows us to represent the classifier in a different way.

• This representation allows for different ways of of simplifying the classifier.
(meaning: other than standard decision tree pruning.)

• The decision tree on the right is Blood pressure

AgeDrug A Drug B

Drug A Drug B

normal

high low

≤ 40 > 40

equivalent to the following four rules:

If Blood pressure = high,
then prescribe Drug A.

If Blood pressure = low,
then prescribe Drug B.

If Blood pressure = normal and Age ≤ 40,
then prescribe Drug A.

If Blood pressure = normal and Age > 40,
then prescribe Drug B.
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Reminder: Data Space Partitioning

A decision tree partitions the data space.

temperature [◦C]

humidity [%]

temperature [◦C]

cold

comfortable

comfortable unbearable

≤ 20 > 20

≤ 50 > 50

≤ 35 > 35

35

20

50 humidity [%]

te
m

p
er

at
u

re
[◦

C
]

comfortable

unbearable

comfortable

cold

• Each inner node (test node) cuts a dimension at the given threshold.

• If there are parent / ancestor nodes, only a subspace is cut.
(The “humidity” test only cuts above “temperature = 20◦”,
the bottom “temperature” test only to the right of “humidity = 50%”).
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Rule Extraction from Decision Trees

A decision tree partitions the data space. Each rule refers to one partition.

temperature [◦C]

humidity [%]

temperature [◦C]

cold

comfortable

comfortable unbearable

≤ 20 > 20

≤ 50 > 50

≤ 35 > 35

35

20

50 humidity [%]

te
m

p
er

at
u

re
[◦

C
]

comfortable

unbearable

comfortable

cold

• If temperature ≤ 20, then cold.

• If temperature > 20 and humidity ≤ 50, then comfortable.

• If temperature > 20 and humidity > 50 and temp. ≤ 35, then comfortable.

• If temperature > 20 and humidity > 50 and temp. > 35, then unbearable.
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Simplifying Extracted Rules

• We just extracted the following four rules from a decision tree:

◦ If temperature ≤ 20, then cold.

◦ If temperature > 20 and humidity ≤ 50, then comfortable.

◦ If temperature > 20 and humidity > 50 and temp. ≤ 35, then comfortable.

◦ If temperature > 20 and humidity > 50 and temp. > 35, then unbearable.

• The last two rules can be trivially simplified to:

◦ If temperature ∈ (20, 35] and humidity > 50, then comfortable.

◦ If temperature > 35 and humidity > 50, then unbearable.

We simply collect and combine conditions referring to the same attribute.

• If we allow for disjunctions, we can combine rules for the same class.

◦ If (temperature > 20 and humidity ≤ 50),

or (temperature ∈ (20, 35] and humidity > 50), then comfortable.

(However, this may make rules too complex to be easily comprehensible.)

Christian Borgelt Advanced Data Mining 1 24



Exploiting the Rule Order: Decision Lists

• Rules extracted (as shown) from a decision tree are mutually exclusive,
that is, for any case / data point to classify exactly one rule is applicable.
(A rule is applicable if its antecedent is satisfied.)

• As a consequence, the order in which the rules are tested is irrelevant.

• By ordering the rules, and thus forming a so-called decision list, the rules
can be simplified further, exploiting that preceding rules were inapplicable.

If Blood pressure = high,
then prescribe Drug A.

If Blood pressure = low,
then prescribe Drug B.

If Blood pressure = normal and Age ≤ 40,
then prescribe Drug A.

If Blood pressure = normal and Age > 40,
then prescribe Drug B.

If Blood pressure = high,
then prescribe Drug A.

If Blood pressure = low,
then prescribe Drug B.

If Age ≤ 40,
then prescribe Drug A.

If true,
then prescribe Drug B.
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Exploiting the Rule Order: Decision Lists

• In a decision list the rules have to be inspected in a specific order.
The first rule in the list that is applicable yields the classification.
All rules further down in the order are not inspected anymore.

• Note that this simplifies the rules, but also introduces dependencies between
the rules (their order), which can make decision lists less easy to understand.

• As a consequence, pure decision lists are not so popular for rule sets.

If temperature ≤ 20,
then cold.

If temperature > 20 and humidity ≤ 50,
then comfortable.

If temperature ∈ (20, 35] and humidity > 50,
then comfortable.

If temperature > 35 and humidity > 50,
then unbearable.

If temperature ≤ 20,
then cold.

If humidity ≤ 50,
then comfortable.

If temperature ≤ 35,
then comfortable.

If true,
then unbearable.
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Reminder: Pruning Decision Trees

Pruning decision trees serves the purpose

• to simplify the tree (improve interpretability),

• to avoid overfitting (improve generalization).

Basic ideas:

• Replace “bad” branches (subtrees) by leaves.

• Replace a subtree by its largest branch if it is better.

Common approaches:

• Limiting the number of leaf cases (e.g. at least k sample cases per leaf)

• Reduced error pruning (use errors from new sample cases)

• Pessimistic pruning (constant error increment per leaf)

• Confidence level pruning (upper bound of confidence interval)

• Minimum description length pruning (model yielding best transmission)
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Reminder: Pruning Decision Trees

Pessimistic Pruning with r = 0.8 and r = 0.4:

c1: 13, c2: 7

c1: 5, c2: 2 c1: 6, c2: 2 c1: 2, c2: 3

a1 a2 a3

leaf:

r = 0.8:

r = 0.4:

7.0 errors

7.8 errors (prune subtree)

7.4 errors (keep subtree)

2.8 errors

2.4 errors

2.8 errors

2.4 errors

2.8 errors

2.4 errors

total: 6.0 errors

r = 0.8:

r = 0.4:

8.4 errors

7.2 errors

• Confidence level pruning follows essentially the same scheme,
but estimates the expected number of errors by increasing
the observed number to the upper bound of a confidence interval.
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Pruning Extracted Rules

A B C D Class

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

• For binary variables, consider the concept
Class = (A = 1∧ B = 1) ∨ (C = 1∧ D = 1)
that is shown in the table on the left.

• This concept can be described by decision trees as

0 1 0 1

0 1 0 1

0 1

0

1

0 1 0 1

0 0

1

D D

C C

B

A

0 1 0 1

0 1 0 1

0 1

0

1

0 1 0 1

0 0

1

B B

A A

D

C

• Note that these trees contain the same subtree twice,
and that each of these subtrees could stand alone.
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Pruning Extracted Rules

0 1 0 1

0 1 0 1

0 1

0

1

0 1 0 1

0 0

1

D D

C C

B

A
• This tree’s decisions could be captured by the rules:

If A = 1 and B = 1, then Class = 1.

If C = 1 and D = 1, then Class = 1.

If true, then Class = 0.

(Note that the first two rules could be exchanged.)

• These rules are a much simpler description,
but these rules are not mutually exclusive.

• How can we prune rules extracted from a decision tree in this way?

• Consider these rules extracted from the decision tree above:

If A = 0 and C = 1 and D = 1, then Class = 1.

If A = 1 and B = 0 and C = 1 and D = 1, then Class = 1.

• The condition A = 0 and the conditions (A = 1 and B = 0) are superfluous.
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Pruning Extracted Rules

• How can we identify superfluous conditions in extracted rules?

• Consider a rule R+X : A ∧ X → C with a potentially superfluous condition X.

• From the training data, we can set up a contingency table for the sample cases
satisfying the condition(s) A (but not neccesarily the condition X):

C false C true ∑

X false n00 n01 n0.

X true n10 n11 n1.

∑ n.0 n.1 n..

We can now compare the quality
of the reduced rule R−X : A → C
and the original rule R+X : A ∧ X → C
and choose the better rule.

• The original rule has the error rate E+X =
n10

n1.
=

n10

n10 + n11
.

The reduced rule has the error rate E−X =
n.0

n..
=

n00 + n10

n00 + n10 + n01 + n11
.

• However, on the training data the error rates are usually underestimated.
(This is in complete analogy to the pruning of decision trees.)

Christian Borgelt Advanced Data Mining 1 31



Pruning Extracted Rules

• Reduced error pruning as for decision trees may very well be applicable.

• Pessimistic pruning works because of subtree leaves versus a single leaf
(multiple error increments versus one), which is not applicable here.

• However, confidence level pruning can be applied well, [Quinlan 1993]
even though it is based on the same scheme as pessimistic pruning.

• The upper boundary of an error rate confidence interval for e errors in n cases
and a confidence level of 1− α can be approximated as [Wilson 1927]

Uα(e, n) =







1− n
√

α
2 if e = 0 (exact),

1
n+z2

(

e + z2

2 +
√

z2
(
e(1− e

n) +
z2

4

)
)

otherwise (approximate),

where z = QΦ(
α
2) and QΦ is the quantile function of the std. normal distribution.

• Compute Uα,+X = Uα(n10, n1.) for rule R+X and Uα,−X = Uα(n.0, n..) for rule R−X

and discard the condition X (that is, prefer rule R−X) if Uα,−X ≤ Uα,+X.
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Pruning Extracted Rules

• In order to handle multiple conditions, all of which may be discardable,
testing all subsets of conditions is possible, but may sometimes be too costly.

• In such a case, a greedy strategy can be applied to a rule R : X1 ∧ · · · ∧ Xk → C:

◦ Compute Uα,−Xi
for all i = 1, . . . , k (error rate if condition Xi is discarded).

◦ Discard condition Xj with Uα,−Xj
= min k

i=1Uα,−Xi
, provided Uα,−Xj

≤ Uα,+Xj
.

◦ Repeat with reduced condition list until no condition can be discarded
without increasing the error above the current (reduced) Uα.

• Apply this rule reduction approach to all extracted rules.

• Note that the resulting rules are not (necessarily) mutually exclusive,
because discarding conditions from rules can lead to more than one rule
being applicable to a sample case.

• In order to handle such cases, we need a conflict resolution strategy.

• A very simple such strategy is to construct a decision list.
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Building a Rule-based Classifier

• However, as already mentioned, a pure decision list is problematic,
because of the severe dependencies introduced by the ordering.

• A better approach consists in grouping all rules that predict the same class,
and then to order only these class rule subsets. [Quinlan 1993]

• The idea is that the order of rules predicting the same class does not matter.

• All rules predicting one class precede all rules predicting the next class etc.
There is also a default rule (“If true, then . . . ”) or default class at the end.

• Building a rule-based classifier with this approach has four steps:

◦ Simplify individual rules by discarding conditions. (already considered)

◦ Group rules predicting the same class and (“model selection” in a way)

simplify each group by discarding “bad” rules.

◦ Order the class rule subsets in order to minimize errors.

◦ Choose a default class (for cases for which no rule is applicable).
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Excursion: Model Selection

• Objective: select the model that best fits the data,
taking the model complexity into account.

The more complex the model, the better it usually fits the data.

x

y

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7 black line:
regression line
(2 free parameters)

blue curve:
7th order regression polynomial
(8 free parameters)

• The blue curve fits the data points perfectly, but it is not a good model.

(Consider especially predictions based on the black versus the blue model.)
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Excursion: Information Criteria

• There is a tradeoff between model complexity and fit to the data.

Question: How much better must a more complex model fit the data
in order to justify the higher complexity?

• One approach to quantify the tradeoff: Information Criteria

Let D be the data, M a model and Θ the set of free parameters of M. Then:

ICκ(M, Θ | D) = −2 ln P(D | M, Θ) + κ|Θ|,
where D are the sample data and κ is a parameter.

Special cases:

◦ Akaike Information Criterion (AIC): κ = 2

◦ Bayesian Information Criterion (BIC): κ = ln n,
where n is the sample size

• The lower the value of these measures, the better the model.
They are commonly used in statistics, e.g. for regression models.

Christian Borgelt Advanced Data Mining 1 36



Excursion: Minimum Description Length

• Idea: Consider the transmission of the data from a sender to a receiver.

Since the transmission of information is costly,
the length of the message to be transmitted should be minimized.

• A good model of the data can be used to transmit the data with fewer bits.

However, the receiver does not know the model the sender used
and thus cannot decode the message.

Therefore: if the sender uses a model, he/she has to transmit the model as well.

• description length = length of model description
+ length of data description

(A more complex model increases the length of the model description,
but reduces the length of the data description.)

• The model that leads to the smallest total description length is the best.

This model selection idea is used in both statistics and machine learning.
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Minimum Description Length: Simple Example

• Given: a one-dimensional sample from a multinomial distribution.

• Question: Are the probabilities of the values sufficiently different
to justify a non-uniform distribution model?

• Coding using no model: (implicitly: equal probabilities for all values)

l1 = log2 kn = n log2 k, (or: pure data description)

where n is the sample size and k is the number of values.

• Coding using a multinomial distribution model:

l2 = log2

(n + k− 1)!

n!(k− 1)!
︸ ︷︷ ︸

model description

+ log2

n!

n1! . . . nk!
︸ ︷︷ ︸

data description

(Idea: Use a codebook with one page per configuration, that is, frequency dis-
tribution (model) and specific sequence (data), and transmit the page number.)
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Minimum Description Length: Simple Example

Model Description Codebook

Lists one distribution of n cases
onto k values per page, that is,

◦ how many cases have value 1,

◦ how many cases have value 2,
...

◦ how many cases have value k.

contents of page

1 2 · · · i · · · (n+k−1)!
n!(k−1)!

1 n n−1 ni,1 0
2 0 1 ni,2 0
3 0 0 ni,3 0
... ... ... ... ...
k 0 0 ni,k n

Data Description Codebook

Lists for given counts n1, n2, . . . , nk

the value for each of the n cases:

◦ value of case 1,

◦ value of case 2,
...

◦ value of case n.

Attention: not all
possible assignments,
which would be kn,
but only those with
counts n1, n2, . . . , nk.

contents of page
1 2 · · · i · · · n!

n1!n2!···nk!

1 1 1 vi,1 k
2 1 1 vi,2 k
... ... ... ... ...
n1 1 2 vi,n1

n1+1 2 1 vi,n1+1 v
... ... ... ... ...
n k 0 vi,n 1
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Pruning Class Rule Sets

• Discarding conditions may lead to duplicates, which are discarded.

• Rules with an unacceptably high error rate are discarded.

• Since rules may now “overlap” (sometimes more than one rule is applicable),
additional rules may be discarded without harming performance.

• The performance of a (sub)set R of rules for a class C is assessed based on:

◦ number of samples covered by R not belonging to class C: false positives,

◦ number of samples not covered by R belonging to class C: false negatives.

• The assessment relies on the minimum description length principle:

◦ Idea: Transmit the class assignments from a sender to a receiver.
(Both sender and receiver are assumed to know the values of the descriptive attributes already.)

◦ By transmitting the rules (or rule sets or generally: a model of the data),
the receiver can assign classes to all sample cases.

◦ We have to indicate the exceptions, i.e., where rule predictions are wrong.
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Pruning Class Rule Sets

• The assessment relies on the minimum description length principle:

◦ Idea: Transmit the class assignments from a sender to a receiver.

◦ description length = length of model description (here: rule set)
+ length of data description (here: exceptions)

◦ The model that leads to the smallest total description length is the best.

• Some (more) basics of description length computations / approximations:

◦ The number of bits needed to encode an alternative from a probability
distribution p is (at least) H(p), where H(p) is the Shannon entropy.

◦ The number of bits needed to encode an alternative from a set of size k,
each element of which has the same probability 1

k , is log2(k).

(This is also known as Hartley entropy or Hartley information and results as a special case of Shannon entropy:

H(U (k)) = −∑
k
i=1

1
k log2(

1
k) = k1

k log2(k) = log2(k), where U (k) is a uniform distribution over k objects.)

◦ The number of bits needed to encode an integer k is (at least) log2(k) bits.

(This is somewhat sloppy. Better approximations are log2(m) bits, where m is the largest possible integer, or
log∗2(k) + log2(c) bits, log∗2(k) = log2(k) + log2 log2(k) + log2 log2 log2(k) . . . and c ≈ 2.865 [Rissanen 1983])
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Reminder: Shannon Entropy

• Let S = {s1, . . . , sn} be a finite set of alternatives having positive probabilities
Ps(si), i = 1, . . . , n, satisfying ∑

n
i=1 Ps(si) = 1 (i.e., S is exhaustive).

• Shannon Entropy:

H(S) = −
n

∑
i=1

Ps(si) log2 Ps(si) = IEs∼Ps(− log2 Ps(s))

• Intuitively: Expected number of yes/no questions that have to be asked
in order to determine the obtaining alternative.

◦ Suppose there is an oracle, which knows the obtaining alternative,
but responds only if the question can be answered with “yes” or “no”.

◦ Even the best scheme (Huffman coding) needs at least as many questions
(in expectation) as the Shannon entropy of the probability distribution.

◦ If sequences of (independent) situations are to be processed,
one can get closer to this limit by combining consecutive instances.

◦ However, there is no way to get below the Shannon entropy.
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Pruning Class Rule Sets

• We follow the rule set encoding computations in C4.5 R8. [Quinlan 1993]

• For simplicity, we assess the description length for each class rule set separately.
This allows us to skip coding the class, as it is the same for all rules in the set.

• To encode a rule, we must specify the conditions in the antecedent.
We start by encoding their number k, which takes (at least) log2(k) bits.

• For each condition C we must specify the test carried out (with b(C) bits).

◦ If an attribute A is nominal, the condition is A = a and we need H(pA) bits,
where pA is the probability distribution of the attribute’s values.

◦ If an attribute is metric, we need to specify threshold and comparison,
hence we need log2(k)+1 bits; k is the number of possible thresholds.
Account for a non-uniform distribution: heuristically adapt to 1

2 log2(k)+1.

(In both cases we rely on the fact that the receiver already knows the values of the descriptive attributes
for all sample cases and hence can compute (an estimate of) the probability distribution of a nominal
attribute’s values as well as the number of possible thresholds for a metric attribute.)

• Next we have to encode which attribute is tested in a condition.
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Pruning Class Rule Sets

• To specify which attribute is tested in a condition,
we need some probability distribution over the attributes.

• In C4.5 R8 this somewhat wild (though not unreasonable) heuristic is used:

The probability pcond(A) that attribute A appears in a condition
is proportional to the number of bits needed to encode a condition on A.

Hence specifying the attribute of a condition takes (at least) H(pcond) bits.

• The condition order is irrelevant (conjunction is commutative and associative).
Since there are k! possible orders of k conditions, any of which may be used,
we account for this by reducing the description length by log2(k!).

• An analogous argument applies to the rules in a given class rule set.
If there are r rules, we reduce the description length by log2(r!).

• In summary, the description length of (the model of) a class rule setR is:

L(MR) =
r

∑
j=1

(

log2(k j) +

kj

∑
i=1

(

H(pcond) + b(Cj,i)
)

− log2(k j!)
)

− log2(r!).
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Pruning Class Rule Sets

• In addition to the rules, we have to specify the exceptions.
Let n be the total number of cases and nR the number of cases covered byR,
that is, the cases to which at least one rule of the rule setR is applicable.

• Specifying the exceptions among all sample cases requires

L(ER) = log2

((
nR
fp

))

+ log2

((
n− nR

fn

))

bits,

where fp and fn are the numbers of false positives and negatives, respectively.
(Intuition: Consider a code book listing all selections of k cases from a total of n cases, one selection per page.
This book has (n

k) pages. Then transmit the page number, assuming all pages (selections) are equally likely.)

• The total description length of a class rule set is then

L(R) = L(MR) + L(ER) or L(R) = w · L(MR) + L(ER),

where w < 1 is a parameter mitigating overestimates of L(MR) (e.g. w = 1
2).

• With this result we can compare different rule sets for the same class.
The rule set with the shorter description length is the better rule set.
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Pruning Class Rule Sets

• If there are few rules in a rule set, all subsets can be tested.

• Otherwise, a first idea would be to greedily discard rules from a rule set
as long as this does not increase the (total) description length.
(Note: This would be in complete analogy to the greedy condition reduction for individual rules.)

• However, this approach does not work so well in practice.
A better, because less greedy approach, is simulated annealing.

1. LetRc be the set of rules predicting class c.

2. Start with the full class rule setR = Rc.

3. Repeat: (Tentatively) discard a randomly chosen rule R ∈ R fromR
or add a randomly chosen rule R ∈ Rc−R toR and
compute the resulting change ∆L of the description length.

4. If ∆L ≤ 0 (new rule set is better or equal), always accept the change.

5. If ∆L > 0 (new rule set is worse), accept the change with a probability that
depends on ∆L and a temperature parameter that is lowered over time.

Christian Borgelt Advanced Data Mining 1 46



Excursion: Simulated Annealing

May be seen as an extension of gradient or
random ascent/descent that tries to avoid
(or at least reduce the risk of) getting stuck.

Idea: transitions from higher to lower (local)
minima should be more probable than vice versa.

[Metropolis et al. 1953; Kirkpatrik et al. 1983]

f

Ω

Principle of Simulated Annealing:

• Random variants of the current solution (candidate) are created.

• Better solution (candidates) are always accepted.

• Worse solution (candidates) are accepted with a probability that depends on

◦ the quality difference between the old and the new solution (candidate) and

◦ a temperature parameter that is lowered over time.
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Excursion: Simulated Annealing

• Motivation:

Physical minimization of energy (to be more specific: the atom lattice energy),
if a heated piece of metal is cooled down slowly.

This process is called annealing.
It serves the purpose to make a piece of metal easier to work or to machine
by releasing internal tensions and instabilities.
(The atom lattice becomes more regular→ lower atom lattice energy.)

• Alternative Motivation:

A ball rolls around on an unevenly curved (“wavy”) surface.
The function to minimize is the potential energy of the ball.

At the beginning the ball has a certain kinetic energy, due to which it can roll
uphill for some distance. However, due to friction between ball and surface the
energy of the ball reduces, so that they finally comes to rest in a valley.

• Attention: There is no guarantee that the global optimum will be found!
Only the chances are better that a “good” (local) optimum will be found.
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Excursion: Simulated Annealing

1. Choose a (random) starting point ω0 ∈ Ω.

2. Choose a (random) point ω′ ∈ Ω “in the vicinity” of the current point ωi

(e.g. by a small random variation of ωi).

3. Set

ωi+1 =







ω′, if f (ω′) ≤ f (ωi),
(≥ for ascent/maximum)

ω′ with probability p = e−
∆ f
kT ,

ωi with probability 1− p,
otherwise.

∆ f = | f (ωi)− f (ω′)| quality difference of the solution candidates
k = ∆ fmax (estimate of the) range of the function values
T temperature parameter; is (slowly) reduced over time

4. Repeat steps 2 and 3, until some termination criterion is satisfied.

• For small T the methods approaches hill climbing (random ascent/descent).
For larger T there is still a tendency to improve the solution candidates.
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Ordering Class Rule Sets, Default Class

• Once a subset of each class rule set has been selected,
these class rule (sub)sets need to be ordered to obtain a full classifier.

• Recall that each class rule subset causes false positives and false negatives.

• A good heuristic is to defer those rule subsets that cause many false positives,
because preceding class rule sets may already have (correctly) covered those.

• As a consequence, the class rule sets are ordered as follows:

◦ The class rule set with the fewest false positives is chosen as first rule set.

◦ False positives (and false negatives) are recomputed on the uncovered cases.

◦ The class rule set with the fewest (updated) false positives is chosen next etc.

• Sample cases not covered (and thus not classified) by any rule
are handled by a final default rule (“If true, then . . . ”) or default class.

• The default class is the majority class in the uncovered sample cases,
with ties being broken in favor of the class that is more frequent overall.
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Pruning Decision Tree Rules: Example

• Hypothyroid data
from Garvan Institute
of Medical Research,
Darlinghurst, Australia

• 21 binary attributes,
7 metric attributes,
2514 cases, 4 classes:

primary hypothyroid
secondary hypothyroid
compensated hypothyroid
negative

• Decision tree on the left
was induced with
C4.5 Release 8 [Quinlan 1993]

• Tree has 11 leaves
⇒ 11 initial rules
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Pruning Decision Tree Rules: Example

1: If TSH ≤ 6,
then class = negative.

2: If TSH > 6 and FTI ≤ 64
and TSH measured = false,

then class = negative.

3: If TSH > 6 and FTI ≤ 64
and TSH measured = true
and T4U measured = false,

then class = compensated
hypothyroid.

4: If TSH > 6 and FTI ≤ 64
and TSH measured = true
and T4U measured = true
and thyroid surgery = false,

then class = primary
hypothyroid.

5: If TSH > 6 and FTI ≤ 64
and TSH measured = true
and T4U measured = true
and thyroid surgery = true,

then class = negative.

6: If TSH > 6 and FTI > 64
and on thyroxine = false
and TSH measured = false,

then class = negative.

7: If TSH > 6 and FTI > 64
and on thyroxine = false
and TSH measured = true
and thyroid surgery = false
and TT4 ≤ 150
and TT4 measured = false,

then class = primary
hypothyroid.

8: If TSH > 6 and FTI > 64
and on thyroxine = false
and TSH measured = true
and thyroid surgery = false
and TT4 ≤ 150
and TT4 measured = true,

then class = compensated
hypothyroid.

Unpruned rules and unpruned rule set,
as extracted from the decision tree.

9: If TSH > 6 and FTI > 64
and on thyroxine = false
and TSH measured = true
and thyroid surgery = false
and TT4 > 150,

then class = negative.

10: If TSH > 6 and FTI > 64
and on thyroxine = false
and TSH measured = true
and thyroid surgery = true,

then class = negative.

11: If TSH > 6 and FTI > 64
and on thyroxine = true,

then class = negative.
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Pruning Decision Tree Rules: Example

• We consider the simplification of the rule: (rule 5 on preceding slide)

If TSH > 6 and FTI ≤ 64 and TSH measured = true and T4U measured = true
and thyroid surgery = true, then class = negative.

• The full rule is applicable
to three sample cases;
it produces one error.
(conf. level 1−α = 0.75)

condition negative other pessimistic
deleted n01 + n11 n00 + n10 error rate

none 2 1 65.0%

• Each of the 5 conditions
is considered in turn.

• Without “FTI ≤ 64” the
pessimistic error rate is 35%.

• Since this error rate is better,
the condition is deleted.

condition negative other pessimistic
deleted n01 + n11 n00 + n10 error rate

TSH > 6 3 1 53.7%
FTI ≤ 64 6 1 35.0%
TSH measured = true 2 1 65.0%
T4U measured = true 2 1 65.0%
thyroid surgery = true 3 59 97.5%

• The reduced rule (after one simplification step) is:

If TSH > 6 and TSH measured = true and T4U measured = true
and thyroid surgery = true, then class = negative.
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Pruning Decision Tree Rules: Example

• Each of the 4 remaining
conditions is considered
in turn with updated counts.

• Without “TSH > 6” the
pessimistic error rate is 8.9%.

condition negative other pessimistic
deleted n01 + n11 n00 + n10 error rate

TSH > 6 31 1 8.9%
TSH measured = true 6 1 35.0%
T4U measured = true 7 1 31.4%
thyroid surgery = true 44 179 83.2%

• The reduced rule (after two simplification steps) is:

If TSH measured = true and T4U measured = true and thyroid surgery = true,
then class = negative.

• Each of the remaining 3
conditions is checked.

• w/o “T4U measured = true”:
pessimistic error rate 8.2%.

condition negative other pessimistic
deleted n01 + n11 n00 + n10 error rate

TSH measured = true 31 1 8.9%
T4U measured = true 34 1 8.2%
thyroid surgery = true 1962 179 9.1%

• The reduced rule (after three simplification steps) is:

If TSH measured = true and thyroid surgery = true, then class = negative.
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Pruning Decision Tree Rules: Example

• Each of the remaining 2
conditions is checked.

• w/o “TSH measured = true”:
pessimistic error rate 8.2%.

condition negative other pessimistic
deleted n01 + n11 n00 + n10 error rate

TSH measured = true 34 1 8.2%
thyroid surgery = true 2064 194 9.3%

• The reduced rule (after four simplification steps) is:

If thyroid surgery = true, then class = negative.

• Removing the remaining
condition is also checked.

• w/o “thyroid surgery = true”:
pessimistic error rate 8.35%.

condition negative other pessimistic
deleted n01 + n11 n00 + n10 error rate

thyroid surgery = true 2320 194 8.35%

• Removing the last condition worsens the pessimistic error rate estimate.
Therefore this condition is kept and the simplification process terminates.

• The final rule is: If thyroid surgery = true, then class = negative.
(Note that this rule covers 35 cases and produces one error.)
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Pruning Decision Tree Rules: Example

1: If TSH ≤ 6,
then class = negative.

2: If TSH measured = false,
then class = negative.

3: If TSH > 6,
then class = compensated

hypothyroid.

4: If TSH > 6 and FTI ≤ 64
and thyroid surgery = false,

then class = primary
hypothyroid.

5: If thyroid surgery = true,
then class = negative.

6: If FTI > 64,
then class = negative.

7: If TSH > 6
and on thyroxine = false
and TT4 measured = false,

then class = primary
hypothyroid.

8: If TSH > 6 and FTI > 64
and on thyroxine = false
and thyroid surgery = false
and TT4 ≤ 150,

then class = compensated
hypothyroid.

Rules pruned by checking all condition subsets.

9: If TT4 > 150,
then class = negative.

10: If FTI > 64,
then class = negative.

11: If FTI > 64
and on thyroxine = true,

then class = negative.

Note: Rules 6 and 10
have become identical.

• Some of the original rules are actually inapplicable, that is,
there are no sample cases that satisfy the antecedent of the rule.

• Such rules can result from the handling of missing values in the data.
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Pruning Decision Tree Rules: Example

Considered up to now:

3: If TSH > 6 and FTI ≤ 64
and TSH measured = true
and T4U measured = false,

then class = compensated
hypothyroid.

The additional rule
helps illustrating
rule set pruning.

In C4.5 book, rule is split:

3.1: If TSH > 6 and FTI ≤ 64
and TSH measured = true
and T4U measured = false
and TSH ≤ 17,

then class = compensated
hypothyroid.

3.2: If TSH > 6 and FTI ≤ 64
and TSH measured = true
and T4U measured = false
and TSH > 17,

then class = primary
hypothyroid.

After simplification:

3.1: If TSH > 6
and TSH ≤ 17,

then class = compensated
hypothyroid.

3.2: If FTI ≤ 64
and TSH > 17,

then class = primary
hypothyroid.

We consider simplifying the rule set for the class “primary hypothyroid”:

3.2: If FTI ≤ 64
and TSH > 17,

then class = primary
hypothyroid.

4: If TSH > 6 and FTI ≤ 64
and thyroid surgery = false,

then class = primary
hypothyroid.

7: If TSH > 6
and on thyroxine = false
and TT4 measured = false,

then class = primary
hypothyroid.
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Pruning Decision Tree Rules: Example

• The different rule subset selections yield the following coding costs:

model exceptions total

selected coding covered false false coding coding
rules cost cases positives negatives cost cost

— 0.0 0 0 64 425.8 425.8
3.2 17.2 54 2 12 116.8 125.4
4 19.9 59 1 6 64.0 73.9
7 15.8 4 1 61 411.8 419.7

3.2, 4 36.1 62 3 5 64.6 82.6
3.2, 7 32.0 58 3 9 97.8 113.8
4, 7 34.7 63 2 3 42.1 59.5

3.2, 4, 7 50.3 66 4 2 41.0 66.1

• The selected rules are: 4: If TSH > 6 and FTI ≤ 64
and thyroid surgery = false,

then class = primary
hypothyroid.

7: If TSH > 6
and on thyroxine = false
and TT4 measured = false,

then class = primary
hypothyroid.
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Pruning Decision Tree Rules: Example

• Pruning the rules for class “primary hypothyroid” discards rule 3.2.

There are no rules for class “secondary hypothyroid”. (only one case)

Pruning the rules for class “compensated hypothyroid” discards rule 3 (or 3.1).

Pruning the rules for class “negative” discards rules 6 and 10. (identical rules)

class simplified selected covered false false
rules rules cases positives negatives

primary 2 2 66 2 3
secondary 0 0 0 0 1
compensated 2 1 120 0 9
negative 6 5 2316 2 3

• Based on this table we may select the order compensated≺ primary≺ negative.

• The final rules leave 5 cases uncovered: 2 primary, 2 compensated, 1 negative.

Since overall there are more “compensated” cases than “primary” cases,
the default class is “compensated hypothyroid”.
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Pruning Decision Tree Rules: Example

If on thyroxine = false
and thyroid surgery = false
and TSH > 6
and TT4 ≤ 150
and FTI > 64,

then class = compensated
hypothyroid

If thyroid surgery = false
and TSH > 6
and FTI ≤ 64

then class = primary
hypothyroid

If on thyroxine = false
and TT4 measured = false
and TSH > 6,

then class = primary
hypothyroid

If TSH ≤ 6,
then class = negative

If on thyroxine = true
and FTI > 64,

then class = negative

If TSH measured = false,
then class = negative

If TT4 > 150,
then class = negative

If thyroid surgery = true,
then class = negative

If true,
then class = compensated

hypothyroid

This last rule is the
“default rule”, which
applies if none of the
other rules is applicable.

• Instead of 11 rules, the final rule set has
only 9 rules (including the default rule),
most of which are considerably simpler
than the original rules.
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Direct Rule Learning
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Inducing Rules Directly

• Direct rule induction usually proceeds by successive specialization.

• General procedure of successive specialization:

◦ Start with a rule with an empty antecedent (or “true” as the antecedent).

◦ Specialize the current (set of) rule(s) by adding a condition (to each rule).

◦ Limit the resulting set of rules to the k “best” rules (“beam search”).

◦ Repeat specializing the rules and limiting them to a subset,
until some quality objective is reached; then select the “best” rule.

◦ Remove all covered cases, and start over if uncovered cases remain.

• Different algorithms based on this general scheme differ by

◦ the criteria used to assess the quality of a rule,

◦ whether rules are induced for a specific, pre-defined class,
or whether the class is determined from the covered cases.

• In the following we consider the Aq algorithm and the CN2 algorithm.
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Inducing Rules Directly

• The conditions with which rules can be specialized (also called selectors)
are determined from the values of the attributes occurring in the data set.

◦ If A is a nominal attribute,
the possible conditions are “A = a” with a ∈ dom(A).

◦ If A is a metric attribute, let a1, . . . , aℓ ∈ IR be a sorted list of (distinct) values
that occur for attribute A in the given data set. Then the possible conditions
are “A ≤ 1

2(ai + ai+1)” and “A >
1
2(ai + ai+1)” for i = 1, . . . , ℓ− 1.

• In practice, it is usually impossible to check all combinations of conditions,
because their number grows exponentially with the number of attributes.

• Therefore one has to limit the combinations of conditions that are explored.

• The most common approach is a beam search (with beam size k),
which limits the search to the k “best” conjunctions in each step.

• Greedy search is a special beam search with beam size 1 (that is, k = 1).

Widening tries to select good, but “different” rules (instead of simply the best).
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Aq Algorithm

• The Aq algorithm [Michalski 1969] induces rules for a specific class.

(If there are multiple classes, each class is treated separately.)

• The algorithm takes as input two sets of examples / sample cases:

◦ a set Dpos of positive examples (cases belonging to the target class).

◦ a set Dneg of negative examples (cases not belonging to the target class).

• Since the target class is fixed, only rule antecedents need to be found.

• The Aq algorithm tries to find a conjunction of conditions (also called a complex)
that covers as many positive examples as possible, but no negative examples.

• The Aq algorithm employs two quality criteria for conjunctions of conditions:

◦ Q1 for limiting the search set:
sum of positive examples covered and negative examples excluded,

◦ Q2 for selecting the best rule: number of positive examples covered.

• Termination: No rule in the search set covers a negative example.
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Aq Algorithm

function Aq (Dpos, Dneg, k) : set of conjunctions (* k: beam size *)
C ← ∅ (* initialize a set of conjunctions, the cover *)
while Dpos ̸= ∅ do (* while not all positive examples covered *)

dpos ← choose randomly from Dpos (* choose a positive seed example *)
S ← star(dpos, Dpos, Dneg, k) (* get a set of conjunctions that cover dpos, *)

(* but that cover no examples in Dneg *)
sbest ← argmaxs∈S Q2(s, Dpos) (* sbest covers most positive examples *)
C ← C ∪ {sbest} (* add best conjunction to the cover *)
Dpos ← {d ∈ Dpos | sbest ̸◁ d} (* remove covered examples *)

return C (* return the found set of conjunctions *)

• The notation “s ◁ d” means that s covers d, i.e., the conjunction s is true for d.

• The choice of a (positive) seed example introduces a random element,
so that two runs of the algorithm may yield different results.

• Note that this version only produces rule antecedents (conjunctions).

Rules are obtained by generating “s→ class = target” for all s ∈ C.
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Aq Algorithm

function star (dpos, Dpos, Dneg, k) : set of conjunctions (* k: beam size *)
S← {true} (* initialize a set of conjunctions *)
while true do (* conjunction specialization loop *)

Dcn ← {d ∈ Dneg | ∃s ∈ S : s ◁ d } (* get covered negative examples *)
if Dcn = ∅ then break (* if no neg. examples covered, abort *)
dneg ← choose randomly from Dcn (* get a covered negative example *)
Cext ← {c ∈ Call | c ◁ dpos ∧ c ̸◁ dneg} (* get conditions excluding dneg *)
for s ∈ S do (* traverse the current conjunctions *)

if s ◁ dneg then (* if conjunction covers dneg *)
Sext ← {s ∧ c | c ∈ Cext } (* specialize conjunction s *)
S ← (S− {s}) ∪ Sext (* replace s by its specializations *)

while |S| > k do (* while more conj. than beam size *)
S← S− {argmins∈S Q1(s, Dpos, Dneg)} (* remove worst conj. in S *)

return S (* return found set of conjunctions *)

• The choice of a (negative) covered example introduces a random element,
so that two runs of the algorithm may yield different results.
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Aq Algorithm: Example

Patient database

• 12 example cases

• 3 descriptive attributes

• 1 class attribute

Objective: Assignment of Drug

• Find rules for one of the classes,
either Drug A or Drug B, by
applying the Aq algorithm.

• Or find rules for both classes,
Drug A and Drug B, by
applying the Aq algorithm twice.

No Sex Age Blood pr. Drug

1 male 20 normal A
2 female 73 normal B
3 female 37 high A
4 male 33 low B
5 female 48 high A
6 male 29 normal A
7 female 52 normal B
8 male 42 low B
9 male 61 normal B

10 female 30 normal A
11 female 26 low B
12 male 54 high A

• If only one class is covered by rules, the other can be handled by a default rule.

• Here, rules for both class will be created using a greedy approach (k = 1).
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Aq Algorithm: Example

• Get all possible conditions that may be used in rule antecedents:

◦ Sex = female
Sex = male

◦ Age ≤ 23.0 Age ≤ 45.0 Age > 23.0 Age > 45.0
Age ≤ 27.5 Age ≤ 50.0 Age > 27.5 Age > 50.0
Age ≤ 29.5 Age ≤ 53.0 Age > 29.5 Age > 53.0
Age ≤ 31.5 Age ≤ 57.5 Age > 31.5 Age > 57.5
Age ≤ 35.0 Age ≤ 67.0 Age > 35.0 Age > 67.0
Age ≤ 39.5 Age > 39.5

◦ Blood pressure = low
Blood pressure = normal
Blood pressure = high

• Start with class “Drug A” and split data into positive and negative examples:

◦ Dpos : cases 1, 3, 5, 6, 10, 12 (npos = 6 cases where class is “Drug A”)

◦ Dneg : cases 2, 4, 7, 8, 9, 11 (nneg = 6 cases where class is “Drug B”)
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Aq Algorithm: Example

• Start with the empty conjunction: S = {true}.

• Select a positive example (seed example): dpos = [female, 37, high, A]

• Select a covered negative example: dneg = [male, 61, normal, B]

• Get conditions that cover example dpos, but not example dneg:

condition mpos mneg q = mpos + (nneg−mneg)

Sex = female 3 3 6
Age ≤ 39.5 4 2 8
Age ≤ 45.0 4 3 7
Age ≤ 50.0 5 3 8
Age ≤ 53.0 5 4 7
Age ≤ 57.5 6 4 8
Blood pressure = high 3 0 9

• After restriction to beam size k = 1 (greedy approach):

S = { Blood pressure = high }
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Aq Algorithm: Example

• Since the current search set (beam) S = { Blood pressure = high }
does not cover any negative examples, the first rule is:

◦ If Blood pressure = high, then Drug = A.

• The remaining uncovered positive cases are:

◦ Dpos : cases 1, 6, 10 (npos = 3 cases)

• Start over with the empty conjunction: S = {true}.

• Select a positive example (seed example): dpos = [male, 20, normal, A]

• Select a covered negative example: dneg = [female, 52, normal, B]

• Get conditions that cover example dpos, but not example dneg:

condition mpos mneg q

Sex = male 2 3 5
Age ≤ 23.0 1 0 7
Age ≤ 27.5 1 1 6

condition mpos mneg q

Age ≤ 29.5 2 1 6
Age ≤ 31.5 3 1 8
Age ≤ 35.0 3 2 7

condition mpos mneg q

Age ≤ 39.5 3 2 7
Age ≤ 50.0 3 3 6
Age ≤ 45.0 3 3 6
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Aq Algorithm: Example

• After restriction to beam size k = 1 (greedy approach):

S = { Age ≤ 31.5 }

• Select a covered negative example: dneg = [female, 26, low, B]

• Get conditions that cover example dpos, but not example dneg:

condition mpos mneg q = mpos + (nneg−mneg)

Sex = male 2 0 8
Blood pressure = normal 3 0 9

• After restriction to beam size k = 1 (greedy approach):

S = { Age ≤ 31.5 ∧ Blood pressure = normal }

• Since this does not cover any negative examples, the second rule is:

◦ If Age ≤ 31.5 and Blood pressure = normal, then Drug = A.

• There are no uncovered positive cases left, hence the algorithm terminates.
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Aq Algorithm: Example

• The other class (Drug B) may be covered by a default rule:

◦ If true, then Drug = B.
Note that this introduces an order of the rules,
at least grouped by the predicted class.

• Alternatively, the algorithm may be run again for the other class (Drug B):

◦ Dpos : cases 2, 4, 7, 8, 9, 11 (npos = 6 cases)

◦ Dneg : cases 1, 3, 5, 6, 10, 12 (nneg = 6 cases)

• Start with the empty conjunction: S = {true}.

• Select a positive example (seed example): dpos = [male, 42, low, B]

• Select a covered negative example: dneg = [male, 29, normal, A]

• Get conditions that cover example dpos, but not example dneg:

condition mpos mneg q

Age > 29.5 5 4 7
Age > 31.5 5 3 8

condition mpos mneg q

Age > 35.0 4 3 7
Age > 39.5 4 2 8

condition mpos mneg q

Blood pr. 3 0 9
= low
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Aq Algorithm: Example

• After restriction to beam size k = 1 (greedy approach):

S = { Blood pressure = low }

• Since the current search set (beam) S = { Blood pressure = low }
does not cover any negative examples, the first rule is:

◦ If Blood pressure = low, then Drug = B.

• The remaining uncovered positive cases are:

◦ Dpos : cases 2, 7, 9 (npos = 3 cases)

• Start over with the empty conjunction: S = {true}.

• Select a positive example (seed example): dpos = [female, 52, normal, B]

• Select a covered negative example: dneg = [male, 54, high, A]
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Aq Algorithm: Example

• Get conditions that cover example dpos, but not example dneg:

condition mpos mneg q

Sex = female 2 3 5
Age ≤ 53 1 5 2
Blood pressure = normal 3 3 6

• After restriction to beam size k = 1 (greedy approach):

S = { Blood pressure = normal }

• Select a covered negative example: dneg = [male, 29, normal, A]

• Get conditions that cover example dpos, but not example dneg:

condition mpos mneg q

Sex = female 2 1 7

condition mpos mneg q

Age > 29.5 3 1 8
Age > 31.5 3 0 9
Age > 35.0 3 0 9

condition mpos mneg q

Age > 39.5 3 0 9
Age > 45.0 3 0 9
Age > 50.0 3 0 9

• Since there is no unique best condition, one is chosen arbitrarily.
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Aq Algorithm: Example

• After restriction to beam size k = 1 (greedy approach):

S = { Age > 45 ∧ Blood pressure = normal }
• Since this does not cover any negative examples, the second rule is:

◦ If Age > 45 and Blood pressure = normal, then Drug = B.

• There are no uncovered positive cases left, hence the algorithm terminates.

• The final set of rules (for both classes together) is:

◦ If Blood pressure = high, then Drug = A.

◦ If Blood pressure = normal and Age ≤ 31.5, then Drug = A.

◦ If Blood pressure = low, then Drug = B.

◦ If Blood pressure = normal and Age > 45.0, then Drug = B.

• A default rule predicting either class may be added.

• Note that this rule set corresponds very closely to the rule set
that was extracted from the corresponding decision tree (cf. slide 21).
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Aq Algorithm: Discussion

• Note that the Aq algorithm assumes noise-free data.

◦ If there are contradictions, i.e., if two sample cases differ only in their class,
the algorithm (in particular, the function “star”) cannot terminate,
because there is no conjunction s covering d (because the case is in Dpos)
and at the same time excluding d (because the case is in Dneg).

◦ If there are no contradictions, but noise (a class and its complement overlap),
the Aq algorithm may generate very many rules, with each rule covering
only a very small number of examples (maybe even just one).

The result overfits the data and thus does not generalized well.

• The core problem is that the Aq algorithm (in the version presented here)
does not allow for misclassifications in the training data.

• Any noise-tolerant rule induction algorithm must accept
some such misclassifications in order to avoid overfitting.

• The CN2 algorithm does this by replacing the pure (positive) class objective
by an objective based on the Shannon entropy of the class distribution.
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CN2 Algorithm

• The CN2 algorithm does not require a target class for which rules are induced.

• Rather it tries to find conjunctions of conditions (rule antecedents) that
lead to a class distribution with low Shannon entropy (but maybe > 0).

This allows for misclassifications of the training data.

• Rule consequents are chosen as the majority class of the covered examples.

• The CN2 algorithm also employs two quality criteria for rules:

◦ Q1 is the Shannon entropy of the class distribution of covered examples,

◦ Q2 is a p-value quantifying the statistical significance of a rule.

• The statistical significance of a rule (or rather its antecedent) is computed
by comparing the class distribution of all examples (in the given data set)
to the class distribution of the covered examples (i.e., antecedent is true).

◦ Idea: If the class distribution of the covered examples is likely to occur
for a random selection of examples, the rule antecedent is not significant.
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Excursion: Likelihood Ratio Statistic / G Statistic

• Suppose we have a probability model with a parameter θ [Kalbfleisch 1979]
and want to test a hypothesis about the value of θ.

In such a case a likelihood ratio can often be used for the significance test.

• Recall: The likelihood function describes the probability of observed data D
as a function of a (possibly multivariate) parameter θ and is written as

L(θ | D) = P(D | θ) or L(θ | D) = P(D; θ).

• Consider, for example, that we want to test the (simple) hypothesis θ = θ0.
Then the likelihood ratio for θ = θ0 versus the most likely value θ = θ̂ is

R(θ0; D) =
L(θ0 | D)

L(θ̂ | D)
=

L(θ0 | D)

supθ∈Θ
L(θ | D)

=
P(D | θ0)

supθ∈Θ
P(D | θ)

,

where Θ is the parameter space (that is, the set of possible values for θ).

• Note that the denominator is the maximum likelihood estimate for θ.

• R(θ0; D) is also called the relative likelihood of θ = θ0.
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Excursion: Likelihood Ratio Statistic / G Statistic

• If we fix θ at its hypothesized value θ0,
we can useR(θ0; D) to rank possible data sets D.

◦ IfR(θ0; D) is near 1, then the data D gives the hypothesized value θ0

a high relative likelihood, and is in good agreement with H : θ = θ0.

◦ IfR(θ0; D) is near 0, then the data D makes the hypothesized value θ0

very unlikely, and hence D is in poor agreement with H : θ = θ0.

• If the hypothesis is compound (that is, H : θ ∈ Θ0 with |Θ0| > 1),
one may use the maximized likelihood ratio.

R(Θ0; D) =
L(D | Θ0)

L(D | Θ)
=

supθ∈Θ0
P(D | Θ0)

supθ∈Θ
P(D | Θ)

,

• If the hypothesis is simple (that is, H : θ ∈ Θ0 with |Θ0| = 1, i.e., θ = θ0),
this can be seen as a special case of the maximized likelihood ratio.

• Large values ofR(Θ0; D) correspond to data D in good agreement with H,
small values ofR(Θ0; D) correspond to data D in poor agreement with H.
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Excursion: Likelihood Ratio Statistic / G Statistic

• A test of significance in which the (maximized) likelihood ratio
is used to rank data is called a likelihood ratio test.

• Any strictly decreasing function ofR(Θ0; D) may be selected as the test statistic
for such a likelihood test. A convenient choice is

D(Θ0; D) = −2 ln(R(Θ0; D)).

• Suppose that under an unconstrained model the vector of unknown parameters
can take any value in a parameter space Θ with dimensionality r.

• Furthermore, suppose that the hypothesis H restricts θ to a subspace Θ0 of Θ

with dimensionality r0 < r (r0 unknown parameters under the hypothesis H).

• According to Wilks’ Theorem [Wilks 1938], in large samples and
under suitable regularity conditions, the test statistic D(Θ0; D)
is approximately χ2 distributed with r−r0 degrees of freedom:

D(Θ0; D) = −2 ln(R(Θ0; D)) ≈ χ2
r−r0

.
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Excursion: Likelihood Ratio Statistic / G Statistic

• We now apply this approach to assessing the significance of a rule.

• The parameter θ is multivariate and describes a multinomial distribution,
namely the distribution of the possible classes.

• Its hypothesized value θ0 is the class distribution in the whole data set.
This we estimate from the whole data set as θ0 = (θ01, . . . , θ0c) with

θ0i =
ni

n
for i = 1, . . . , c,

where c is the number of classes, n the total number of examples,
and ni the number of examples in class ci. (obviously ∑

c
i=1 ni = n)

(This is the maximum likelihood estimator for the θ0i (see also below),
which happens to be a consistent, unbiased, maximally efficient, and sufficient estimator.)

• In this case it is r0 = 0, since there is only one possible value (vector) θ = θ0.

• The unconstrained model has dimensionality r = c− 1 (not r = c),
because θ is in the probability simplex Θ = ∆c−1 due to ∑

c
i=1 θi = 1.
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Excursion: Likelihood Ratio Statistic / G Statistic

• We now consider the set of examples DR covered by a rule R, where m = |DR|
and mi is the number of covered examples in class i, i = 1, . . . , c.

• The likelihood function for the parameter θ = (θ1, . . . , θc) ∈ Θ is

L(θ | DR) = θ
m1
1 · θm2

2 · · · θmc
c =

c

∏
i=1

θ
mi
i .

• This likelihood function is maximized for (maximum likelihood estimate)

θ̂i =
mi

m
for i = 1, . . . , c.

• Therefore the (maximized) likelihood ratio is

R(θ0 | DR) =
L(θ0 | D)

supθ∈Θ
L(θ | D)

=
L(θ0 | D)

L(θ̂ | D)
=

∏
c
i=1 θ

mi
0i

∏
c
i=1 θ̂

mi
i

=
c

∏
i=1

(
mθ0i

mi

)mi

.

• The likelihood ratio statistic, which for this case is a.k.a. the G statistic, is

D(θ0 | DR) = −2 ln(R(θ0 | DR)) = 2
c

∑
i=1

mi ln

(
mi

mθ0i

)

.
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Excursion: Likelihood Ratio Statistic / G Statistic

• Note that the products ei = mθ0i, i = 1, . . . , c, are the expected frequencies
of the classes ci under the hypothesis H : θ = θ0.

• Hence we can write the likelihood ratio statistic / G statistic as

D(θ0 | DR) = −2 ln(R(θ0 | DR)) = 2
c

∑
i=1

mi ln

(
mi

ei

)

,

which relates the observed frequencies mi to the expected frequencies ei.

• If we write the test statistic in terms of the class frequencies ni

in the whole data set and mi in the subset DR covered by rule R, we obtain

D(θ0 | DR) = 2
c

∑
i=1

mi ln

(
nmi

mni

)

= 2
c

∑
i=1

mi ln

(
mi

ni

/
m

n

)

.

• If the set DR covered by rule R is similar to a random sample of size m,
the fractions mi

ni
of examples covered by rule R in each class ci, i = 1, . . . , c,

should be close to the fraction m
n of the whole data set that is covered by R.

In this case D(θ0 | DR) will be small and the rule R not significant.
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Excursion: Likelihood Ratio Statistic / G Statistic

• The likelihood ratio statistic / G statistic is

D(θ0 | DR) = −2 ln(R(θ0 | DR)) = 2
c

∑
i=1

mi ln

(
mi

ni

/
m

n

)

.

• According to Wilks’ Theorem [Wilks 1938], this test statistic is approximately
χ2 distributed with r− r0 = (c− 1)− 0 = c− 1 degrees of freedom.

• Hence we can compute a p-value by evaluating the survival function
(that is, 1 minus the cumulative distribution function, cdf)
of the χ2 distribution with c−1 degrees of freedom at D(θ0 | DR):

p = Sχ2
c−1

(D(θ0 | DR)) = 1− Fχ2
c−1

(D(θ0 | DR)).

• The test is conducted by comparing p to a chosen significance level α.

◦ If p ≤ α, then the class distribution of the examples covered by rule R
differs significantly from the class distribution in the whole data set.

◦ If p > α, then the class distribution of the examples covered by rule R
does not differ significantly from the class distribution in the whole data set.
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Alternative: Pearson’s χ2 Statistic

• An alternative to the G statistic is Pearson’s χ2 statistic: [Pearson 1900]

χ2 =
c

∑
i=1

(mi − ei)2

ei
=

c

∑
i=1

(mi − m
n ni)2

m
n ni

=
1

n

c

∑
i=1

(nmi −mni)2

mni
,

where the ei are the expected frequencies under the null hypothesis
and the mi are the observed frequencies.

Reminder: The null hypothesis is that the m examples covered by the rule R
are a random sample from all n examples.

• The χ2 statistic is approximately χ2 distributed with c− 1 degrees of freedom
(in large samples and under suitable regularity conditions).

• It is usually recommended to prefer the G statistic over Pearson’s χ2 statistic,
because the χ2 approximation is generally better for the G statistic.

• However, in practice Pearson’s χ2 statistic is more popular,
possibly because the theory of likelihood ratio statistics
(in particular the special case of the G statistic) is less well known.
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CN2 Algorithm

function CN2 (D, k, α) : set of rules (* k: beam size, α: significance level *)
R ← [] (* initialize an empty list of rules *)
while D ̸= ∅ do (* while not all examples are covered *)

sbest ← best(D, k, α) (* find the best conjunction/antecedent *)
Dcov ← {d ∈ D | sbest ◁ d} (* get majority class of covered examples *)
cmaj ← argmaxc∈dom(class) |{d ∈ Dcov | (class = c) ◁ d}|
R ← R⊔ [sbest → (class = cmaj)] (* append found rule to rule list *)
D ← {d ∈ D | sbest ̸◁ d} (* remove covered examples *)

returnR (* return the found rules *)

• The function “best” may return an empty conjunction, i.e. “true”.

This generates a “default” rule, covering all remaining examples.

• The symbol “⊔” is used here to denote a concatenation of lists.

• Since all covered examples are removed, irrespective of their class,
the order of the rules in the returned list is relevant (“decision list”),
and hence we cannot use a simple set of rules.
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CN2 Algorithm

function best (D, k, α) : conjunction (* k: beam size, α: significance level *)
sbest ← true (* default: empty conjunction is best *)
S ← {sbest} (* initialize a set of conjunctions *)
Hbest ← Q1(sbest, D) (* class entropy of all examples *)
pbest ← 1 (* significance of empty conjunction *)
while S ̸= ∅ do (* while conjunctions to specialize *)

S← {s ∧ c | c ∈ Call ∧ (s ∧ c ̸≡ false)} − S (* specialize all conjunctions *)
for s ∈ S do (* traverse specialized conjunctions *)

Ds ← {d ∈ D | s ◁ d} (* get examples covered by s *)
Hs ← Q1(s, Ds) (* class entropy of covered examples *)
ps ← Q2(s, Ds, D) (* p-value of conjunction s *)
if ps ≤ α ∧ (Hs < Hbest ∨ (Hs = Hbest ∧ ps < pbest)) then

sbest ← s; Hbest ← Hs; pbest ← ps

while |S| > k do (* while more conj. than beam size *)
S← S− {argmaxs∈S Q1(s, Ds)} (* remove worst conjunction in S *)

return sbest (* return found best conjunction *)

• When specializing S, redundant conditions may have to be removed as well.
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CN2 Algorithm: Example

• Zoo Data Set (from UCI Machine Learning Repository)

◦ 101 example cases (each example case describes an animal)

◦ 15 Boolean attributes:
hair, feathers, eggs, milk, airborne, aquatic, predator, toothed, backbone,
breathes, venomous, fins, tail, domestic, catsize

◦ 1 numeric attribute:
legs (with values 0, 2, 4, 5, 6, 8) (5 legs: starfish)

◦ 7 classes: amphibian, bird, fish, insect, invertebrate, mammal, reptile

• Get all possible conditions that may be used in rule antecedents:

◦ Boolean attributes: “⟨attribute⟩ = true” and “⟨attribute⟩ = false”

◦ Numeric attribute:

“legs ≤ 1” “legs ≤ 5.5” “legs > 1” “legs > 5.5”
“legs ≤ 3” “legs ≤ 7” “legs > 3” “legs > 7”
“legs ≤ 4.5” “legs > 4.5”
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CN2 Algorithm: Example

• Rules generated by the CN2 algorithm (parameters: k = 5, α = 0.1):

◦ If milk = true, then class = mammal. mammal:41

◦ If feathers = true, then class = bird. bird:20

◦ If fins = true, then class = fish. fish:13

◦ If airborne = true, then class = insect. insect:6

◦ If predator = true and backbone = false,
then class = invertebrate. invertebrate:8

◦ If legs > 5.5, then class = insect. insect:2

◦ If backbone = false, then class = invertebrate. invertebrate:2

◦ If tail = false, then class = amphibian. amphibian:3

◦ If true, then class = reptile. amphibian:1, reptile:5

• Only one error on the training data. An additional rule to achieve
perfect classification does not pass the rule significance test.
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Reminder: The Iris Data

pictures not available in online version

• Collected by Edgar Anderson on the Gaspé Peninsula (Canada).

• First analyzed by Ronald Aylmer Fisher (famous statistician).

• 150 cases in total, 50 cases per Iris flower type.

• Measurements of sepal length and width and petal length and width (in cm).

• Most famous data set in pattern recognition and data analysis.
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Reminder: The Iris Data
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• Scatter plots of the iris data set for sepal length vs. sepal width (left)
and for petal length vs. petal width (right).
All quantities are measured in centimeters (cm).

Christian Borgelt Advanced Data Mining 1 91



CN2 Algorithm: Example

• Rules generated by the CN2 algorithm (parameters: k = 5, α = 0.1):

◦ If petal width ≤ 0.8, then iris type = Iris setosa. Iris setosa:50

◦ If petal width > 1.85, then iris type = Iris virginica. Iris virginica:34

◦ If petal length > 5.35, then iris type = Iris virginica. Iris virginica:8

◦ If petal width ≤ 1.45, then iris type = Iris versicolor. Iris versicolor:35

◦ If sepal width > 3.05, then iris type = Iris versicolor. Iris versicolor:6

◦ If petal width > 1.75, then iris type = Iris virginica. Iris virginica:5

◦ If sepal width > 2.85, then iris type = Iris versicolor. Iris versicolor:5

◦ If true, then iris type = Iris versicolor. Iris versicolor:4 Iris virginica:3

• Only three errors on the training data. Additional rules to achieve
perfect classification does not pass the rule significance test.
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CN2 Algorithm: Discussion

• The CN2 algorithm allows for misclassifications in the training data,
that is, it does not assume noise-free data.

• Since there is no target class (rule consequents chosen as majority class),
and no seed examples (positive and negative) are chosen during the search,
the set of conditions used for specializations is (usually) less restricted.

• As a consequence, the CN2 algorithm is usually slower than the Aq

(because more combinations of conditions / rule antecedents are checked,
even if the same beam size k is used).

• It is usually also slower than a decision tree based approach,
because decision tree induction relies on a greedy test selection.

• Clark & Niblett claim: “Indeed, with a beam width of one the CN2 algorithm
behaves equivalently to ID3 [precursor of C4.5] growing a single tree branch.”

This is incorrect, since ID3 computes information gain to assess tests,
not just the entropy for a single outcome of a potential test,
and hence may choose a different test (attribute) than CN2.
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Summary Rule Learning

• Rule Extraction from Decision Trees

◦ Each path from the root to a leaf yields a rule.

◦ Rule conditions are (greedily) simplified.
(errors increased to upper bound of confidence interval)

◦ Rules predicting the same class are grouped.

◦ Class rule subsets are simplified and ordered.

◦ More on decision trees and rule extraction ⇒

• Direct Rule Induction

◦ Successive specialization of a rule with an initially empty antecedent.

◦ Usually employs beam search to limit the search complexity, since
the number of rules grows exponentially with the number of attributes.

◦ Aq algorithm: assumes noise-free data, induces rules for a target class.

◦ CN2 algorithm: allows for noise, chooses class from covered examples.
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Support Vector Machines
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Overview Support Vector Machines

• Linear Regression

◦ Ordinary least squares (primal and dual form)

◦ Ridge regression / Tikhonov regularization (primal and dual form)

• Linear Classification

◦ Geometric interpretation and linear separability

◦ Maximum margin separation and support vectors

◦ Slack variables to allow for some misclassifications

◦ Limitations of linear separability

• Non-Linear Regression and Non-Linear Classification

◦ Idea: Map data to a different space to make it linear(ly separable)

◦ Kernel functions as means for implicit mapping (“kernel trick”)

◦ Some commonly used kernel functions

• Summary
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Reminder: Regression

Regression is also known as the Method of Least Squares. [Carl Friedrich Gauß]
(or more specifically Ordinary Least Squares, abbreviated OLS)

Given: • A data set ((x⃗1, y1), . . . , (x⃗n, yn)) of n data tuples
(one or more input values and one output value) and

• a hypothesis about the functional relationship
between response and predictor values,
e.g. Y = f (X) = a + bX + ε (where ε is a noise term).

Desired: • A parameterization of the conjectured function
that minimizes the sum of squared errors (“best fit”).

Depending on

• the hypothesis about the functional relationship and

• the number of arguments of the conjectured function

different types of regression are distinguished.
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Reminder: Function Optimization

Task: Find values x⃗ = (x1, . . . , xm) such that f (x⃗) = f (x1, . . . , xm) is optimal.

Often feasible approach:

• A necessary condition for a (local) optimum (minimum/maximum) is that the
partial derivatives w.r.t. the parameters vanish [Pierre de Fermat, 1607–1665].

• Therefore: (Try to) Solve the equation system that results from setting
all partial derivatives w.r.t. the parameters equal to zero.

Example task: Minimize f (x, y) = x2 + y2 + xy− 4x− 5y.

Solution procedure:

1. Take the partial derivatives of the objective function and set them equal to zero:

∂ f

∂x
= 2x + y− 4 = 0,

∂ f

∂y
= 2y + x− 5 = 0.

2. Solve the resulting (here: linear) equation system: x = 1, y = 2.
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Reminder: Univariate Linear Regression

Given: • A data set ((x1, y1), . . . , (xn, yn)) of n data tuples and

• a hypothesis about the functional relationship, e.g. y = g(x) = a + bx.

Approach: Minimize the sum of squared errors, that is,

F(a, b) =
n

∑
i=1

(g(xi)− yi)
2 =

n

∑
i=1

(a + bxi − yi)
2.

Necessary conditions for a minimum
(a.k.a. Fermat’s theorem, after Pierre de Fermat, 1607–1665):

∂F

∂a
=

n

∑
i=1

2(a + bxi − yi) = 0 and

∂F

∂b
=

n

∑
i=1

2(a + bxi − yi)xi = 0

(Note: Not to be confused with Fermat’s Last Theorem!)
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Reminder: Univariate Linear Regression

Result of necessary conditions: System of so-called normal equations, that is,

na +

(
n

∑
i=1

xi

)

b =
n

∑
i=1

yi,

(
n

∑
i=1

xi

)

a +

(
n

∑
i=1

x2
i

)

b =
n

∑
i=1

xiyi.

• Two linear equations for two unknowns a and b.

• System can be solved with standard methods from linear algebra.

• Solution is unique unless all x-values are identical.

◦ If all x-values are equal, it is xi = x0, i = 1, . . . , n.

◦ The first equation simplifies to na + nx0b = ∑
n
i=1 yi, the second to nx0a + nx2

0b = x0 ∑
n
i=1 yi.

These two equations are linearly dependent, hence there is no unique solution.

• The resulting line is called a regression line.

Christian Borgelt Advanced Data Mining 1 100



Univariate Linear Regression: Example

x 1 2 3 4 5 6 7 8

y 1 3 2 3 4 3 5 6

Assumption:

y = a + bx

Normal equations:

8 a + 36 b = 27,
36 a + 204 b = 146.

Solution:

y =
3

4
+

7

12
x.

x

y

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

x

y

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6
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Reminder: Bivariate Linear Regression

Generalization to more than one argument / regressor:

z = f (x, y) = a + bx + cy

Approach: Minimize the sum of squared errors, that is,

F(a, b, c) =
n

∑
i=1

( f (xi, yi)− zi)
2 =

n

∑
i=1

(a + bxi + cyi − zi)
2

Necessary conditions for a minimum: All partial derivatives vanish, that is,

∂F

∂a
=

n

∑
i=1

2(a + bxi + cyi − zi) = 0,

∂F

∂b
=

n

∑
i=1

2(a + bxi + cyi − zi)xi = 0,

∂F

∂c
=

n

∑
i=1

2(a + bxi + cyi − zi)yi = 0.
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Reminder: Bivariate Linear Regression

System of normal equations for two arguments / regressors:

na +

(
n

∑
i=1

xi

)

b +

(
n

∑
i=1

yi

)

c =
n

∑
i=1

zi

(
n

∑
i=1

xi

)

a +

(
n

∑
i=1

x2
i

)

b +

(
n

∑
i=1

xiyi

)

c =
n

∑
i=1

zixi

(
n

∑
i=1

yi

)

a +

(
n

∑
i=1

xiyi

)

b +

(
n

∑
i=1

y2
i

)

c =
n

∑
i=1

ziyi

• 3 linear equations for 3 unknowns a, b, and c.

• System can be solved with standard methods from linear algebra.

• Solution is unique unless all data points (xi, yi) lie on a straight line.

◦ Assuming y = px + q, one can show that the equations are linearly dependent.
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Reminder: Multivariate Linear Regression

General multivariate linear case:

y = f (x⃗) = f (x1, . . . , xm) = a0 +
m

∑
k=1

akxk

Approach: Minimize the sum of squared errors, that is,

F(⃗a◦) = (X◦⃗a◦− y⃗)⊤(X◦⃗a◦− y⃗),

where (leading 1s in X◦ capture the constant a0 via a pseudo-argument x0 ≡ 1)

X◦ =





1 x11 . . . x1m
... ... . . . ...
1 xn1 . . . xnm





︸ ︷︷ ︸

= X

, y⃗ =





y1
...
yn



 , and a⃗◦ =







a0

a1
...
am












= a⃗

Necessary conditions for a minimum: (∇ is a differential operator called “nabla” or “del”.)

∇⃗a◦ F(⃗a◦) = ∇⃗a◦ (X
◦⃗a◦− y⃗)⊤(X◦⃗a◦− y⃗) = 0⃗
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Reminder: Multivariate Linear Regression

• ∇⃗a◦F(⃗a◦) may be computed by remembering that the differential operator

∇⃗a◦ =
( ∂

∂a0
, . . . ,

∂

∂am

)

behaves formally like a vector that is “multiplied” to the sum of squared errors.

• Alternatively, one may write out the differentiation component-wise.

With the former method we obtain for the derivative:

∇⃗a◦F(⃗a◦) = ∇⃗a◦
(

(X◦⃗a◦− y⃗)⊤(X◦⃗a◦− y⃗)
)

= (∇⃗a◦ (X
◦⃗a◦− y⃗))⊤(X◦⃗a◦− y⃗) +

(
(X◦⃗a◦− y⃗)⊤ (∇⃗a◦ (X

◦⃗a◦− y⃗))
)⊤

= (∇⃗a◦ (X
◦⃗a◦− y⃗))⊤(X◦⃗a◦− y⃗) + (∇⃗a◦ (X

◦⃗a◦− y⃗))⊤(X◦⃗a◦− y⃗)

= 2X◦⊤(X◦⃗a◦− y⃗)

= 2X◦⊤X◦⃗a◦− 2X◦⊤y⃗ = 0⃗
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Reminder: Multivariate Linear Regression

Necessary conditions for a minimum are therefore:

∇⃗a F(⃗a◦) = ∇⃗a◦(X
◦⃗a◦− y⃗)⊤(X◦⃗a◦− y⃗)

= 2X◦⊤X◦ a⃗◦− 2X◦⊤y⃗
!
= 0⃗

As a consequence we obtain the system of normal equations:

X◦⊤X◦ a⃗◦ = X◦⊤y⃗

This system has a solution unless X◦⊤X◦ is singular. If it is regular, we have

a⃗◦ = (X◦⊤X◦)−1X◦⊤y⃗.

(X◦⊤X◦)−1X◦⊤ is called the (Moore–Penrose-)pseudo-inverse of the matrix X◦.

The prediction function (i.e. the function to compute y from given x⃗) is

y = f (x⃗) = a⃗◦⊤⃗x◦ = ((X◦⊤X◦)−1X◦⊤y⃗)⊤x⃗◦ = y⃗⊤X◦(X◦⊤X◦)−1x⃗◦

where x⃗◦ =
[

1
x⃗

]

= (1, x1, . . . , xm)⊤ is the extended argument vector.
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Multivariate Linear Regression: Primal and Dual Form

• Writing the solution vector as a⃗◦ = (X◦⊤X◦)−1X◦⊤y⃗
is called the primal form of the solution.

• To obtain the dual form of the solution, we rewrite the primal form as

a⃗◦ = (X◦⊤X◦)−1X◦⊤y⃗

= Im+1 (X◦⊤X◦)−1X◦⊤y⃗ (Im+1: (m + 1)×(m + 1) unit matrix)

=
︷ ︸︸ ︷

X◦⊤X◦(X◦⊤X◦)−1 (X◦⊤X◦)−1X◦⊤y⃗

= X◦⊤X◦(X◦⊤X◦)−2 X◦⊤y⃗

= X◦⊤⃗b where b⃗ = X◦(X◦⊤X◦)−2 X◦⊤y⃗.

• Writing this out as a sum over the extended data points yields

a⃗◦ =
n

∑
i=1

bix⃗
◦
i , where x⃗◦i =

[
1

x⃗

]

= (1, xi1, . . . xim)
⊤.

That is, the solution a⃗◦ can be written as a weighted sum of the data points.
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Multivariate Linear Regression: Primal and Dual Form

• Writing the solution vector as a⃗◦ = (X◦⊤X◦)−1X◦⊤y⃗
is called the primal form of the solution.

• Writing the solution vector as a⃗◦ = X◦⊤⃗b with b⃗ = X◦(X◦⊤X◦)−2 X◦⊤y⃗
is called the dual form of the solution.

• The prediction function (i.e. the function to compute y from given x⃗)
resulting from this dual form is

y = f (x⃗) = a⃗◦⊤⃗x◦ = (X◦⊤⃗b)⊤x⃗◦ = b⃗⊤X◦ x⃗◦ = b⃗⊤⃗z◦,

where x⃗◦ =
[

1
x⃗

]

= (1, x1, . . . , xm)⊤ is the extended argument vector and

z◦i = x⃗◦⊤i x⃗◦, i = 1, . . . , n, are its scalar products with the extended data points.

• Note that this prediction function does not refer to the primal parameters a⃗◦,
but rather to the dual parameters b⃗ and a vector of scalar products.

• The concept of reparameterizing the prediction function
is central to the theory of support vector machines.
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Excursion: Properties of the Matrix X◦⊤X◦

The matrix X◦⊤X◦ is square, symmetric, and always positive semi-definite.

• A q× q matrix M is called

positive semi-definite (or non-negative definite): ∀v⃗ ∈ IRq : v⃗⊤M v⃗ ≥ 0,

negative semi-definite (or non-positive definite): ∀v⃗ ∈ IRq : v⃗⊤M v⃗ ≤ 0,

• For any x⃗ ∈ IRq the outer product x⃗x⃗⊤ yields a positive semi-definite matrix:

∀v⃗ ∈ IRq : v⃗⊤x⃗x⃗⊤v⃗ = (⃗v⊤x⃗)(x⃗⊤v⃗) = (⃗v⊤x⃗)(⃗v⊤x⃗) = (⃗v⊤⃗x)2 ≥ 0.

• If Mi, i = 1, . . . , k, are positive (negative) semi-definite matrices,
then M = ∑

k
i=1 Mi is a positive (negative) semi-definite matrix.

∀v⃗ ∈ IRq : v⃗⊤M v⃗ = v⃗⊤
(

∑
k
i=1 Mi

)

v⃗ = ∑
k
i=1 v⃗⊤Mi v⃗
︸ ︷︷ ︸
≥0

≥ 0.

• The matrix X◦⊤X◦ is positive semi-definite as it can be written as

X◦⊤X◦ =
n

∑
i=1

x⃗◦i x⃗◦⊤i where x⃗◦i =

[
1

x⃗

]

= (1, xi1, . . . xim)
⊤.
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Excursion: Properties of the Matrix X◦⊤X◦

The matrix X◦⊤X◦ is generally positive definite,
unless the rows of X◦ are linearly dependent. (rows of X◦: extended data points)

• positive definite: ∀v⃗ ∈ IRq−{⃗0} : v⃗⊤M v⃗ > 0,
negative definite: ∀v⃗ ∈ IRq−{⃗0} : v⃗⊤M v⃗ < 0,

• The matrix X◦⊤X◦ can be written as X◦⊤X◦ = ∑
n
i=1 x⃗◦i x⃗◦⊤i .

• Suppose that ∃v⃗ ∈ IRm+1−{⃗0} : ∀i; 1 ≤ i ≤ n : v⃗⊤⃗x◦i = 0.
(implying v⃗⊤x⃗◦i x⃗◦⊤i v⃗ = (⃗v⊤⃗x◦i )

2 = 0)

Furthermore, suppose that the set {x⃗◦1, . . . , x⃗◦n} spans IRm+1.

Then there exist α1, . . . , αn ∈ IR such that v⃗ = α1x⃗◦1 + . . . + αnx⃗◦n.

Hence v⃗⊤⃗v = v⃗⊤⃗x◦1
︸︷︷︸
=0

α1 + . . . + v⃗⊤⃗x◦n
︸︷︷︸

=0 (by assumption)

αn = 0, implying v⃗ = 0⃗, contradicting v⃗ ̸= 0⃗.

• Therefore, if the x⃗◦i , i = 1, . . . , n, span IRm+1, then X◦⊤X◦ is positive definite.
Only if the x⃗◦i , i = 1, . . . , n, do not span IRm+1, that is, if the data points x⃗i lie
in a lower-dimensional (linear) subspace, X◦⊤X◦ is only positive semi-definite.
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Excursion: Properties of the Matrix X◦⊤X◦

• For the matrix X◦⊤X◦ to be positive definite,
only the data points x⃗i must not lie in a lower-dimensional (linear) subspace.

• The extended data points x⃗◦i always lie in a lower-dimensional subspace,
simply because it is xi0 = 1 for i = 1, . . . , n.

• However, as (location) vectors from the origin, the x⃗◦i still span IRm+1,
unless the data points x⃗i lie in a lower-dimensional (linear) subspace.

x2

x1

x0

1

~x◦
1

~x◦
2

~x◦
3

x2

x1

x0

1

~x◦
1

~x◦
2

~x◦
3
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Excursion: Properties of the Matrix X◦⊤X◦

• A square, symmetric, positive definite matrix is regular, that is, invertible.
Thus, the matrix X◦⊤X◦ is invertible unless the x⃗i, i = 1, . . . , n, do not span IRm.

• However, even if X◦⊤X◦ is invertible, computing the inverse can be
numerically unstable due to the finite precision of computer arithmetic.

This is particularly the case if the matrix to invert is ill-conditioned.

• Generally, the condition number of a function measures
how much its value can change for a small change of its argument.

• Solving the linear equation system X◦⊤X◦ a⃗◦ = X◦⊤y⃗ (a.k.a. normal equations)
can also be seen as evaluating a function a⃗◦ = f (X◦, y⃗).

Its stability is captured by the condition number of the matrix X◦⊤X◦.

• If X◦⊤X◦ is positive definite, it allows for an eigenvalue decomposition
where all eigenvalues λi, i = 1, . . . , m + 1, are real and positive.
Then the condition number of X◦⊤X◦ is λmax/λmin, where λmax and λmin

are the largest and smallest eigenvalue, respectively, of X◦⊤X◦.
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Ridge Regression / Tikhonov Regularization

• Suppose that X◦⊤X◦ is either singular or ill-conditioned. (large condition number)

Solution: Extend the functional to optimize by a regularization term, e.g.,

Fλ(⃗a◦) = (X◦⃗a◦− y⃗)⊤(X◦⃗a◦− y⃗) + λ a⃗◦⊤⃗a◦

where λ > 0 is a small real-valued number.

• This particular form is known as ridge regression or Tikhonov regularization.
The minimum of Fλ(⃗a◦) can be computed as [Andrey Tikhonov 1943]

a⃗◦ = (X◦⊤X◦+ λIm+1)
−1X◦⊤y⃗. (Iq denotes a q× q unit matrix)

• Note that with λ = 0, ridge regression reduces to ordinary least squares.

• The matrix X◦⊤X◦+ λIm+1 is always regular (invertible) for λ > 0,
hence a solution always exists. (at least in principle, barring numerical problems)

• Adding λIm+1 to X◦⊤X◦ “shifts (i.e. increases) the eigenvalues” of X◦⊤X◦ and
thus improves (i.e. lowers) the condition number of X◦⊤X◦ (provided λ > 0);
hence this is often done for convenience, even if X◦⊤X◦ is not ill-conditioned.
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Ridge Regression: Primal and Dual Form

• Writing the solution vector as a⃗◦ = (X◦⊤X◦+ λIm+1)−1X◦⊤y⃗
is called the primal form of the solution of multivariate linear ridge regression.

• To obtain the dual form, we assume that a⃗◦ can be written as a⃗◦ = X◦⊤⃗b.

We may obtain this from the normal equations of ridge regression:

(X◦⊤X◦+ λIm+1)⃗a◦ = X◦⊤y⃗ ⇔ X◦⊤X◦ a⃗◦+ λ⃗a◦ = X◦⊤y⃗

⇔ λ⃗a◦ = X◦⊤y⃗− cX◦⊤X◦ a⃗◦

⇔ a⃗◦ = X◦⊤ (⃗y− X◦ a⃗◦)λ−1

︸ ︷︷ ︸

=⃗b

• Note, however, that in this form b⃗ contains a⃗◦. To eliminate a⃗◦, we exploit

b⃗ = (⃗y− X◦ a⃗◦)λ−1 ⇔ λ⃗b = (⃗y− X◦⃗a◦)

⇔ λ⃗b = (⃗y− X◦X◦⊤⃗b)

⇔ X◦X◦⊤⃗b + λ⃗b = y⃗

⇔ (X◦X◦⊤+ λIn)⃗b = y⃗

⇔ b⃗ = (X◦X◦⊤+ λIn)
−1 y⃗

Christian Borgelt Advanced Data Mining 1 114



Ridge Regression: Primal and Dual Form

• Writing the solution vector as a⃗◦ = (X◦⊤X◦+ λIm+1)−1X◦⊤y⃗
is called the primal form of the solution of multivariate linear ridge regression.

• Writing the solution vector as a⃗◦ = X◦⊤⃗b = X◦⊤(X◦X◦⊤+ λIn)−1 y⃗
is called the dual form of the solution of multivariate linear ridge regression.

• The prediction function (i.e. the function to compute y from given x⃗)
resulting from this dual form is

y = f (x⃗) = a⃗◦⊤x⃗◦ = (X◦⊤⃗b)⊤x⃗◦ = b⃗⊤X◦ x⃗◦ = b⃗⊤⃗z◦,

where x⃗◦ =
[

1
x⃗

]

= (1, x1, . . . , xm)⊤ is the extended argument vector and

z◦i = x⃗◦⊤i x⃗◦, i = 1, . . . , n, are its scalar products with the extended data points.

• Note that this prediction function does not refer to the primal parameters a⃗◦,
but rather to the dual parameters b⃗ and a vector of scalar products.

• Note: With the dual parameters b⃗, we no longer need the data points itself.

We only need means to compute scalar products of data points.
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Ridge Regression: Primal and Dual Form

• Recalling that the dual parameters are computed as b⃗ = (X◦X◦⊤+ λIn)−1 y⃗
and realizing that the elements of the matrix G◦ = X◦X◦⊤ are G◦ij = x⃗◦⊤i x⃗◦j ,
we note that we neither need the data points to compute the dual parameters.

We only need means to compute scalar products of data points.

• This insight does not seem particularly useful at the moment
(after all: how can we compute scalar products without data points?),
but it will be decisive for the so-called kernel trick discussed later.

• The matrix G◦ = X◦X◦⊤ of pairwise scalar products of the (extd.) data points
is known as the Gram matrix or Gramian matrix. [Jørgen Pedersen Gram]

• In linear algebra, the Gram matrix G of a set of (real-valued) vectors v⃗1, . . . , v⃗n

is the matrix of inner products of these vectors, that is, Gij = v⃗⊤i v⃗j.

• If the vectors v⃗i are the columns of a matrix V, the Gram matrix is V⊤V.
If the vectors v⃗i are the rows of a matrix V, the Gram matrix is VV⊤.

• In this sense X◦⊤X◦ is also a Gram matrix, but for a different set of vectors.
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Efficiency Considerations

• Ordinary least squares (primal): a⃗◦ = (X◦⊤X◦)−1 X◦⊤y⃗

Ordinary least squares (dual): b⃗ = X◦(X◦⊤X◦)−2 X◦⊤y⃗
Ridge regression (primal): a⃗◦ = (X◦⊤X◦+ λIm+1)−1 X◦⊤y⃗

Ridge regression (dual): b⃗ = (X◦X◦⊤+ λIn)−1 y⃗

• The cost of computing the (primal or dual) parameters is (mainly) governed
by the cost of the matrix inversion, as this is the most expensive operation.

• Generally, inverting a q× q matrix has time complexity O(q3).

• We can exploit that the matrices to invert are symmetric and positive definite.

This allows us to use Cholesky decomposition for the inversion,
which is faster than, e.g., Gaussian elimination or LU-decomposition.
(Although only by a constant factor, so the time complexity is still O(q3).)

• Note that ordinary least squares (primal & dual) and ridge regression (primal)
require to invert a (m + 1)× (m + 1) matrix (m: dimensions of the data space),
ridge regression (dual) to invert an n× n matrix (n: number of data points).
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Efficiency Considerations

• Whether computing the parameters is cheaper for the primal or the dual form
depends on the number m of dimensions of the data space
and the number n of data points (and their relationship).

• If m < n (which is usually the case), the primal form is cheaper.
If m > n (which requires ridge regression), the dual form is cheaper.

• Computing predictions (primal): y = a⃗◦⊤⃗x◦

Computing predictions (dual): y = b⃗⊤⃗z◦ = b⃗⊤X◦ x⃗◦

• Computing the prediction via the scalar product (either a⃗◦⊤⃗x◦ or b⃗⊤⃗z◦)
has complexity O(m) for the primal and O(n) for the dual form.

• Computing predictions with the dual form requires first computing z⃗◦,
the vector of scalar products of x⃗◦ with the data points.
This computation has complexity O(nm).

• Therefore computing predictions with the dual form is always more costly.
However, we will see later that it has compensating advantages.
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Reminder: Cholesky Decomposition

• Let M be a symmetric, positive definite q× q matrix (e.g. the matrix X◦⊤X◦).

◦ symmetric: ∀1 ≤ i, j ≤ q : Mij = Mji or M⊤= M.

◦ positive definite: ∀v⃗ ∈ IRq−{0} : v⃗⊤M v⃗ > 0

• Cholesky decomposition serves the purpose to compute a “square root” of M,
that is, a matrix L such that LL⊤ = M (that is, the “square” of L is M).

• Problem: Generally, the equation LL⊤ = M does not have a unique solution.
One way to make it unique is to require L to be left/lower triangular.

• Hence: Compute a left/lower triangular matrix L such that LL⊤ = M.

Lii =

(

Mii −
i−1

∑
k=1

L2
ik

)1
2

Lji =
1

Lii

(

Mij−
i−1

∑
k=1

LikLjk

)

, j = i + 1, i + 2, . . . , q.
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Matrix Inversion from Cholesky Decomposition

• The inverse K = L−1 of a left/lower triangular matrix L is left/lower triangular.

• It can be computed with a forward substitution with L: (find originals of I:i)

Kii =
1

Lii

Kji = − 1

Ljj

(
j−1

∑
k=i

LjkKki

)

, j = i + 1, i + 2, . . . , q.

• Since M = LL⊤ by construction, the inverse N = M−1 can be computed as

M−1 = (LL⊤)−1 = L−1(L⊤)−1 = L−1(L−1)⊤ = KK⊤.

• This is equivalent to a backward substitution with L⊤: (find originals of K:i)

Nji =
1

Ljj

(

Kji −
q

∑
k=j+1

LkjKki

)

, j = i, i + 1, . . . , q.

Since M is symmetric, N = M−1 must be symmetric. Hence it suffices to compute
the left/lower triangle of N and fill the right/upper triangle of N with its transpose.
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Equation System Solution from Cholesky Decomposition

• Actually we have to solve the equation systems X◦⊤X◦ a⃗◦ = r⃗◦ (normal) or
(X◦⊤X◦+ λIi) a⃗◦ = r⃗◦ (regularized) where the right hand side is r⃗◦ = X◦⊤y⃗.

• Given a Cholesky decomposition L of X◦⊤X◦ or X◦⊤X◦+ λIm+1, respectively,
the result a⃗◦ can be computed by forward / backward substitution directly.

(This bypasses the explicit computation of the inverse matrix, which is not really needed.)

• For i = 1, . . . , m + 1 (traversal in ascending order, forward substitution)

ti =
1

Lii

(

ri −
i−1

∑
k=1

Likrk

)

(Find original of r⃗ w.r.t. a mapping with L.)

• For i = m + 1, . . . , 1 (traversal in descending order, backward substitution)

ai =
1

Lii

(

ti −
m+1

∑
k=i+1

Lkitk

)

(Find original of t⃗ w.r.t. a mapping with L⊤.)
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Linear Regression: Limitations

• Linear regression is very popular in economics, psychology, sociology etc.

• Linear regression has the advantage that it is a fairly robust method.
A data analysis method is called robust or stable if its result changes little

◦ if the values of the data points (i.e. their coordinates) change slightly or

◦ if few data points are added or removed.

• If the attributes / regressors are normalized (usually z-normalized),
the coefficients can be interpreted as “importance weights”
that quantify the strength of influence the different attributes have.
(This interpretation is very common, but should be taken with a grain of salt.)

• However, not all relationships between variables are linear.

◦ At time t a dropped object has fallen the distance s = 1
2gt2, g ≈ 9.81m/s2.

◦ The decay of a radioactive substance can be described by n(t) = n0e−βt.

◦ The orbit radius r of a planet at angle θ can be described as r = a(1−e2)
1+e cos θ .
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Linear Classification

• Up to now: Regression
Now: Classification

(but only two classes)

• Simple data set with two classes:

◦ 20 data points belong to the blue class.

◦ 20 data points belong to the red class.

x1
420−2−4

x2

4

2

0

−2

−4

–4

–2

0

2

4

–4

–2

0

2

4

0

1

y

x 1

x
2

• In principle, two-class classification
can be reduced to regression:

• Map one class to y = −1 (here: blue),
the other class to y = +1 (here: red).

• Find a linear regression function
y = f (x⃗) as described before.
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Linear Classification

• Simple data set with two classes:

◦ 20 data points belong to the blue class.

◦ 20 data points belong to the red class.

• Map blue class to y = −1,
map red class to y = +1, and
compute a bivariate linear regression.
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• As a prediction function one may
classify the data according to:

If f (x⃗) ≥ 0, assign the red class,
otherwise assign the blue class.
(yellow plane / line)

• But this misclassifies two data points
(orange arrows).
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Linear Classification

• Simple data set with two classes:

◦ 20 data points belong to the blue class,

◦ 20 data points belong to the red class.

• These classes are linearly separable:

There is a straight line such that all points
of class red are on one side of the line and
all points of class blue are on the other side.

• This allows for a simple classification rule.

x1
420−2−4

x2

4

2

0

−2

−4

• The separating line (shown in yellow) has the equation

g ≡
(

4
−3

)⊤
·
((

x1

x2

)

−
(

0
0

))

= 0 ≡ 4x1− 3x2 = 0.

• Classify the data according to

If 4x1− 3x2 ≥ 0, assign the red class, otherwise assign the blue class.
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Linear Classification

• Simple data set with two classes:

◦ 20 data points belong to the blue class,

◦ 20 data points belong to the red class.

• These classes are linearly separable:

4x1− 3x2 > 0: class red
4x1− 3x2 < 0: class blue
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• In this case the used linear function is

z = g(x⃗) = 4x1− 3x2.

(Any positive multiple may be used as well.)

• With this prediction function
all data points are classified correctly.
But how does one obtain it?
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Linear Classification: Geometric Interpretation

Review of line representations

Straight lines are usually represented in one of the following forms:

Explicit Form: g ≡ x2 = bx1 + c

Implicit Form: g ≡ a1x1 + a2x2 + d = 0

Point-Direction Form: g ≡ x⃗ = p⃗ + k⃗r, k ∈ IR

Normal Form: g ≡ (x⃗− p⃗)⊤n⃗ = 0

with the parameters:

b : slope of the line

c : section of the x2 axis (intercept)

p⃗ : location vector of a point of the line (base vector)

r⃗ : direction vector of the line

n⃗ : normal vector of the line, may be chosen as (a1, a2)⊤

d : “distance” of the line to the origin in units of (a2
1 + a2

2)
−1

2
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Linear Classification: Geometric Interpretation

x1

x2

g

O

ϕ

c

~p

~r
~n = (a1, a2)

~q = ~p>~n
|~n|

~n
|~n|

d = −~p>~n

b = r2
r1

A straight line and
its defining parameters:

p⃗: arbitrary point on the line
r⃗: direction vector of the line
n⃗: normal vector of the line
q⃗: plummet from origin to line

(projection of p⃗ to n⃗)

~n = (a1, a2)

x1

x2

g

O

ϕ
~y

~z

~q = ~p>~n
|~n|

~n
|~n|

~z = ~y>~n
|~n|

~n
|~n|

How to determine the side
on which a point y⃗ lies:

d: “length” of q⃗ in units of 1
|⃗n|

z⃗: projection of y⃗ to n⃗
(to be compared to q⃗)

If y⃗⊤n⃗ + d > 0, then y⃗ lies
on the side to which n⃗ points.
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Linear Separability

Definition: Two sets of points in a Euclidean space are called linearly separable iff
there exists at least one point, line, plane or hyperplane (depending on the dimen-
sion of the space), such that all points of the one set lie on one side and all points of
the other set lie on the other side of this point, line, plane or hyperplane (or on it).
That is, the point sets can be separated by a linear decision function. Formally:
Two sets X1, X2 ⊂ IRm are linearly separable iff a⃗ ∈ IRm and a0 ∈ IR exist such that

∀x⃗ ∈ X1 : a⃗⊤x⃗ + a0 ≥ 0 and ∀x⃗ ∈ X2 : a⃗⊤x⃗ + a0 < 0.

• Boolean functions define two points sets, namely the set of points that are
mapped to the function value 0 and the set of points that are mapped to 1.

⇒ The term “linearly separable” can be transferred to Boolean functions.

• For example, conjunction, disjunction, and implication are linearly separable
(as are NAND, NOR etc.).

• Only the exclusive or (XOR) and the biimplication (XNOR)
are not linearly separable (among binary Boolean functions).
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Linear Separability: Boolean Functions

The conjunction x1 ∧ x2 is linearly separable.

x1

x2

0 1

0

1

0

1
• The separating line has the equation
((

x1

x2

)

−
(

1
1
2

))⊤(
2
2

)

= 0 ⇔ 2x1 + 2x2− 3 = 0

• The normal vector (2, 2)⊤ points to
where the conjunction x1 ∧ x2 is 1.

The implication x1 → x2 is linearly separable.

x1

x2

0 1

0

1

0

1

• The separating line has the equation
((

x1

x2

)

−
(

1
2
0

))⊤(−2
2

)

= 0 ⇔ 2x2− 2x1 + 1 = 0

• The normal vector (−2, 2)⊤ points to
where the implication x1 → x2 is 1.
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Linear Classification: Delta Rule / Perceptron Algorithm

• Suppose a data set with two classes is linearly separable.
How can we find a separating line / linear prediction function?

• We already saw that mapping the problem to linear regression does not work.

(We saw an example in which the result of linear regression leads to misclassifications.)

• A proper result can be guaranteed by the Delta rule, perceptron algorithm or
error correction procedure. [Widrow and Hoff 1960]

• Here we consider a simplified version: (no “learning rate” η or fixed η = 1)

◦ Given: training patterns as X◦ and y⃗. (X◦: n×(m+1) matrix, y⃗: n-dim. vector)

◦ Initialize the parameters a⃗◦ = 0⃗. (⃗a◦: (m+1)-dimensional vector)

◦ For each training pattern (x⃗◦i , yi) where x⃗◦i = X◦⊤i: : (X◦i:: i-th row of X◦)

if yi a⃗◦⊤⃗x◦i ≤ 0, then a⃗◦ ← a⃗◦+ yix⃗
◦
i . (on error update parameters a⃗◦)

◦ Repeat until no more errors occur, that is, until

∀i; 1 ≤ i ≤ n : yi a⃗◦⊤⃗x◦i > 0. (all patterns are classified correctly)
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Linear Classification: Delta Rule / Perceptron Algorithm

• The procedure on the preceding slide is the primal form of the Delta rule,
because it updates the primal parameters a⃗◦.

• The dual form of the Delta rule updates the dual parameters b⃗:

◦ Given: training patterns as X◦ and y⃗. (X◦: n×(m+1) matrix, y⃗: n-dim. vector)

◦ Compute the Gram matrix G◦ = X◦X◦⊤. (G◦: n×n matrix)

◦ Initialize the parameters b⃗ = 0⃗. (⃗b: n-dimensional vector)

◦ For each training pattern (g⃗◦i , yi) where g⃗◦i = G◦:i: (G◦:i: i-th column of G◦)

if yi b⃗⊤⃗g◦i ≤ 0, then bi ← bi + yi. (on error update parameters b⃗)

◦ Repeat until no more errors occur, that is, until

∀i; 1 ≤ i ≤ n : yi b⃗⊤⃗g◦i > 0. (all patterns are classified correctly)

• Note that this dual algorithm works only with the Gram matrix G◦.
Once the Gram matrix is computed, the data points are no longer needed.

Again: We only need means to compute scalar products of data points.
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Linear Classification: Delta Rule / Perceptron Algorithm

• Note that the obtained result may depend on the order of the training patterns.

• But the primal and the dual form of the Delta rule / perceptron algorithm
are entirely equivalent, that is, they yield the same result for the same order.

• To see this, recall the relationship of a⃗◦ and b⃗, that is, a⃗◦ = X◦⊤⃗b = ∑
n
k=1 bkx⃗◦k ,

and consider the update rule (for the i-th training pattern):

a⃗◦(new) = a⃗◦(old) + yix⃗
◦
i ⇔ a⃗◦(new) =

n

∑
k=1

b
(old)
k x⃗◦k + yi x⃗◦i

⇔ a⃗◦(new) =
n

∑
k=1;k ̸=i

b
(old)
k x⃗◦k + (b

(old)
i + yi)x⃗◦i

⇔ a⃗◦(new) =
n

∑
k=1

b
(new)
k x⃗◦k

where b
(new)
k =

{

b
(old)
k + yi if k = i,

b
(old)
k otherwise.

• Note also that in the dual form one may use the regularized matrix G◦+ λIn.
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Linear Classification: Delta Rule / Perceptron Algorithm

• Simple data set with two classes:

◦ 20 data points belong to the blue class,

◦ 20 data points belong to the red class.

• Result of training with the Delta rule.

(Note that the result depends on the order
in which the data points are processed.)
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• Although training with the Delta rule
always yields a solution (if one exists),
the result can exhibit undesirable
properties, e.g., the decision border
lies unnecessarily close to data points.

• This is the case here (cyan line), esp.
compared to the truth (yellow line).

Christian Borgelt Advanced Data Mining 1 134



Linear Classification: Delta Rule / Perceptron Algorithm

x1 x2 y a⃗◦⊤⃗x◦ z a0 a1 a2 b1 b2 b3 b4

0 0 0 0 0 0 0

0 0 1 0 −1 1 0 0 1 0 0 0
1 0 −1 −1 −1 0 −1 0 1 −1 0 0
0 1 1 0 −1 1 −1 1 1 −1 1 0
1 1 1 1 1 1 −1 1 1 −1 1 0

0 0 1 1 1 1 −1 1 1 −1 1 0
1 0 −1 −0 −1 0 −2 1 1 −2 1 0
0 1 1 1 1 0 −2 1 1 −2 1 0
1 1 1 −1 −1 1 −1 2 1 −2 1 1

0 0 1 1 1 1 −1 2 1 −2 1 1
1 0 −1 −0 −1 0 −2 2 1 −3 1 1
0 1 1 2 1 0 −2 2 1 −3 1 1
1 1 1 0 −1 1 −1 3 1 −3 1 2

0 0 1 1 1 1 −1 3 1 −3 1 2
1 0 −1 −0 −1 0 −2 3 1 −4 1 2
0 1 1 3 1 0 −2 3 1 −4 1 2
1 1 1 1 1 0 −2 3 1 −4 1 2

0 0 1 0 −1 1 −2 3 2 −4 1 2
1 0 −1 1 1 1 −2 3 2 −4 1 2
0 1 1 4 1 1 −2 3 2 −4 1 2
1 1 1 2 1 1 −2 3 2 −4 1 2

0 0 1 1 1 1 −2 3 2 −4 1 2
1 0 −1 1 1 1 −2 3 2 −4 1 2
0 1 1 4 1 1 −2 3 2 −4 1 2
1 1 1 2 1 1 −2 3 2 −4 1 2

• Training process for the
Boolean function x1 → x2.

• Result solves the classification:
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• Analog result for x1 ∧ x2:
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1
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Linear Classification: Suboptimal Results
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yellow: ground truth
cyan : Delta rule result
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• If a (two-class) classification problem is linearly separable,
then the Delta rule / perceptron algorithm finds a solution.

• However, these solutions are often (not always, though)
not quite the solutions we would like to get (see examples above).
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Maximum Margin Classifiers

• In the examples just presented,
the obtained result is “suboptimal”
at least in an intuitive sense:
the found separating line gets
too close to some data points.

• It would be preferable that the line
has maximum distance to the
data points that are closest to it.

γ

γ

• The margin γ of a linear classifier is the distance of the separating line
(or plane or hyperplane) to the closest (training) data point(s).

• An (intuitively) “optimal” linear classifier should maximize the margin γ,
that is, it should be a maximum margin classifier.
(Although this is intuitively plausible, there are also good theoretical arguments for this choice,
which, however, we do not dive into here; see the books mentioned later.)

• The points closest to the separating line, that is, the points defining the margin,
are called the support vectors, since they alone already fix the separating line.
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Maximum Margin Classifiers

• Simple data set with two classes:

◦ 20 data points belong to the blue class,

◦ 20 data points belong to the red class.

• Result of training with the Delta rule (cyan)
and maximum margin classifier (magenta).
Orange arrows show the support vectors.
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• Truth (yellow), lin. regression (cyan) and
maximum margin classifier (magenta).

• For this (artificially constructed) example,
the maximum margin classifier
is very close to the ground truth.

• Of course, this depends on the data.
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Maximum Margin Classifiers
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• The obtained training results are not maximum margin classifiers.

The margin is γ = 1√
13
≈ 0.277, whereas the maximum is γopt =

√
2

4 ≈ 0.354.

• Up to now we considered only the sign of a⃗◦⊤⃗x◦i (or b⃗⊤⃗g◦i ), i = 1, . . . , n, that is,
on which side of the separating line, plane or hyperplane the data points lie.

• However, a⃗◦⊤⃗x◦i (or b⃗⊤⃗g◦i ) also provides information about the distance.

• First idea: Do not require merely yi a⃗◦⊤⃗x◦i > 0 (or yi b⃗⊤⃗g◦i > 0),
that is, do not merely ask for a correct sign (i.e. a correct classification),

but require yi a⃗◦⊤⃗x◦i ≥ γ (or yi b⃗⊤⃗g◦i ≥ γ), γ > 0, and maximize γ.
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Maximum Margin Classifiers

• First idea: Require yi a⃗◦⊤⃗x◦i ≥ γ (or yi b⃗⊤⃗g◦i ≥ γ) and maximize γ.

• Problem: Requiring merely yi a⃗◦⊤⃗x◦i > 0 (or yi b⃗⊤⃗g◦i > 0) always yields a result

that satisfies yi a⃗◦⊤⃗x◦i ≥ ε (or yi b⃗⊤⃗g◦i ≥ ε) for some ε > 0.

• This can be turned into a solution that satisfies yi a⃗◦⊤⃗x◦i ≥ γ (or yi b⃗⊤⃗g◦i ≥ γ),
regardless of the values of ε and γ, by simply scaling the parameter vectors:

If yi a⃗◦⊤⃗x◦i ≥ ε, then yi (
γ
ε a⃗◦)⊤⃗x◦i ≥ γ.

If yi b⃗⊤⃗g◦i ≥ ε, then yi (
γ
ε b⃗)⊤⃗g◦i ≥ γ.

This scaling does not change the separating line, plane or hyperplane.

• Alternatively, we may say that a⃗◦⊤⃗x◦i measures the distance of a data point x⃗i

from the separating line, plane or hyperplane in units of |⃗a|−1 or
that the distance from the line, plane or hyperplane is actually |⃗a◦⊤⃗x◦i |·|⃗a|−1.

• That is, we have to maximize the ratio of γ to |⃗a| to obtain a maximum margin.
To achieve this, we can maximize γ for fixed |⃗a| or minimize |⃗a| for fixed γ.
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Maximum Margin Classifiers

• Therefore, in order to find a maximum margin classifier, we have to

either maximize γ

subject to |⃗a| = 1 and ∀i; 1 ≤ i ≤ n : yi a⃗◦⊤⃗x◦i ≥ γ

or minimize |⃗a|
subject to γ = 1 and ∀i; 1 ≤ i ≤ n : yi a⃗◦⊤⃗x◦i ≥ γ.

• It is more common to use the second form and to set γ = 1 directly:

minimize |⃗a|
subject to ∀i; 1 ≤ i ≤ n : yi a⃗◦⊤⃗x◦i ≥ 1.

• Furthermore, we modify this slightly for mathematical convenience:

minimize 1
2 |⃗a|2 = 1

2 a⃗⊤⃗a

subject to ∀i; 1 ≤ i ≤ n : yi a⃗◦⊤⃗x◦i ≥ 1.

Squaring |⃗a| does not change the solution, because it is a monotone operation;
and adding the factor 1

2 comes in handy when taking derivatives later.
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Reminder: Function Optimization

Task: Find values x⃗ = (x1, . . . , xm) such that f (x⃗) = f (x1, . . . , xm) is optimal.

Often feasible approach:

• A necessary condition for a (local) optimum (minimum/maximum) is that the
partial derivatives w.r.t. the parameters vanish [Pierre de Fermat, 1607–1665].

• Therefore: (Try to) solve the equation system that results from setting
all partial derivatives w.r.t. the parameters equal to zero.

Example task: Minimize f (x, y) = x2 + y2 + xy− 4x− 5y.

Solution procedure:

1. Take the partial derivatives of the objective function and set them equal to zero:

∂ f

∂x
= 2x + y− 4 = 0,

∂ f

∂y
= 2y + x− 5 = 0.

2. Solve the resulting (here: linear) equation system: x = 1, y = 2.
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Function Optimization with Constraints

Often a function has to be optimized subject to certain constraints.

First: restriction to k equality constraints Ci(x⃗) = 0, i = 1, . . . , k.

Note: the equality constraints describe a subspace of the domain of the function.

Problem of optimization with constraints:

• The gradient of the objective function f may vanish outside the constrained
subspace, leading to an unacceptable solution (violating the constraints).

• At an optimum in the constrained subspace the derivatives need not vanish.

One way to handle this problem are generalized coordinates:

• Exploit the dependence between the parameters specified in the constraints
to express some parameters in terms of the others and thus reduce the set x⃗
to a set x⃗′ of independent parameters (generalized coordinates).

• Problem: Can be clumsy and cumbersome, if possible at all,
because the form of the constraints may not allow for
expressing some parameters as proper functions of the others.
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Generalized Coordinates: Example

• Consider a simple stick pendulum, that is,
a mass at the end of a stick suspended from a hub
at the other end (like in the diagram on the right).

• Let the location of the mass be described
by Cartesian coordinates x and y
(coordinate origin is at the hub).

(0, 0)

ϕ

r

(x, y)

x
y

• Any optimization problem involving
the location (x, y) of the mass is constrained by x2 + y2 = r2

(because the stick is rigid, its length is constant). ⇒ y =
√

r2− x2

• This constraint may also be eliminated by switching to polar coordinates:

r = hypot(x, y) =
√

x2 + y2 and ϕ = atan2(x, y).

• Because r is constant (since the stick length is fixed),
one only needs to consider the angle ϕ (which may be varied freely).
Hence the angle ϕ may be used as a generalized coordinate.

Christian Borgelt Advanced Data Mining 1 144



Function Optimization with Constraints

A much more elegant approach is based on the following nice insights:
Let x⃗∗ be a (local) optimum of f (x⃗) in the constrained subspace. Then:

• The gradient ∇⃗x f (x⃗∗), if it does not vanish, must be perpendicular to the con-
strained subspace. (If ∇⃗x f (x⃗∗) had a component in the constrained subspace,
x⃗∗ would not be a (local) optimum in this subspace.)

• The gradients ∇⃗x Cj(x⃗∗), 1 ≤ j ≤ k, must all be perpendicular to the
constrained subspace, because they are constant, namely 0, in this subspace.
Together they span the subspace perpendicular to the constrained subspace.

• Therefore it must be possible to find values λj, 1 ≤ j ≤ k, such that

∇⃗x f (x⃗∗)−
k

∑
j=1

λj∇⃗x Cj(x⃗∗) = 0⃗.

If the constraints (and thus their gradients) are linearly independent,
the values λj are uniquely determined. This equation can be used to
compensate the gradient of f (x⃗∗) so that it vanishes at x⃗∗.
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Function Optimization with Constraints

∇~x
f (~x

∗)

λ
1∇

~x C
1(~x∗)

λ2
∇~x

C2
(~x

∗) ~x∗

C1
(~x)

= 0

C
2(~x) = 0

∇~x f (~x∗)− λ1∇~x C1(~x
∗)− λ2∇~x C2(~x

∗) =~0

• The gradient ∇⃗x f (x⃗∗) can
be compensated with the
gradients ∇⃗x C1(x⃗∗) and
∇⃗x C2(x⃗∗) using suitable
factors λ1 and λ2.

• These factors are called
Lagrange multipliers.

• Due to these factors, the
gradient of an enhanced
function vanishes at the
(local) optimum x⃗∗ in the
constrained subspace.

• The planes C1(x⃗) = 0 and C2(x⃗) = 0 represent two (here: linear) constraints.

• Their intersection (both conditions hold, blue line) is the constrained subspace.
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Function Optimization: Lagrange Theory

As a consequence of these insights we obtain the

Method of Lagrange Multipliers: [Joseph-Louis Lagrange, 1736–1813]

Given: ◦ a function f (x⃗), which is to be optimized,

◦ k equality constraints Cj(x⃗) = 0, 1 ≤ j ≤ k.

Procedure:

1. Construct the so-called Lagrange function by incorporating the equality
constraints Ci, i = 1, . . . , k, with (unknown) Lagrange multipliers λi:

L(x⃗, λ1, . . . , λk) = f (x⃗)−
k

∑
i=1

λiCi(x⃗).

2. Set the partial derivatives of the Lagrange function equal to zero:

∂L
∂x1

= 0, . . . ,
∂L
∂xm

= 0,
∂L
∂λ1

= 0, . . . ,
∂L
∂λk

= 0.

3. (Try to) Solve the resulting equation system.
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Function Optimization: Lagrange Theory

Observations:

• Due to the representation of the gradient of f (x⃗) at a local optimum x⃗∗

in the constrained subspace (see above) the gradient of Lw.r.t. x⃗ vanishes at x⃗∗.

→ The standard approach works again!

• If the constraints are satisfied, the additional terms have no influence.

→ The original task is not modified (same objective function).

• Taking the partial derivative w.r.t. a Lagrange multiplier
reproduces the corresponding equality constraint (though negated):

∀j; 1 ≤ j ≤ k :
∂

∂λj
L(x⃗, λ1, . . . , λk) = −Cj(x⃗)

!
= 0,

→ Constraints enter the equation system to solve in a natural way.

Remark: Up to now we considered only equality contraints.

• Inequality constraints can be handled with Karush–Kuhn–Tucker theory.
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Lagrange Theory: Example 1

Example task: Minimize f (x, y) = x2 + y2 subject to x + y = 1.

–0.5

0

0.5

10

1

1

21

2

x

y

f

unconstrained
minimum
~p0 = (0, 0)

f (x, y) = x2 + y2minimum in the
constrained subspace
~p1 = ( 1

2 , 1
2 ) constrained

subspace
x + y = 1

The unconstrained minimum is not in the constrained subspace.
At the minimum in the constrained subspace the gradient of f does not vanish.
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Lagrange Theory: Example 1

Example task: Minimize f (x, y) = x2 + y2 subject to x + y = 1.

Solution procedure:

1. Rewrite the constraint, so that one side becomes zero: x + y− 1 = 0.

2. Construct the Lagrange function by incorporating the constraint
into the objective function with a Lagrange multiplier λ:

L(x, y, λ) = x2 + y2− λ(x + y− 1).

3. Take the partial derivatives of the Lagrange function and set them equal to zero
(necessary conditions for a minimum):

∂L
∂x

= 2x− λ
!
= 0,

∂L
∂y

= 2y− λ
!
= 0,

∂L
∂λ

= −(x + y− 1)
!
= 0.

4. Solve the resulting (here: linear) equation system:

λ = 1, x = y = 1
2.
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Lagrange Theory: Example 1

C(x, y) = x + y− 1

1

2

1

2

x

y

C
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1

x + y − 1 = 0

L(x, y, 1) = x2 + y2− (x + y− 1)
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2

x
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L

minimum ~p1 = ( 1
2
, 1

2
)

The gradient of the constraint is perpendicular to the constrained subspace.
The (unconstrained) minimum of the Lagrange function L(x, y, λ)
is the minimum of the objective function f (x, y) in the constrained subspace.
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Lagrange Theory: Example 1
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–0.5

0

0.5

10

0.5
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L

f (x, y) = x2 + y2 C(x, y) = x + y− 1 L(x, y, 1) =
x2 + y2− (x + y− 1)

The gradient of the function f is perpendicular to the constrained subspace.
The gradient of the constraint C is perpendicular to the constrained subspace.
With a proper Lagrange multiplier λ, the gradient of the function f
can be compensated by the gradient of the constraint C.
The (unconstrained) minimum of the Lagrange function L(x, y, λ)
is the minimum of the objective function f (x, y) in the constrained subspace.
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Lagrange Theory: Example 2

Example task: Find the side lengths x, y, z of a box with maximum volume
for a given area S of the surface.

Formally: Maximize f (x, y, z) = xyz
subject to 2xy + 2xz + 2yz = S.

Solution procedure:

1. The constraint is C(x, y, z) = 2xy + 2xz + 2yz− S = 0.

2. The Lagrange function is

L(x, y, z, λ) = xyz− λ(2xy + 2xz + 2yz− S).

3. Taking the partial derivatives yields (in addition to the constraint):

∂L
∂x

= yz− 2λ(y+ z)
!
= 0,

∂L
∂y

= xz− 2λ(x+ z)
!
= 0,

∂L
∂z

= xy− 2λ(x+ y)
!
= 0.

4. The solution is: λ = 1
4

√
S
6 , x = y = z =

√
S
6 (i.e., the box is a cube).
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Lagrange Theory with Inequality Constraints

• The general problem of minimizing functions subject to constraints is

minimize (w.r.t. x⃗) f (x⃗) subject to

{
Ci(x⃗) = 0, i ∈ E ,

Ci(x⃗) ≥ 0, i ∈ I ,

where E is the set of indices of the equality constraints
and I is the set of indices of the inequality constraints.

• This problem is also approached with the method of Lagrange multipliers:

L(x⃗, λ⃗) = f (x⃗)− ∑
i∈E∪I

λiCi(x⃗).

• The Karush–Kuhn–Tucker conditions state that if x⃗∗ is a (local) minimum of f
satisfying all Ci, then there exists a vector λ⃗∗ of Lagrange multipliers such that

∇⃗x L(x⃗∗, λ⃗∗) = 0⃗,

∀i ∈ E : Ci(x⃗∗) = 0, ∀i ∈ I : λi ≥ 0,

∀i ∈ I : Ci(x⃗∗) ≥ 0, ∀i ∈ E ∪ I : λiCi(x⃗∗) = 0.
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Lagrange Theory with Inequality Constraints

• Proof of Karush–Kuhn–Tucker conditions: ⇒

• At a feasible point x⃗ (⃗x satisfies the contraints),
a constraint Ci is said to be active if Ci(x⃗) = 0
and inactive if Ci(x⃗) > 0.

⇒ equality constraints are always active,
inequality constraints only sometimes.

• The Karush–Kuhn–Tucker conditions state
that either an inequality constraint is active
or its Lagrange multiplier is 0, due to
the so-called complementary conditions

∀i ∈ E ∪ I : λiCi(x⃗∗) = 0.

• These conditions are fairly intuitive:

If an inequality constraint is inactive at x⃗, one can make a (sufficiently small)
step in any direction without violating the constraint. If, however, it is active,
it needs a positive Lagrange multiplier to compensate the gradient of f .
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Lagrange Theory with Inequality Constraints

• Why are the Lagrange multipliers of inequality constraints non-negative?

• Equality contraints are not uniquely directed, because C(x⃗) = 0 and−C(x⃗) = 0
are the same constraint (but the form fixes the sign of the Lagrange multiplier).

(cf. Example 1: If C(x, y) = x + y− 1, then λ = +1, but if C(x, y) = 1− x− y, then λ = −1.)

• Inequality contraints, however, are uniquely directed, because C(x⃗) ≥ 0 and
−C(x⃗) ≥ 0⇔ C(x⃗) ≤ 0 are (obviously) not the same constraint.

• The gradient of an inequality constraint points in the positive direction,
that is, towards increasing values of C(x⃗). (After all, that is what “gradient” means.)

• A constraint appears in the Lagrange function as −λC(x⃗).

Therefore we already have the correct sign for compensating the gradient
of the objective function and the Lagrange multiplier cannot be negative.

• Intuitively: The size of the Lagrange multiplier of an active constraint
at a solution x⃗∗ can be interpreted as how hard the constraint “pushes”
against the gradient of the objective function (in order to compensate it).
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Lagrange Theory: Inequality Constraint Example

Example task: Minimize f (x⃗) = 1
2 x⃗⊤⃗x subject to x⃗⊤⃗12 ≥ 1.
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f

unconstrained
minimum
~p0 = (0, 0)

f (~x) = 1
2~x

>~xminimum in the
constrained subspace
~p1 = ( 1

2 , 1
2 ) constrained

subspace

~x>~12 ≥ 1

The unconstrained minimum is not in the constrained subspace.
At the minimum in the constrained subspace the gradient of f does not vanish.
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Lagrange Theory: Inequality Constraint Example

Example task: Minimize f (x⃗) = 1
2 x⃗⊤⃗x subject to x⃗⊤⃗12 ≥ 1.

(Note that with the exception of the factor 1
2 and the inequality constraint, this is completely analogous to Example 1.)

• Construct the Lagrange function by incorporating the (inequality) constraint
into the objective function with a Lagrange multiplier λ:

L(x⃗, λ) = 1
2 x⃗⊤⃗x− λ(x⃗⊤⃗12− 1).

• Form the gradient of this Lagrange function w.r.t. x⃗ and set it to 0⃗:

∇⃗xL(x⃗, λ) = x⃗− λ⃗12
!
= 0⃗ ⇔ x⃗ = λ⃗12.

• Substitute the result back into the Lagrange function:

L(λ) = 1
2(λ⃗12)

⊤λ⃗12− λ(λ⃗1⊤2 1⃗2− 1) = λ2− 2λ2 + λ = λ− λ2.

• The reduced Lagrange function L(λ) = λ− λ2 has to be maximized for λ ≥ 0.

• Clearly, the solution is λ = 1
2, and hence the optimal x⃗ is x⃗ = 1

2 · 1⃗2 = (1
2, 1

2)
⊤.
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Lagrange Theory: Duality

• For the maximum margin classifier, we arrived at this problem:

minimize 1
2 a⃗⊤⃗a

subject to ∀i; 1 ≤ i ≤ n : yi a⃗◦⊤⃗x◦i − 1 ≥ 0.

Note that we have only linear inequality constraints, no equality constraints.

• This is called the primal form of the optimization problem.

It has the Lagrange function (where b⃗ comprises the Lagrange multipliers)

L(⃗a◦, b⃗) =
1

2
a⃗⊤⃗a−

n

∑
i=1

bi(yi a⃗◦⊤⃗x◦i − 1)

• A necessary condition for an optimum is (first Karush–Kuhn–Tucker condition):

∇⃗a◦ L(⃗a◦∗, b⃗∗) =

[
0
a⃗∗

]

−
n

∑
i=1

b∗i yix⃗
◦
i

!
= 0 ⇔ 0 =

n

∑
i=1

b∗i yi ∧ a⃗∗ =
n

∑
i=1

b∗i yix⃗i.

That is, we have found a way of expressing the primal parameters a⃗

in terms of the Lagrange multipliers, which are the dual parameters b⃗.
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Lagrange Theory: Duality

• Substituting a⃗ = ∑
n
i=1 biyix⃗

◦
i back into the Lagrange function yields

L(⃗b) =
1

2

( n

∑
j=1

bjy j⃗xj

)⊤( n

∑
j=1

bjy j⃗xj

)

−
n

∑
i=1

bi

(

yi

( n

∑
j=1

bjy j⃗xj

)⊤
x⃗i + yia0− 1

)

=
1

2

n

∑
i=1

n

∑
j=1

biyi x⃗⊤i x⃗j yjbj−
n

∑
i=1

n

∑
j=1

biyi x⃗⊤i x⃗j yjbj− a0

n

∑
i=1

yibi

︸ ︷︷ ︸
=0 for bi=b∗i

+
n

∑
i=1

bi

=
n

∑
i=1

bi −
1

2

n

∑
i=1

n

∑
j=1

biyi x⃗⊤i x⃗j yjbj
(⊙ is the so-called Hadamard product)

= 1⃗⊤n b⃗− 1
2 b⃗⊤diag(⃗y)G diag(⃗y) b⃗

[

= 1⃗⊤n b⃗− 1
2 (⃗b⊙ y⃗)⊤G (⃗y⊙ b⃗)

]

,

where 1⃗n is an n-dim. vector with all elements 1, G = XX⊤ is the Gram matrix,
and diag(⃗y) is a diagonal n× n matrix with the values of y⃗ on its diagonal.

• This Lagrange function is also called the reduced Lagrange function,
because the primal parameters a⃗ have been eliminated from it.

• We now turn this Lagrange function back into an optimization problem.
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Lagrange Theory: Duality

• The optimization problem corresponding to the (reduced) Lagrange function

L(⃗b) = 1⃗⊤n b⃗− 1
2 b⃗⊤diag(⃗y)G diag(⃗y) b⃗

is maximize 1⃗⊤n b⃗− 1
2 b⃗⊤diag(⃗y)G diag(⃗y) b⃗

subject to ∀i; 1 ≤ i ≤ n : bi ≥ 0 and b⃗⊤y⃗ = 0.

(Note that b⃗⊤y⃗ = 0 is simply the condition ∑
n
i=1 biyi = 0 derived above.)

• Why is this not a minimization problem like the primal problem?

• M = diag(⃗y)G diag(⃗y) = diag(⃗y)XX⊤ diag(⃗y) = (diag(⃗y)X)(diag(⃗y)X)⊤

is positive semi-definite, because it is (also) a Gram matrix (like G).

• Since M is positive semi-definite, the quadratic form b⃗⊤M b⃗ is convex.

• The term 1⃗⊤n b⃗ is linear in b⃗ and thus the Lagrange function L(⃗b) is concave.

• Therefore L(⃗b) has to be maximized to find a solution. (More general justification:
see the book on slide 155.)
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Lagrange Theory: Duality

• However, it is more common to write the problem as a minimization problem
(by simply negating the objective):

minimize 1
2 b⃗⊤diag(⃗y)G diag(⃗y) b⃗− 1⃗⊤n b⃗

subject to ∀i; 1 ≤ i ≤ n : bi ≥ 0 and b⃗⊤y⃗ = 0.

By the same arguments as before, this objective is convex.

• A solution of this optimization problem is an estimate
ˆ⃗
b of the dual parameters.

The data points x⃗i for which b̂i > 0 are the support vectors.

• The corresponding values ˆ⃗a of the
primal parameters are obtained via

ˆ⃗a =
n

∑
i=1

b̂iyix⃗i.

• The value of â0 may be found via a Karush–Kuhn–Tucker condition

b̂i(yi ( ˆ⃗a
⊤
x⃗i + â0)− 1) = 0 for some i with b̂i > 0,

or as a weighted average of the b̂i: â0 =
n

∑
i=1

b̂i(yi − ˆ⃗a
⊤
x⃗i)

/ n

∑
i=1

b̂i.
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Soft Margin Classifiers: Slack Variables

• Up to now we assumed that the data is linearly separable and that therefore
a perfect solution, a so-called hard margin classifier, can be obtained.

• This assumption is, of course, unrealistic. Even if linear separation is feasible,
real data usually does not allow for a “clean” linear separation.

• To handle this problem, we introduce a set of so-called slack variables,
by which we intend to allow a few data points to lie inside the margin
or even on the wrong side of the separating line, plane or hyperplane.

• Formally, we change the constraints to yi a⃗◦⊤⃗x◦i ≥ 1− ξi, i = 1, . . . , n,
where the ξi ≥ 0 are slack variables, which relax the constraints.

• Of course, we have to limit the slack variables, otherwise the classification
constraints have no effect anymore. We do this by penalizing their sum.

• That is, we add a term ν ∑
n
i=1 ξi to the objective, where ν is a parameter.

An common alternative parameterization is 1
C ∑

n
i=1 ξi with the parameter C.

• Clearly, the hard margin classifier is recovered for ν→ ∞ or C → 0.
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Soft Margin Classifiers

• Thus we arrive at the optimization problem of a soft margin classifier:

minimize 1
2 a⃗⊤⃗a + ν ∑

n
i=1 ξi

subject to ∀i; 1 ≤ i ≤ n : yi a⃗◦⊤⃗x◦i ≥ 1− ξi and ξi ≥ 0.

• Trade-off between a larger margin (i.e. smaller |⃗a|) and smaller values of the ξi.

• The larger we choose ν, the less we accept violations of the constraints.
The smaller we choose ν, the “softer” the margin will be (more violations).

• A smaller margin usually gives better results on the training data,
but possibly worse results on new data.

• A larger margin (which is then more often violated), may give worse results
on the training data, but is possibly more robust on new data.

• Remark: This specific variant is called the 1-norm soft margin classifier,
because the penalty (or regularization) term is a simple sum of the ξi.

• In a 2-norm soft margin classifier the penalty term is ν
2 ∑

n
i=1 ξ2

i . (not considered here)
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Soft Margin Classifiers: Dual Problem

• In order to arrive at the dual problem, we proceed as before.
The Lagrange function of the 1-norm soft margin classifier is

L(⃗a◦, ξ⃗, b⃗) =
1

2
a⃗⊤⃗a−

n

∑
i=1

bi(yi a⃗◦⊤⃗x◦− 1 + ξi) + ν
n

∑
i=1

ξi.

• First we form the gradient w.r.t. a⃗ and set it equal to 0⃗:

∇⃗aL = a⃗−
n

∑
i=1

biyix⃗
!
= 0⃗ ⇔ a⃗∗ =

n

∑
i=1

b∗i yix⃗
∗.

• Next we form the gradients w.r.t. the ξi and set them equal to 0:

∂L
∂ξi

= ν− bi
!
= 0 ⇔ ξ∗i (b

∗
i − ν) = 0.

Note that we cannot conclude that always bi = ν, because ξi is constrained:
it has to be non-negative, that is, we have ∀i; 1 ≤ i ≤ n : ξi ≥ 0.

Therefore, if this constraint is inactive (i.e., if ξi > 0), then it must be bi = ν.
However, if this constraint is active (i.e., if ξi = 0), then it may be bi ̸= ν.
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Soft Margin Classifiers: Dual Problem

• Substituting the result back into the Lagrange function, we obtain:

L(⃗b) =
1

2

( n

∑
i=1

biyix⃗
)⊤( n

∑
i=1

biyix⃗
)

+ ν
n

∑
i=1

ξi −
n

∑
i=1

bi

(

yi

( n

∑
j=1

bjy j⃗x
)⊤

x⃗− 1 + ξi

)

=
1

2

n

∑
i=1

n

∑
j=1

biyix⃗
⊤⃗xyjbj + ν

n

∑
i=1

ξi −
n

∑
i=1

n

∑
j=1

biyix⃗
⊤⃗xyjbj +

n

∑
i=1

bi −
n

∑
i=1

biξi

= −1

2

n

∑
i=1

n

∑
j=1

biyix⃗
⊤⃗xyjbj +

n

∑
i=1

ξi(ν− bi)
︸ ︷︷ ︸

=0

+
n

∑
i=1

bi

=
n

∑
i=1

bi −
1

2

n

∑
i=1

n

∑
j=1

biyix⃗
⊤⃗xyjbj

(⊙ is the so-called Hadamard product)

= 1⃗⊤n b⃗− 1
2 b⃗⊤diag(⃗y)G diag(⃗y) b⃗

[

= 1⃗⊤n b⃗− 1
2 (⃗b⊙ y⃗)⊤G (⃗y⊙ b⃗)

]

,

• Note that this reduced Lagrange function is exactly the same
as the one for the hard margin classifier derived before.

The only difference is the term ∑
n
i=1 ξi(ν− bi), which gets eliminated

by the Karush–Kuhn–Tucker condition ξ∗i (b
∗
i − ν) = 0.
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Soft Margin Classifiers: Dual Problem

• The dual optimization problem of the soft margin classifier is:

minimize 1
2 b⃗⊤diag(⃗y)G diag(⃗y) b⃗− 1⃗⊤n b⃗

subject to ∀i; 1 ≤ i ≤ n : 0 ≤ bi ≤ ν and b⃗⊤y⃗ = 0.

The only difference to the hard margin classifier is the upper bound on the bi.

• However, the Karush–Kuhn–Tucker conditions change to

∀i; 1 ≤ i ≤ n : (b∗i − ν)ξ∗i = 0 and b∗i (yi a⃗◦∗⊤⃗x◦i − 1 + ξ∗i ) = 0.

• With the exception of some rare degenerate cases it is:

b̂i = 0: data point x⃗i is on the correct side and outside the margin,

0 < b̂i < ν: data point x⃗i is on the margin boundary (a support vector),

b̂i = ν: data point x⃗i is inside the margin or even on the wrong side.

• This shows again: the lower ν is, the more dual parameters b̂i get fixed to ν,
and hence the more points are inside the margin or even wrongly classified.
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Soft Margin Classifiers: Dual Problem

• The relationship of the dual to the
primal parameters is unchanged:

ˆ⃗a =
n

∑
i=1

b̂iyix⃗i.

With this formula the primal parameters can be computed from the dual.

• The value of â0 may be found via a Karush–Kuhn–Tucker condition

b̂i(yi
ˆ⃗a
⊤
x⃗i − â0− 1) = 0 for some i with 0 < b̂i < ν,

(note that for such a b̂i the slack variable ξ̂i = 0 due to (b̂i − ν)ξ̂i = 0)
or as a weighted average of the b̂i:

â0 =
n

∑
i=1

b̂i(ν− b̂i)(yi − ˆ⃗a
⊤
x⃗i)

/ n

∑
i=1

b̂i(ν− b̂i).

• Note that any non-negative value of ν ensures that there is a solution,
regardless of whether the data are actually linearly separable or not.

(This can be seen from the fact that a⃗ = 0⃗ can always be chosen as a feasible (though not optimal)
solution of the original problem — although this is not a feasible solution for a hard margin.
If a feasible solution exists, some optimal solution must exist as well.)
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Mangasarian–Musicant Variant and Its Solution

• A slight variation of the optimization problem of a soft margin classifier is
[Mangasarian and Musicant 1999]

minimize 1
2 a⃗◦⊤⃗a◦+ ν ∑

n
i=1 ξi

subject to ∀i; 1 ≤ i ≤ n : yi a⃗◦⊤⃗x◦i ≥ 1− ξi and ξi ≥ 0.

Note that the only difference is the additional term 1
2a2

0 in the objective.

• This variant has the advantage that it can be solved by the method of
successive over-relaxation (SOR), which allows for a very brief algorithm.

• The dual optimization problem of the Mangasarian–Musicant variant is:

minimize 1
2 b⃗⊤diag(⃗y)G◦ diag(⃗y) b⃗− 1⃗⊤n b⃗

subject to ∀i; 1 ≤ i ≤ n : 0 ≤ bi ≤ ν and b⃗⊤y⃗ = 0.

• This variant has a simpler expression for â0: â0 = ∑i=1 b̂iyi.

• The prediction function is also simpler: f (x⃗) =
n

∑
i=1

b̂iyi x⃗◦⊤i x⃗◦.
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Mangasarian–Musicant Variant and Its Solution

• The Mangasarian–Musicant variant can be solved by a relaxation procedure:

◦ M◦ ← diag(⃗y)G◦ diag(⃗y) and b⃗← 0⃗.

◦ Repeat the relaxation replacement, for i = 1, . . . , n:

bi ← max
(

0, min
(

ν, bi −
ω

M◦
ii

( n

∑
j=1

M◦
ijbj− 1

)))

,

where ω is the over-relaxation parameter.
It should be chosen as 0 < ω < 2, in the absence of better ideas: ω = 1.3.

◦ Terminate if |⃗b(new)− b⃗(old)| ≤ θ, where typically θ = 10−3 or θ = 10−4,
or after a predefined (maximum) number of iterations.

• The order in which the bi are relaxed has an influence on the convergence speed.

◦ In an outer loop, first relax all parameters bi, regardless of their value.

◦ In an inner loop, relax only the non-zero parameters, i.e. bi > 0.

◦ Randomize the order in which the parameters are relaxed.
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Soft Margin Classifier: Example

• Data set with two classes, 100 points:

◦ 55 data points belong to the blue class,

◦ 45 data points belong to the red class.

• Soft margin classifiers trained
with successive over-relaxation
(Mangasarian–Musicant variant).

x10 1 2 3 4

x2

0

1

2

3

4

x10 1 2 3 4

x2

0

1

2

3

4

• Decision boundary (yellow line),
margins (gray stripes), and
support vectors (orange arrows).

• Regularization parameter ν:
top: ν = 1, left: ν = 100.
(Note how the results differ!)
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Finding Soft Margin Classifiers in Practice

• The solution of the Mangasarian–Musicant variant is often identical
to the solution of the standard 1-norm soft margin problem
(although ν differs) and almost never significantly different.

• However, it is not the best (meaning: fastest) approach to find a solution.
It merely has the advantage of allowing for a fairly brief algorithm.
It works well for small (and medium-sized) problems, but not for large ones.

• A fairly simple stochastic gradient descent approach based on the hinge loss
was suggested by [David Forsyth 2018], which works well for small problems.

• An alternative are so-called augmented Lagrangian methods or
decomposition methods that decompose the large quadratic programming
problem into a set of smaller quadratic programming problems.

• A very nice implementation of a decomposition strategy is provided by
SVMlight [Thorsten Joachims 1999], while SVMperf [Thorsten Joachims 2006]
uses a cutting-plane algorithm.

https://www.cs.cornell.edu/people/tj/svm_light/
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Linear Separability: Limitations

The biimplication problem x1 ↔ x2: There is no separating line.

x1 x2 y

0 0 1
1 0 0
0 1 0
1 1 1

x1

x2

0 1

0

1

Formal proof by reductio ad absurdum:

since (0, 0) 7→ 1: 0 ≥ θ, (1)

since (1, 0) 7→ 0: w1 < θ, (2)

since (0, 1) 7→ 0: w2 < θ, (3)

since (1, 1) 7→ 1: w1 + w2 ≥ θ. (4)

(2) and (3): w1 + w2 < 2θ. With (4): 2θ > θ, or θ > 0. Contradiction to (1).
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Linear Separability: Limitations

Definition: A set of points in a Euclidean space is called convex if it is non-empty
and connected (that is, if it is a region) and for every pair of points in it every point
on the straight line segment connecting the points of the pair is also in the set.

Definition: The convex hull of a set X of points in a Euclidean space is the smallest
convex set of points that contains X. Alternatively, the convex hull of a set X of
points is the intersection of all convex sets that contain X.

Theorem: Two sets of points in a Euclidean space are linearly separable
if and only if their convex hulls are disjoint (that is, have no point in common).

• For the biimplication problem, the convex hulls are the diagonal line segments.

• They share their intersection point and are thus not disjoint.

• Therefore the biimplication is not linearly separable.
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Limitations of Linear Separability: Fredkin Gate

s

x1

x2

s
y1

y2

0

a

b

0

a

b

1
a

b

1

b
a

s 0 0 0 0 1 1 1 1

x1 0 0 1 1 0 0 1 1

x2 0 1 0 1 0 1 0 1

y1 0 0 1 1 0 1 0 1

y2 0 1 0 1 0 0 1 1

s is a “switch” variable, which determines whether x1 and x2 are passed through
(y1 = x1 and y2 = x2 for s = 0) or are swapped (y1 = x2 and y2 = x1 for s = 1).

x1

x2
s

(0, 0, 0)

(1, 1, 1)
y1

(0, 0, 0)

y2

(0, 0, 0)
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Limitations of Linear Separability: Fredkin Gate

• The Fredkin gate (after Edward Fredkin ∗1934) or controlled swap gate
(CSWAP) is a computational circuit that is used in conservative logic and
reversible computing.

• Conservative logic is a model of computation that explicitly reflects the physical
properties of computation, like the reversibility of the dynamical laws and the
conservation of certain quantities (e.g. energy) [Fredkin and Toffoli 1982].

• The Fredkin gate is reversible in the sense that the inputs can be computed as
functions of the outputs in the same way in which the outputs can be computed
as functions of the inputs (no information loss, no entropy gain).

• The Fredkin gate is universal in the sense that all Boolean functions
can be computed using only Fredkin gates.

• Note that both outputs, y1 and y2 are not linearly separable, because the convex
hull of the points mapped to 0 and the convex hull of the points mapped to 1
share the point in the center of the cube.
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Reminder: Convex Hull Theorem

Theorem: Two sets of points in a Euclidean space are linearly separable
if and only if their convex hulls are disjoint (that is, have no point in common).

Both outputs y1 and y2 of a Fredkin gate are not linearly separable:

Convex hull of points with y1 = 0 Convex hull of points with y2 = 0

Convex hull of points with y1 = 1 Convex hull of points with y2 = 1
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Linear Separability: Limitations

Total number and number of linearly separable Boolean functions
(On-Line Encyclopedia of Integer Sequences, oeis.org, A001146 and A000609):

inputs Boolean functions linearly separable functions

1 4 4
2 16 14
3 256 104
4 65,536 1,882
5 4,294,967,296 94,572
6 18,446,744,073,709,551,616 15,028,134
n 2(2

n) no general formula known

• For many inputs almost no functions are linearly separable.

• To overcome this situation, several approaches are possible.
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Non-Linear Regression and Classification

• The fundamental principle of support vector machines can be formulated as:

◦ If the task is regression, linear regression suffices.

◦ If the task is classification, linear classification suffices.

• But how can linear methods always be sufficient?

◦ Not all regression functions are linear.
(e.g. polynomials, exponential functions, logistic function, sine/cosine etc.)

◦ Not all classification problems are linearly separable.
(e.g. biimplication, inside a circle versus outside, curved class boundaries etc.)

• The first core trick consists in mapping the data into another space,
such that the problem becomes linear(ly separable) in this image space.

• We explore first how a problem can be made linear by such a mapping.
(Mainly by looking at several simple examples for regression and classification.)

• Next we study how one can do this without mapping the data explicitly.
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Non-Linear Regression: Polynomials

• Quadratic regression can be reduced to bivariate linear regression by setting
yi = x2

i , i = 1, . . . , n, and solving the resulting system of normal equations:

na +

(
n

∑
i=1

xi

)

b +





n

∑
i=1

x2
i︸︷︷︸

=yi



 c =
n

∑
i=1

zi

(
n

∑
i=1

xi

)

a +

(
n

∑
i=1

x2
i

)

b +





n

∑
i=1

x3
i︸︷︷︸

=xiyi



 c =
n

∑
i=1

zixi





n

∑
i=1

x2
i︸︷︷︸

=yi



 a +





n

∑
i=1

x3
i︸︷︷︸

=xiyi



 b +





n

∑
i=1

x4
i︸︷︷︸

=y2
i



 c =
n

∑
i=1

zix
2
i︸︷︷︸

=ziyi

• Multivariate polynomial regression can be reduced to multivariate linear
regression by adding the needed monomials (i.e. power products, e.g. x1x3

2x2
3)

to the regressors / inputs. Other functions of regressors (e.g. exponential,
logarithm, sine/cosine etc.) may be treated in an analogous fashion.
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Regression: Generalization, Logistic Regression

Generalization of regression to more general functions.

Simple example: y = axb

Idea: Find a transformation to the linear (or polynomial) case.

Transformation for the above example: ln y = ln a + b · ln x.

⇒ Linear regression for the transformed data y′ = ln y and x′ = ln x.

Special case: Logistic Function (with a0 = a⃗⊤⃗x0)

y =
ymax

1 + e−(⃗a⊤⃗x+a0)
⇔ 1

y
=

1 + e−(⃗a⊤⃗x+a0)

ymax
⇔ ymax− y

y
= e−(⃗a⊤⃗x+a0).

Result: Apply so-called Logit Transform

z = ln

(
y

ymax− y

)

= a⃗⊤⃗x + a0.
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Reminder: Logistic Function

x

y

0

1

2

1

0−4 −2 +2 +4

Logistic function (univariate):

y = f (x) =
ymax

1 + e−a(x−x0)

Special case ymax= a = 1, x0 = 0:

y = f (x) =
1

1 + e−x

Application areas of the logistic function:

• Can be used to describe saturation processes

(growth processes with finite capacity/finite resources ymax).

Derivation e.g. from a Bernoulli differential equation

f ′(x) = k · f (x) · (ymax− f (x)) (yields a = kymax)

• Can be used to describe a linear classifier
(especially for two-class problems).
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Reminder: Logistic Function

Example: two-dimensional logistic function

y = f (x⃗) =
1

1 + exp(−( x1 + x2− 4))
=

1

1 + exp(−((1, 1)(x1, x2)⊤− 4))

0

1

2

3

4

0

1

2

3

4

0

1

x1

x
2

y

x1

x2

0

1

2

3

4

0 1 2 3 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The “contour lines” of the logistic function are parallel lines/hyperplanes.
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Reminder: Logistic Function

Example: two-dimensional logistic function

y = f (x⃗) =
1

1 + exp(−(2x1 + x2− 6))
=

1

1 + exp(−((2, 1)(x1, x2)⊤− 6))

0

1

2

3

4

0

1

2

3

4

0

1

x1

x
2

y

x1

x2

0

1

2

3

4

0 1 2 3 4

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

The “contour lines” of the logistic function are parallel lines/hyperplanes.
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Univariate Logistic Regression: Example

Data points: x 1 2 3 4 5

y 0.4 1.0 3.0 5.0 5.6

Apply the logit transform

z = ln

(
y

ymax− y

)

, ymax = 6.

Transformed data points: (for linear regression)

x 1 2 3 4 5

z −2.64 −1.61 0.00 1.61 2.64

The resulting regression line and therefore the desired function are

z ≈ 1.3775x− 4.133 and y ≈ 6

1 + e−(1.3775x−4.133)
≈ 6

1 + e−1.3775(x−3)
.

Attention: Note that the error is minimized only in the transformed space!
Therefore the function may not be optimal in the original space!
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Univariate Logistic Regression: Example

x

z

1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

x

y Y = 6

0 1 2 3 4 5

0

1

2

3

4

5

6

The resulting regression line and therefore the desired function are

z ≈ 1.3775x− 4.133 and y ≈ 6

1 + e−(1.3775x−4.133)
≈ 6

1 + e−1.3775(x−3)
.

Attention: Note that the error is minimized only in the transformed space!
Therefore the function may not be optimal in the original space!
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Bivariate Logistic Regression: Example

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4 0
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3

4

0

0.2

0.4

0.6

0.8

1

x
1

x 2

y

• Example data were drawn from a logistic function and noise was added.
(The gray “contour lines” show the ideal logistic function.)

• Reconstructing the logistic function can be reduced to a multivariate linear
regression by applying a logit transform to the y-values of the data points.
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Bivariate Logistic Regression: Example

0

1

2

3

4

0 1 2 3 4
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4 0
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0.2

0.4

0.6
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1

x
1

x 2

y

• The black “contour lines” show the resulting logistic function.
Is the deviation from the ideal logistic function (gray) caused by the noise?

• Attention: Note that the error is minimized only in the transformed space!
Therefore the function may not be optimal in the original space!
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Reminder: Logistic Classification

x

0

1

2

1

x0−
4

a
x0−

2

a
x0 x0+

2

a
x0+

4

a

probability

class 1

probability

class 0

Logistic function with ymax= 1:

y = f (x) =
1

1 + e−a(x−x0)

Interpret the logistic function
as the probability of one class.

• Conditional class probability is logistic function:
a⃗◦ = (a0, a1, . . . , am)⊤

x⃗◦ = (1, x1, . . . , xm)⊤

P(C = c1 | X⃗ = x⃗) = p1(x⃗) = p(x⃗; a⃗◦) =
1

1 + e−⃗a◦⊤⃗x◦
.

• With only two classes the conditional probability of the other class is:

P(C = c0 | X⃗ = x⃗) = p0(x⃗) = 1− p(x⃗; a⃗◦).

• Classification rule:
C =

{
c1, if p(x⃗; a⃗◦) ≥ θ,

c0, if p(x⃗; a⃗◦) < θ,
θ = 0.5.
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Reminder: Logistic Classification

0

1

2

3

4
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x1

x
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y

x1

x2

0
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4

0 1 2 3 4

class 1

class 0

• Classes are separated by the “contour line” p(x⃗; a⃗◦) = θ = 0.5 (inflection line).
Via the classification threshold θ misclassification costs may be incorporated.

• The classification boundary is linear, therefore linear classification.

• For classification, using a logistic function does not yield non-linear properties.
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Non-Linear Classification: Stripes

• Simple data set with two classes:

◦ 20 data points belong to the red class,

◦ 20 data points belong to the blue class.

• These classes are not linearly separable:

There is no straight line such that all points
of class red are on one side of the line and
all points of class blue are on the other side.

• Idea: Map points to a different space. x1
420−2−4

x2

4

2

0

−2

−4

• A proper mapping can render the images of the data points linearly separable.

◦ Here: “Bend” the x1-x2-plane, such that
all red points end up above (or below) all blue points.

◦ Only the added dimension may be needed to separate the classes
(although showing all dimensions makes the idea clearer).

Christian Borgelt Advanced Data Mining 1 191



Non-Linear Classification: Stripes

• For the mapping add a new dimension
that is computed as, e.g.,

z =
(x2

12
− x1

6

)2

• This allows us to separate the classes
with a horizontal plane (yellow).

–4
–2

0
2

4
–4

–2

0

2

4

0

1

4

1
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4

1

9

x1

x
2

z

x1
420−2−4

z

3

4

1

2

1

4

1

9

0

• For the classification, only
the z-dimension is actually needed
(hence only z may be the target space).

• Classify the data according to:

◦ if z >
1
9, assign the red class,

◦ if z <
1
9, assign the blue class.
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Non-Linear Classification: Archimedean Spirals

• More complex data set with two classes:

◦ 100 data points belong to the red class,

◦ 100 data points belong to the blue class.

• These classes are not linearly separable:

There is no straight line such that all points
of class red are on one side of the line and
all points of class blue are on the other side.

• Idea: Map points to a different space. x1
86420−2−4−6−8

x2

6

4

2

0

−2

−4

−6

• A proper mapping can render the images of the data points linearly separable.

◦ Here: Map to polar coordinates and handle the resulting stripes such that
all red points end up above (or below) all blue points.

◦ Only the added dimension may be needed to separate the classes
(although showing all dimensions makes the idea clearer).
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Non-Linear Classification: Archimedean Spirals

• For the mapping add a new dimension
that is computed as, e.g.,

z = 2 sin2

(
r

2
− θ

2
− π

6

)

− 1

where r = hypot(x1, x2) =
√

x2
1 + x2

2

and θ = atan2(x2, x1).

–8
–4
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4

8
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–4

0
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8

–
1

0

1

x1

x2

z

x1 86420−2−4−6−8

z

−1

−

1

2

0

1

2

1

• For the classification, only
the z-dimension is actually needed.

• Classify the data according to:

◦ if z > 0, assign the red class,

◦ if z < 0, assign the blue class.
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Kernel Functions

• In the following, kernel functions are used to map data points implicitly
to some image space, in which they (hopefully) become linearly treatable.

• Definition: Let X be some data space, e.g., X = IRm.

A kernel function or simply kernel is a function κ : X ×X → IR that satisfies

∀x⃗1, x⃗2 ∈ X : κ(x⃗1, x⃗2) = κ(x⃗2, x⃗1) (κ is symmetric)

∀x⃗1, x⃗2 ∈ X : κ(x⃗1, x⃗2) ≥ 0 (κ is non-negative)

• In the image space, a linear model is constructed / trained.

• Since the (implicit) mapping to the image space may be non-linear,
this model may be non-linear in the original (data) space.

• How well this works depends decisively on the choice of the kernel, since
it has to capture all information about the non-linear structure of the data.

• Kernel functions are typically chosen to quantify the similarity between
two objects x⃗1 and x⃗2 in X : The higher κ(x⃗1, x⃗2), the more similar the objects.
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Kernel Functions and Gram Matrices

• A matrix G is called Gram matrix or Gramian matrix [Jørgen Pedersen Gram]
if it is a matrix of pairwise scalar products of data points z⃗1, . . . , z⃗n ∈ Z :

G =







⟨⃗z1, z⃗1⟩ ⟨⃗z1, z⃗2⟩ · · · ⟨⃗z1, z⃗n⟩
⟨⃗z2, z⃗1⟩ ⟨⃗z2, z⃗2⟩ · · · ⟨⃗z2, z⃗n⟩

... ... . . . ...
⟨⃗zn, z⃗1⟩ ⟨⃗zn, z⃗2⟩ · · · ⟨⃗zn, z⃗n⟩







where ⟨·, ·⟩ denotes the scalar product of the space Z .

• However, for support vector machines, a Gram matrix is computed
with the help of a kernel function κ : X ×X → IR as

G =







κ(x⃗1, x⃗1) κ(x⃗1, x⃗2) · · · κ(x⃗1, x⃗n)
κ(x⃗2, x⃗1) κ(x⃗2, x⃗2) · · · κ(x⃗2, x⃗n)

... ... . . . ...
κ(x⃗n, x⃗1) κ(x⃗n, x⃗2) · · · κ(x⃗n, x⃗n)







• For this to be possible, κ cannot be just any kernel function whatsoever.
It has to be what is commonly called a Mercer kernel. [James Mercer 1909]
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Mercer’s Theorem and Mercer Kernels

• In functional analysis, Mercer’s theorem [James Mercer 1909] states
that a symmetric and positive semi-definite matrix can be represented
as a sum of a convergent sequence of product functions.

• From Mercer’s theorem it follows that a matrix G that is computed
with the help of a kernel function κ : X ×X → IR as

G =







κ(x⃗1, x⃗1) κ(x⃗1, x⃗2) · · · κ(x⃗1, x⃗n)
κ(x⃗2, x⃗1) κ(x⃗2, x⃗2) · · · κ(x⃗2, x⃗n)

... ... . . . ...
κ(x⃗n, x⃗1) κ(x⃗n, x⃗2) · · · κ(x⃗n, x⃗n)







Note that G is symmetric,
since κ is a kernel function
and a kernel function is
symmetric by definition.

is a Gram matrix (that is, it is a scalar product matrix in some space)
if and only if G is positive semi-definite.

• That is, if the (kernel) matrix G is positive semi-definite,
then there exists a function ϕ : X → Z such that κ(x⃗, x⃗′) = ⟨ϕ(x⃗), ϕ(x⃗′)⟩.

• Note that Z may have infinite dimension, but we do not consider this here,
because it requires fairly sophisticated mathematical tools.
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Mercer’s Theorem: Some Justification

• Suppose the matrix G of pairwise kernel evaluations is positive definite.

• A symmetric positive definite matrix possesses an eigendecomposition

G = R diag(λ1, . . . , λm) R−1

where the λi, i = 1, . . . , m, are the eigenvalues of G
and the columns of R are the (normalized) eigenvectors of G.

• The eigenvalues of a symmetric positive definite matrix are all positive
and its eigenvectors are orthonormal (that is, R−1 = R⊤).

• As a consequence, G can be written as G = TT⊤, where

T = R diag
(√

λ1, . . . ,
√

λm

)
.

• Define ϕ(x⃗i) =
(
Ri: diag(

√
λ1, . . . ,

√
λm))⊤,

where Ri: denotes the i-th row of the matrix R.

With this definition it is Gij = κ(x⃗i, x⃗j) = ϕ(x⃗i)⊤ϕ(x⃗j).
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Mercer’s Theorem

• A full mathematical justification of Mercer’s theorem requires
the theory of reproducing kernel Hilbert spaces.

• We do not dive into these mathematical details here. They can be found in, e.g.:

pictures not available in online version
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Mercer Kernels and Basis Functions

Definition: Let X be a data space, e.g., X = IRm.

A Mercer kernel is a function κ : X ×X → IR that for all x⃗1, x⃗2 satisfies

κ(x⃗1, x⃗2) = ⟨ϕ(x⃗1), ϕ(x⃗2)⟩,
where ϕ is a mapping from the data space X to some space Z
and ⟨·, ·⟩ denotes the scalar product in the space Z .

• The function ϕ is often called a basis function;
the space Z is often referred to as the feature space.

• We may say that we map our objects to a feature space using a basis function.

• Mathematical remark: For a Mercer kernel, a basis function ϕ can be written
as a linear combination of eigenfunctions of the kernel κ.

• There are no restrictions on the dimensionality of the feature space Z ;
actually, Z is potentially infinite dimensional.

Note that if this is the case, ϕ(x⃗) may not even be explicitly representable.
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Mercer Kernels and the Kernel Trick

• We have seen before that a linear model can be parameterized
and trained using only scalar products (dual parameters / dual form).

• We have also seen that a Mercer kernel can express scalar products
in some target space without explicitly mapping the data to that space.

• Hence Mercer kernels allow us to train a (linear) model in the image space,
without explicitly mapping the data points to that space.

• Since the (Mercer) kernel may represent a non-linear mapping,
the model may be non-linear in the original (data) space.

• These three ingredients are what is usually referred to as the kernel trick:

◦ implicitly mapping the data points to some image space,

◦ computing scalar products in this image space via a kernel,

◦ training a model using only these scalar products.

• The kernel trick allows us to obtain non-linear models indirectly.
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Some Commonly Used Kernel Functions

• Linear Kernel (scalar product in data space)

κ(x⃗1, x⃗2) = x⃗⊤1 x⃗2 (linear separation in data space)

• Normalized Linear Kernel (cosine between vectors x⃗1 and x⃗2)

κ(x⃗1, x⃗2) =
x⃗⊤1 x⃗2

√

(x⃗⊤1 x⃗1)(x⃗⊤2 x⃗2)
(
√

x⃗⊤i x⃗i: length of vector x⃗i, i = 1, 2,
hence vectors are scaled to length 1)

• Polynomial Kernel (symmetric polynomial function)

κ(x⃗1, x⃗2) = (α x⃗⊤1 x⃗2 + β)r (construct new features as products of original features)

(often with α = 1)

• Gaussian Kernel

κ(x⃗1, x⃗2) = exp
(
−1

2(x⃗1− x⃗2)⊤Σ
−1(x⃗1− x⃗2)

)
(general covariance matrix)

κ(x⃗1, x⃗2) = exp
(
−1

2∑
m
i=1

1
σ2

i

(x1i − x2i)
)

(diagonal covariance matrix)

κ(x⃗1, x⃗2) = exp
(
− 1

2σ2(x⃗1− x⃗2)⊤(x⃗1− x⃗2)
)

(isotropic covariance matrix)
(often with 1

2σ2 = γ)
• Laplace Kernel

κ(x⃗1, x⃗2) = exp
(
−1

σ

√

(x⃗1− x⃗2)⊤(x⃗1− x⃗2)
)

(“steeper” than Gaussian kernel)
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Some Commonly Used Kernel Functions

Kernel Functions for Structured Data [Gärtner 2003]

• Model-driven Kernels

Based on models describing the input space,
either constructed from background knowledge or learned from data.

◦ Fisher Kernel (gradient of log-likelihood w.r.t. parameters of a generative model)

◦ Diffusion Kernel (describe the local neighborhood of an instance)

• Syntax-driven Kernels

Based on the syntax of the representation of the instances / data objects.
Often special cases of Convolution Kernels, which combine kernels for parts.

◦ String Kernels (similarity of two strings based on number of common subsequences)

◦ Tree Kernels (consider all subtrees occurring in a (parse) tree for an instance)

◦ Graph Kernels (e.g. walk-based, i.e., count common walks in two graphs,

or based on counting common paths, subtrees or subgraphs,

or codeword-based, constructed from node equivalence classes)
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Example: Stripes with Gaussian Kernel

• Simple data set with two classes:

◦ 20 data points belong to the red class,

◦ 20 data points belong to the blue class.

• We apply an isotropic Gaussian kernel:

κ(x⃗1, x⃗2) = exp
(
− 1

2σ2(x⃗1− x⃗2)⊤(x⃗1− x⃗2)
)
.

–4

–2

0

2

4

–
4

–
2

0

2

4

–
1

0

1

0

1

x 1

x
2

z

x1
420−2−4

x2

4

2

0

−2

−4

• A Gaussian kernel models vicinity
of data points in the data space, similar
to a weighted nearest neighbor classifier.

• Result obtained with σ2 = 1 and ν = 1
(Mangasarian–Musicant variant).
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Example: Archimedean Spirals with Gaussian Kernel

• More complex data set with two classes:

◦ 100 data points belong to the red class,

◦ 100 data points belong to the blue class.

• We apply an isotropic Gaussian kernel:

κ(x⃗1, x⃗2) = exp
(
− 1

2σ2(x⃗1− x⃗2)⊤(x⃗1− x⃗2)
)
.

–8
–4

0
4

8

–8

–4

0

4

8

–
1

0

1

x1

x2

z

x1
86420−2−4−6−8

x2

6

4

2

0

−2

−4

−6

• A Gaussian kernel models vicinity
of data points in the data space, similar
to a weighted nearest neighbor classifier.

• Result obtained with σ2 = 1 and ν = 1
(Mangasarian–Musicant variant).
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Multi-Class Support Vector Machines

• Support vector machines can solve directly
only binary (two-class) classification problems.

• Many real world problems have more than two classes, some have many.
(e.g. iris / wine data: 3 classes, digit recognition: 10, letter recognition: 26/52)

• In order to assign data points to more than two classes, one usually
transforms the problem into a set of binary classification problems.

• There are two main approaches for this:

◦ One classifier for each class, separating it from all other classes.

The class with the largest distance from the separating hyperplane wins.

◦ One classifier for each pair of classes, separating them from each other.

The class that wins the most class-pair classifications
is chosen as the final classification.

• Hence one needs either c or c(c−1)/2 (binary) support vector machines,
where c > 2 is the number of classes.
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Some Practical Advice

• Some advice from Section 16.5.6 of this book:

• For a polynomial kernel, start by choosing α and β
so that α x⃗⊤i x⃗j + β lies in [−1,+1] for all i and j.

• The exponent r can be interpreted as the “size”
(sum of powers, hence features) of the monomials
to use. Larger r is not necessarily better.

• For a Gaussian kernel, choose σ as some
characteristic distance between data points.

• For the penalty / regularization parameter ν
of the soft margin classifier, try ν = 1 first,
then try increasing/decreasing by factors of 10.
There is usually a wide plateau of good choices.

• While trying different ν, check how many b̂i are fixed at 0, or at ν, or are
in-between. A good ν has many at 0, fewer at ν, and even fewer in-between.

Christian Borgelt Advanced Data Mining 1 207



Support Vector Regression

• Support vector machines may also be used to address regression problems.

• The (hard) primal optimization problem of ε-insensitive regression is:

minimize 1
2 a⃗⊤⃗a (data points inside an ε-tube around a⃗◦⊤⃗x◦i )

subject to ∀i; 1 ≤ i ≤ n : yi − a⃗◦⊤⃗x◦i ≤ ε,

∀i; 1 ≤ i ≤ n : a⃗◦⊤⃗x◦i − yi ≤ ε, ε ≥ 0.

(ε is fixed,
as specified
by a user)

(The double inequality constraints avoid using an absolute value, which causes differentiation problems.)

• The soft primal optimization problem uses slack variables ξ↑i and ξ↓i :

minimize 1
2 a⃗⊤⃗a + ν

2 ∑
n
i=1(ξ

↑2
i + ξ↓2i ) (Attention: 2-norm penalty!)

subject to ∀i; 1 ≤ i ≤ n : yi − a⃗◦⊤⃗x◦i ≤ ε + ξ↑i ,

a⃗◦⊤⃗x◦i − yi ≤ ε + ξ↓i , ε ≥ 0, ξ↑i , ξ↓i ≥ 0.

• Note that ξ↑i and ξ↓i cannot both be positive at the same time,
because a (true) target value yi cannot be both above and below

the ε-tube around the prediction function a⃗◦⊤⃗x◦i . Therefore ξ↑i ξ↓i = 0.
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Soft Support Vector Regression

• The Lagrange function of soft support vector regression is:

L(⃗a◦, b⃗↑, b⃗↓) =
1

2
a⃗⊤⃗a +

ν

2

n

∑
i=1

(ξ↑2i + ξ↓2i )−
n

∑
i=1

b↑i (ε + ξ↑i − yi + a⃗◦⊤⃗x◦i )

−
n

∑
i=1

b↓i (ε + ξ↓i − a⃗◦⊤⃗x◦i + yi)

=
1

2
a⃗⊤⃗a +

ν

2

n

∑
i=1

(ξ↑2i + ξ↓2i )− ε
n

∑
i=1

(b↑i + b↓i )

−
n

∑
i=1

(b↑i ξ↑i + b↓i ξ↓i )−
n

∑
i=1

(b↑i− b↓i )(⃗a⊤⃗xi + a0− yi).

• In analogy to support vector classification, a dual formulation
is obtained by exploiting the Karush–Kuhn–Tucker conditions
to eliminate the primal parameters a⃗ from the Lagrange function.

∇⃗aL !
= 0⃗,

∂L
∂a0

!
= 0,

∂L
∂ξ↑i

!
= 0,

∂L
∂ξ↓i

!
= 0.

Christian Borgelt Advanced Data Mining 1 209



Soft Support Vector Regression

• As derivatives w.r.t. the primal parameters a⃗ and a0 we obtain

∇⃗aL = a⃗−
n

∑
i=1

(b↑i − b↓i )x⃗i
!
= 0⃗, ⇔ a⃗ =

n

∑
i=1

(b↑i − b↓i )x⃗i

∂L
∂a0

= −
n

∑
i=1

(b↑i − b↓i )
!
= 0 ⇔

n

∑
i=1

(b↑i − b↓i ) = 0.

• As derivatives w.r.t. the slack variables ξ↑i and ξ↓i we obtain

∀i; 1 ≤ i ≤ n : ∂L
∂ξ
↑
i

= νξ↑i − b↑i
!
= 0⃗ ⇔ ξ↑i = 1

νb↑i ,

∂L
∂ξ
↓
i

= νξ↑i − b↑i
!
= 0⃗ ⇔ ξ↑i = 1

νb↑i .

• Recall that ξ↑i and ξ↓i cannot both be positive at the same time,
because a (true) target value yi cannot be both above and below

the ε-tube around the prediction function a⃗◦⊤⃗x◦i . Therefore ξ↑i ξ↓i = 0.

• As a consequence, b↑i and b↓i cannot both be positive at the same time,

because (at least) one constraint must be inactive. Therefore b↑i b↓i = 0.
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Soft Support Vector Regression

• The resulting reduced Lagrange function (to be maximized) is

L(⃗b↑, b⃗↓) =
1

2

( n

∑
i=1

(b↑i− b↓i )x⃗i

)⊤( n

∑
i=1

(b↑i− b↓i )x⃗i

)

− ε
n

∑
i=1

(b↑i + b↓i )

+
ν

2

n

∑
i=1

((
1
νb↑i
)2
+
(

1
νb↓i
)2
)

−
n

∑
i=1

(

b↑i
(

1
νb↑i
)
+ b↓i

(
1
νb↓i
))

−
n

∑
i=1

(b↑i− b↓i )

(( n

∑
i=1

(b↑i− b↓i )x⃗i

)⊤
x⃗i + a0− yi

)

=
1

2

n

∑
i=1

n

∑
j=1

(b↑i− b↓i ) x⃗⊤i x⃗j (b
↑
j− b↓j )− ε

n

∑
i=1

(b↑i + b↓i )

+
1

2ν

n

∑
i=1

(
b↑2i + b↓2i

)
− 1

ν

n

∑
i=1

(
b↑2i + b↓2i

)

−
n

∑
i=1

∑
j=1

(b↑i− b↓i ) x⃗⊤i x⃗j (b
↑
j− b↓j ) +

n

∑
i=1

(b↑i− b↓i ) (yi − a0)

= . . . (continued on next slide)
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Soft Support Vector Regression

• The resulting reduced Lagrange function (to be maximized) is

L(⃗b↑, b⃗↓) = −1

2

n

∑
i=1

n

∑
j=1

(b↑i− b↓i ) x⃗⊤i x⃗j (b
↑
j− b↓j )− ε

n

∑
i=1

(b↑i + b↓i )

− 1

2ν

n

∑
i=1

(
b↑2i + b↓2i

)
+

n

∑
i=1

(b↑i− b↓i )yi − a0

n

∑
i=1

(b↑i− b↓i )

︸ ︷︷ ︸
=0

= −1

2

n

∑
i=1

n

∑
j=1

(b↑i− b↓i ) x⃗⊤i x⃗j (b
↑
j− b↓j )− ε

n

∑
i=1

(b↑i + b↓i )

− 1

2ν

n

∑
i=1

((
b↑i− b↓i

)2− 2 b↑i b↓i︸︷︷︸
=0

)

+
n

∑
i=1

(b↑i− b↓i )yi

= −1

2

n

∑
i=1

n

∑
j=1

(b↑i− b↓i ) (x⃗⊤i x⃗j +
1
νδij) (b

↑
j− b↓j )

−ε
n

∑
i=1

(b↑i + b↓i ) +
n

∑
i=1

(b↑i− b↓i )yi
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Soft Support Vector Regression

• The dual problem of soft ε-insensitive support vector regression is therefore:

minimize
1

2

n

∑
i=1

n

∑
j=1

(b↑i−b↓i ) (x⃗⊤i x⃗j +
1
νδij) (b

↑
j−b↓j ) + ε

n

∑
i=1

(b↑i +b↓i )−
n

∑
i=1

(b↑i−b↓i )yi

subject to ∀i; 1 ≤ i ≤ n : b↑i ≥ 0, b↓i ≥ 0 and ∑
n
i=1(b

↑
i−b↓i ) = 0,

where b⃗↑ and b⃗↓ are the dual parameters.

• In addition, we have the Karush–Kuhn–Tucker conditions

∀i; 1 ≤ i ≤ n : b↑i (ε + ξ↑i − yi + a⃗⊤x⃗i + a0) = 0, ξ↑i ξ↓i = 0,

b↓i (ε + ξ↓i − a⃗⊤x⃗i + a0 + yi) = 0, b↑i b↓i = 0.

• The primal parameters can be computed
from the dual parameters as (see above)

ˆ⃗a =
n

∑
i=1

(b̂↑i−b̂↓i )x⃗i.

• The prediction function (i.e. the function to compute y from given x⃗) is

f (x⃗) =
n

∑
i=1

(b̂↑i − b̂↓i ) x⃗⊤i x⃗ + a0.
(a0 can be determined from a
Karush–Kuhn–Tucker condition
with b↑i > 0 or b↓i > 0)
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Support Vector Regression and Ridge Regression

• By defining bi = b↑i−b↓i , the dual problem can be written as

minimize
1

2

n

∑
i=1

n

∑
j=1

bi (x⃗⊤i x⃗j +
1
νδij) bj + ε

n

∑
i=1

|bi| −
n

∑
i=1

biyi

subject to ∑
n
i=1 bi = 0.

• In this form, if we choose ε = 0, we have as the Lagrange function

L(⃗b, λ) =
1

2

n

∑
i=1

n

∑
j=1

bi (x⃗⊤i x⃗j +
1
νδij) bj−

n

∑
i=1

biyi − λ
n

∑
i=1

bi

= 1
2 b⃗⊤(G + 1

ν In) b⃗− b⃗⊤⃗y− λ
n

∑
i=1

bi.

This special case is actually equivalent to ridge regression.

• Reminder: In ridge regression, the dual parameters are computed as

b⃗ = (G◦+ λIn)
−1 y⃗ with a regularization parameter λ.

Here we get an analogous result with regularization parameter 1
ν.
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Support Vector Regression and Ridge Regression

• We can find the optimum of the Lagrange function by taking derivatives

w.r.t. the parameters (here: b⃗) and setting them equal to zero:

∇⃗bL = y⃗− (G + 1
ν In)⃗b

!
= 0.

• This leads to y⃗ = (G + 1
νIn)⃗b = (XX⊤+ 1

νIn)⃗b

and therefore b⃗ = (G + 1
ν In)

−1y⃗ = (XX⊤+ 1
ν In)

−1y⃗,

which is the dual form of the ridge regression solution.

• Note, however, that in the original discussion we had:

b⃗ = (G◦+ λIn)
−1y⃗ = (X◦X◦⊤+ λIn)

−1y⃗.

What is the reason for this difference? (G versus G◦ = G + 1⃗n⃗1⊤n )

• The difference results from what parameter vector’s length is constrained.

◦ If the constraint is a⃗⊤⃗a ≤ c2, then we have to use G.

◦ If the constraint is a⃗◦⊤⃗a◦ ≤ c2, then we have to use G◦.
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Ridge Regression / Tikhonov Regularization

• One justification of ridge regression is to introduce the constraint
a⃗⊤⃗a ≤ c2, where c is some user-specified number, and to incorporate it
into the functional to optimize with a Lagrange multiplier λ:

L(⃗a◦, λ) = (X◦⃗a◦− y⃗)⊤(X◦⃗a◦− y⃗)− λ(c2− a⃗⊤⃗a)

The resulting Lagrange function L(⃗a◦, λ) has to be minimized.

• Alternatively, one may introduce the constraint a⃗◦⊤⃗a◦ ≤ c2, which leads to

L(⃗a◦, λ) = (X◦⃗a◦− y⃗)⊤(X◦⃗a◦− y⃗)− λ(c2− a⃗◦⊤⃗a◦)

• Based on the former, ridge regression consists in solving the problem:

minimize ∑
n
i=1 ξ2

i

subject to ∀i; 1 ≤ i ≤ n : a⃗◦⊤⃗x◦i − y⃗ = ξi and a⃗⊤⃗a ≤ c.

• The Lagrange function (where β⃗ are the Lagrange multipliers) is

L(⃗a◦, ξ⃗, b⃗, λ) =
n

∑
i=1

ξ2
i −

n

∑
i=1

bi(⃗a◦⊤⃗x◦i − y⃗− ξi)− λ(c2− a⃗⊤⃗a).
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Ridge Regression / Tikhonov Regularization

• The Lagrange function (where β⃗ are the Lagrange multipliers) is

L(⃗a◦, ξ⃗, b⃗, λ) =
n

∑
i=1

ξ2
i −

n

∑
i=1

bi(⃗a◦⊤⃗x◦i − y⃗− ξi)− λ(c2− a⃗⊤⃗a).

• As derivatives w.r.t. the primal parameters a⃗ and a0 we obtain

∇⃗aL = −
n

∑
i=1

βix⃗i + 2λ⃗a
!
= 0⃗ ⇔ a⃗ =

1

2λ

n

∑
i=1

βix⃗i,

∂L
∂a0

= −
n

∑
i=1

βi
!
= 0 ⇔

n

∑
i=1

βi = 0,

• As derivatives w.r.t. the residuals ξi we obtain

∀i; 1 ≤ i ≤ n :
∂L
∂ξi

= 2ξi + βi
!
= 0 ⇔ ξi = −1

2βi.

• As usual, we substitute the obtained expressions into the Lagrange function,
in order to eliminate the parameters a⃗ and the residuals ξi, i = 1, . . . , n.
This yields the reduced Lagrange function L(β⃗, λ).
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Ridge Regression / Tikhonov Regularization

• The resulting reduced Lagrange function is:

L(β⃗, λ) =
n

∑
i=1

(
−1

2βi

)2−
n

∑
i=1

βi

( 1

2λ

n

∑
j=1

β j⃗xj

)⊤
x⃗i +

n

∑
i=1

βi(yi − a0)

+
n

∑
i=1

βi

(
−1

2βi

)
+ λ

( 1

2λ

n

∑
i=1

βix⃗i

)⊤( 1

2λ

n

∑
i=1

βix⃗i

)

− λc2

=
1

4

n

∑
i=1

β2
i −

1

2λ

n

∑
i=1

n

∑
j=1

βix⃗
⊤
i x⃗jβ j +

n

∑
i=1

βi(yi − a0)

−1

2

n

∑
i=1

β2
i +

1

4λ

n

∑
i=1

n

∑
j=1

βix⃗
⊤
i x⃗jβ j− λc2

= −1

4

n

∑
i=1

β2
i −

1

4λ

n

∑
i=1

n

∑
j=1

βix⃗
⊤
i x⃗jβ j +

n

∑
i=1

βiyi − a0

n

∑
i=1

βi

︸ ︷︷ ︸
=0

−λc2

= − 1

4λ

n

∑
i=1

n

∑
j=1

βi

(
x⃗⊤i x⃗j + λδij

)
β j +

n

∑
i=1

βiyi − λc2
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Ridge Regression / Tikhonov Regularization

• Letting bi =
βi
2λ be the dual parameters, that is, βi = 2λbi, we get

L(⃗b, λ) = − 1

4λ

n

∑
i=1

n

∑
j=1

(2λbi)(x⃗⊤i x⃗j + λδij)(2λbj) +
n

∑
i=1

2λbiyi − λc2

= −λ
n

∑
i=1

n

∑
j=1

bi(x⃗⊤i x⃗j + λδij)bj + 2λ
n

∑
i=1

biyi − λc2

• With λ ̸= 0, we can divide by 2λ and also discard the constant term c2,
because it does not change (the location of) the optimum. This leads to

L(⃗b, λ) = −1

2

n

∑
i=1

n

∑
j=1

bi(x⃗⊤i x⃗j + λδij)bj +
n

∑
i=1

biyi.

• The corresponding optimization problem is

minimize
1

2

n

∑
i=1

n

∑
j=1

bi (x⃗⊤i x⃗j +
1
νδij) bj−

n

∑
i=1

biyi

subject to ∑
n
i=1 bi = 0.
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Reminder: Kernel Regression in Statistics

• If no parametric description of the functional relationship f is known,
non-parametric techniques like kernel regression may be used.

• (Nadaraya–Watson) Kernel Regression:
Given data (x⃗1, y1), (x⃗2, y2), . . . , (x⃗n, yn), form the regression model:

f̂h(x⃗) =
∑

n
i=1 κ(x⃗, x⃗i; h) yi

∑
n
i=1 κ(x⃗, x⃗i; h)

, where

• κ: kernel (in statistics usually a probability density,

e.g. density of N (0, 1) or density of U (−1, 1), applied to |⃗x−x⃗i|
h )

• h: bandwidth (smoothing parameter, h > 0)

• x⃗: point at which the estimator is evaluated.

• f̂h(x⃗) is a weighted mean of the values y1, . . . , yn;
the larger |⃗x− x⃗i|, the less weight yi has for the calculation of f̂h(x⃗).

• Support vector regression: parameters b̂i instead of yi (∑
n
i=1 κ(x⃗, x⃗i; h))−1.
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Support Vector Regression: Linear Example
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• Linear regression (blue) and support vector regression with ν = 1 (red).
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Support Vector Regression: Gaussian Kernel Example
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• Kernel regression (h = 1
2, blue) and support vector regression with ν = 1 (red).
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Summary Support Vector Machines

• The fundamental principle of support vector machines can be formulated as:

◦ If the task is regression, linear regression suffices.

◦ If the task is classification, linear classification suffices.

• For this principle to work the so-called kernel trick is decisive:

◦ implicitly map the data points to some image space,

◦ compute scalar products in this image space via a kernel,

◦ train a (linear) model using only these scalar products.

• Since the (implicit) mapping to the image space may be non-linear,
this classifier / predictor may be non-linear in the original (data) space.

• How well this works depends decisively on the choice of the kernel, since
it has to capture all information about the non-linear structure of the data.

• To allow for some misclassifications and larger deviations from a regression
function, so-called slack variables may be introduced.
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