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Reminder: (Elementary) Data Mining
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Reminder: The Knowledge Discovery Process (KDD Process)

pictures not available in online version

Typical depictions of the KDD Process

top: [Fayyad et al. 1996]
Knowledge Discovery and Data Mining:
Towards a Unifying Framework

right: CRISP-DM [Chapman et al. 1999]
CRoss Industry Standard Process
for Data Mining
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Reminder: The Knowledge Discovery Process (KDD Process)

Preliminary Steps

• estimation of potential benefit

• definition of goals, feasibility study

Main Steps

• check data availability, data selection, if necessary: data collection

• preprocessing (60–80% of total overhead)

◦ unification and transformation of data formats

◦ data cleaning (error correction, outlier detection, imputation of missing values)

◦ reduction / focusing (sample drawing, feature selection, prototype generation)

• Data Mining (using a variety of methods)

• visualization (also in parallel to preprocessing, data mining, and interpretation)

• interpretation, evaluation, and test of results

• deployment and documentation
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Reminder: Data Analysis / Data Mining Tasks

• Classification
Is this customer credit-worthy?

• Segmentation, Clustering
What groups of customers do I have?

• Concept Description
Which properties characterize fault-prone vehicles?

• Prediction, Trend Analysis
What will the exchange rate of the dollar be tomorrow?

• Dependence/Association Analysis
Which products are frequently bought together?

• Deviation Analysis
Are there seasonal or regional variations in turnover?
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Reminder: Data Analysis / Data Mining Methods 1

• Classical Statistics ⇒ other lectures, e.g. “Regression Methods & Computational Statistics”

(characteristic measures, parameter estimation, hypothesis testing, regression, model selection)

tasks: classification, prediction, trend analysis

• k-nearest Neighbor / Case-based Reasoning ⇒ Lecture “Elementary Data Mining”

(lazy learning, similarity measures, neighbor weighting, data structures for fast search)

tasks: classification, prediction

• Bayes Classifiers ⇒ Lecture “Elementary Data Mining”

(probabilistic classification, naive and Gaussian Bayes classifiers, Bayesian network classifiers)

tasks: classification, prediction

• Decision and Regression Trees ⇒ Lecture “Elementary Data Mining”

(top down induction, attribute selection measures, pruning, regression trees)

tasks: classification, prediction

• Rule Learning dijon: ⇒ Lecture “Advanced Data Mining 1”

(extraction from decision trees, Aq, CN2, version spaces, inductive logic programming)

tasks: classification, prediction
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Reminder: Data Analysis / Data Mining Methods 2

• Support Vector Machines dijon: ⇒ Lecture “Advanced Data Mining 1”

(linear and non-linear classification and regression, kernel trick, support vectors)

tasks: classification, prediction, clustering

• Artificial Neural Networks ⇒ Lecture “Artificial Neural Networks and Deep Learning”

(multilayer perceptrons, radial basis function networks, learning vector quantization)

tasks: classification, prediction, clustering

• Ensemble Methods (especially Random Forests) blue: in this lecture

(Bayesian voting, bagging, boosting (AdaBoost), injecting randomness, stacking)

tasks: classification, prediction

• Cluster Analysis green: ⇒ Lecture “Elementary Data Mining”

blue: in this lecture

(k-means and fuzzy clustering, Gaussian mixtures, hierarchical agglomerative clustering)

tasks: segmentation, clustering

• Association Rule Induction ⇒ Lecture “Frequent Pattern Mining”

(frequent item set mining, rule generation)

tasks: association analysis
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Reminder: Principles of Modeling

• The Data Mining step of the KDD Process consists mainly
of model building for specific purposes (e.g. prediction, segmentation).

• What type of model is to be built depends on the task, e.g.,

◦ if the task is numeric prediction, one may use a regression function,

◦ if the task is classification, one may use a decision tree,

◦ if the task is clustering, one may use a set of cluster prototypes,

◦ etc.

• Most data analysis methods comprise the following four steps:

◦ Select the Model Class (e.g. decision tree)

◦ Select the Objective Function (e.g. misclassification rate)

◦ Apply an Optimization Algorithm (e.g. top-down induction)

◦ Validate the Results (e.g. cross validation)
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Reminder: Supervised and Unsupervised Model Building

Fundamental Distinction for Model Building / Model Classes

• Supervised Model Building / Supervised Learning

◦ There is a target variable that the model is supposed to predict.
(nominal target: classification, metric target: regression)

◦ The data D consists of pairs (x⃗, y), where
x⃗ is a tuple of descriptive attribute values and y is the target value.

◦ The objective is to find a model m : X→ Y
that predicts the target y from the values x⃗ of the descriptive attributes.

• Unsupervised Model Building / Unsupervised Learning

◦ There is no target variable that the model is supposed to predict.
Rather model outputs are to be chosen by the model.

◦ The data D consists of tuples x⃗ of descriptive attributes.

◦ Typical objective: similar inputs should produce similar outputs.
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Reminder: Fitting Criteria and Score / Loss Functions

• In order to find the best or at least a good model for the given data,
a fitting criterion is needed, usually in the form of an objective function

f :M→ IR,

whereM is the set of considered models.

• The objective function f may also be referred to as

◦ Score Function (usually to be maximized),

◦ Loss Function (usually to be minimized).

• Typical examples of objective functions are (m ∈ M is a model, D the data)

◦ Mean squared error (MSE): f (m, D) = 1
|D|∑(x⃗,y)∈D

(m(x⃗)− y)2

◦ Mean absolute error (MAE): f (m, D) = 1
|D|∑(x⃗,y)∈D

|m(x⃗)− y|

◦ Accuracy: f (m, D) = 1
|D|∑(x⃗,y)∈D

δm(x⃗),y
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Reminder: Model Evaluation

• After a model has been constructed, one would like to know how “good” it is.

⇒ How can we measure the quality of a model?

• Desired: The model should generalize well and thus yield, on new data,
an error (to be made precise) that is as small as possible.

• However, due to possible overfitting to the induction / training data
(i.e. adaptations to features that are not regular, but accidental),
the error on the training data is usually not very indicative.

⇒ How can we assess the (expected) performance on new data?

• General idea: Evaluate on a hold-out data set (validation data / test data),
that is, on data not used for building / training the predictor.

◦ It is (highly) unlikely that the validation data exhibits
the same accidental features as the training data.

◦ Hence an evaluation on the validation data can provide
a good indication of the performance on new data.
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Reminder: Causes of Errors

One may distinguish between four types of errors:

• pure / intrinsic / experimental / Bayes error

Inherent in the data, independent of the choice of the model;
no model can yield an error less than this error.

• sample / variance error or scatter

Caused by the fact that the given data is only a sample and
thus an imperfect representation of the underlying distribution.

• lack of fit / model error / bias error

Caused by an improper choice of the model class.
(see also: under- and overfitting)

• algorithmic error

Caused by the method used to fit the model or its parameters;
heuristic optimization strategy may not find global optimum.
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Reminder: Under- and Overfitting

Underfitting [here: linear]

• Caused by model error / lack of fit.

• Model has not enough capacity
to fit the regularities in the data.

(Proper) Fitting [here: quadratic]

• Model has the proper capacity
to fit regularities, but not enough
to fit accidental properties.

Overfitting [here: degree 6]

• Caused by pure & sample error and ...

• ... model has too much capacity
and thus fits not only regularities,
but also accidental properties.
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Reminder: Under- and Overfitting

added

Underfitting [here: linear]

• Caused by model error / lack of fit.

• Model has not enough capacity
to fit the regularities in the data.

added

(Proper) Fitting [here: quadratic]

• Model has the proper capacity
to fit regularities, but not enough
to fit accidental properties.

added

Overfitting [here: degree 6]

• Caused by pure & sample error and ...

• ... model has too much capacity
and thus fits not only regularities,
but also accidental properties.
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Ensemble Methods
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Ensemble Methods

• Fundamental Ideas

◦ Combine Multiple Classifiers/Predictors

◦ Why Do Ensemble Methods Work?

• Popular Ensemble Methods

◦ Bayesian Voting / Averaging

◦ Bagging (Bootstrap Aggregating)

◦ Random Subspace Selection

◦ Injecting Randomness

◦ Boosting (especially AdaBoost)

◦ Mixture of Experts

◦ Stacking

• Summary
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Ensemble Methods: The Wisdom of Crowds

• It is well known from psychological studies of problem solving activities
that a committee of (human) experts with different, but complementary skills
usually produces better solutions than any individual.

• Francis Galton and the Ox (James Surowiecki: “The Wisdom of Crowds”, 2004)

◦ Farmer’s fair 1906: Guess the weight of an ox, closest guess wins a prize.

◦ Francis Galton (1822–1911) collected the tickets and averaged the guesses.

◦ Averaged guesses: 1197 pounds, actual weight: 1198 pounds.

• John P. Craven and the Lost Submarine

◦ In May 1968 the USS Scorpion was lost at sea in the Atlantic Ocean.

◦ John P. Craven (1924–2015) averaged location estimates by various experts.

◦ The submarine was finally found close to the predicted location.

• Who Wants to Be a Millionaire? (USA Edition, 2011–2016)

◦ “Ask the Audience” produced the correct answer in 91% of all cases.

◦ “Ask the Expert” produced the correct answer in only 65% of all cases.
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Ensemble Methods: Fundamental Ideas

• Ensemble methods combine several predictors
(classifiers or numeric predictors for regression problems)
to improve over the performance of the individual predictors.

• Instead of using a single model to predict the target value,
ensemble methods employ an ensemble of several predictors
and combine their predictions to obtain a joint prediction.

• The core ingredients of ensemble methods are

◦ a procedure to construct different predictors and

◦ a rule how to combine their results.

• Depending on the choices that are made for these two ingredients,
a large variety of different ensemble methods has been suggested.

• While usually yielding higher accuracy than individual models,
the fact that sometimes very large ensembles are used makes the ensemble
prediction mechanism difficult to interpret (even if the elements are simple).
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Ensemble Methods: Fundamental Ideas

• A necessary and sufficient condition for an ensemble to out-perform
the individuals is that the predictors are reasonably accurate and diverse.

• Technically, a predictor is already called (reasonably) accurate if it predicts
the correct target value for a new input object better than random guessing.

Hence this is a pretty weak requirement that is easy to meet in practice.

• Two predictors are called diverse if they do not make the same mistakes.

That this requirement is essential is obvious: if the predictors always made
the same mistakes, no improvement can possibly result from combining them.

• Consider the extreme case that the predictors in the ensemble are all identical:
a combined prediction is necessarily the same as that of individual predictors
— regardless of how the individual predictions are combined.

• However, if the errors made by the individual predictors are uncorrelated,
their combination will reduce these errors.
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Ensemble Methods: Fundamental Ideas

• If we combine classifiers making independent mistakes by majority voting,
the ensemble yields a wrong result only if more than half of the classifiers
misclassify an input object, thus improving over the individuals.

• For instance, for 5 independent classifiers for a two-class problem, each having
an error probability of 0.3, the probability that 3 or more yield a wrong result is

5

∑
i=3

(
5

i

)
· 0.3i · 0.7 5−i = 0.16308.

• Note, however, that this holds only for the ideal case that the classifiers
are fully independent, which is usually not the case in practice.

• Fortunately, though, improvements are also achieved if the dependence
is sufficiently weak, although the gains are naturally smaller.

• Note also that even in the ideal case no gains result (but rather a degradation)
if the error probability of an individual classifier exceeds 0.5.
Therefore the individual predictors should be accurate.
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Why Do Ensemble Methods Work?

• According to [Dietterich 2000] there are essentially three reasons
why ensemble methods work: statistical, computational, and representational.

• Statistical Reason:
The statistical reason is that in practice any learning method has to work
on a finite data set and thus may not be able to identify the correct predictor,
even if this predictor lies within the set of models that the learning method can,
in principle, return as a result (“hypothesis space”, “model class”).

• Rather it is to be expected that several predictors yield similar accuracy.

• Since there is no sufficiently clear evidence which model is correct or best,
there is a certain risk that the learning method selects a suboptimal model.

• By removing the requirement to produce a single model,
it becomes possible to “average” over many or even all of the good models.

• This reduces the risk of excluding the best predictor
and reduces the influence of actually bad models.
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Why Do Ensemble Methods Work?

• According to [Dietterich 2000] there are essentially three reasons
why ensemble methods work: statistical, computational, and representational.

• Statistical Reason

M

fm1

m2
m3

m4

• The gray areaM is the space
of all attainable models (or hypotheses).
(“model class” in lecture “Elementary Data Mining”)

• The blue area is the set of models that give
good accuracy on the training data.

• m1, m2, m3 and m4 are individual models,
e.g. the individual models of an ensemble.

• f is the best model, the true hypothesis.

• The average prediction of the hypotheses
m1, m2, m3 and m4 is close(r) to the
prediction of the best model f .
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Why Do Ensemble Methods Work?

• According to [Dietterich 2000] there are essentially three reasons
why ensemble methods work: statistical, computational, and representational.

• Computational Reason:
The computational reason refers to the fact that learning algorithms
usually cannot traverse the complete model space (no exhaustive search),
but must employ certain heuristics in order to find a good model.

Examples of model finding / model building heuristics:

◦ decision trees: greedy selection of test attribute / split rule

◦ neural networks: gradient descent on error function

• Since these heuristics may yield suboptimal models
(for example, local minima of the error function),
a suboptimal model may be chosen by the learning method.

• However, if several models constructed with heuristics
are combined in an ensemble, the result may be a better approximation
of the true dependence between the inputs and the target variable.
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Why Do Ensemble Methods Work?

• According to [Dietterich 2000] there are essentially three reasons
why ensemble methods work: statistical, computational, and representational.

• Computational Reason

M

f

m1

m2

m3

• The gray areaM is the space
of all attainable models (or hypotheses).
(“model class” in lecture “Elementary Data Mining”)

• m1, m2 and m3 are individual models,
e.g. the individual models of an ensemble.

• The dashed blue lines are the trajectories
of models traversed by heuristics.

• f is the best model, the true hypothesis.

• The average prediction of the models
m1, m2 and m3 is close(r) to the prediction
of the best model f .
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Why Do Ensemble Methods Work?

• According to [Dietterich 2000] there are essentially three reasons
why ensemble methods work: statistical, computational, and representational.

• Representational Reason:
The representational reason is that for basically all learning methods,
even the most flexible ones, the class of models that can be learned is limited
and thus it may be that the true model cannot be represented accurately.

• By combining several models in an ensemble, the model space can be enriched,
that is, the ensemble may be able to represent a dependence between the inputs
and the target variable that cannot be expressed by any of the individual models
the learning method is able to produce.

• From a representational point of view, ensemble methods allow for reducing the
bias of a learning algorithm by extending its model space, while the statistical
and computational reasons indicate that they can also reduce the variance.

• In this sense, ensemble methods are able to sever
the usual link between (machine learning) bias and variance.
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Why Do Ensemble Methods Work?

• According to [Dietterich 2000] there are essentially three reasons
why ensemble methods work: statistical, computational, and representational.

• Representational Reason

M

f

m1

m2

m3

• The gray areaM is the space
of all attainable models (or hypotheses).
(“model class” in lecture “Elementary Data Mining”)

• m1, m2 and m3 are individual models,
e.g. the individual models of an ensemble.

• f is the best model, the true hypothesis.
However, f lies outside ofH.

• The average prediction of the models
m1, m2 and m3 is close(r) to the prediction
of the true hypothesis f .

⇒ Ensemble methods can enrich
the space of representable hypotheses.
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Ensemble Methods: Bayesian Voting / Averaging

• In pure Bayesian voting/averaging the set of all possible models
in a user-defined hypothesis space is enumerated to form the ensemble.

• The predictions of the individual models are combined
weighted with the posterior probability of the model given the training data.

That is, models that are unlikely to be correct given the data have a low influ-
ence on the ensemble prediction, models that are likely have a high influence.

• The likelihood of the model given the data can often be computed as

P(m | D) ∝ P(D | m)P(m),

where m is the model, D the data, P(m) the prior probability of the model
(often assumed to be the same for all models — informationless prior),
and P(D | m) the data likelihood given the model.

• Theoretically, Bayesian voting/averaging is the optimal combination method,
because all possible models are considered and
their relative influence reflects their likelihood given the data.
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Ensemble Methods: Bayesian Voting / Averaging

• Theoretically, Bayesian voting/averaging is the optimal combination method,
because all possible models are considered and
their relative influence reflects their likelihood given the data.

• In practice, however, it suffers from several drawbacks:

◦ It is rarely possible to actually enumerate all models in the hypothesis space
that is (implicitly) defined by a learning method.

For example, even if we restrict the tree size,
it is usually infeasible to enumerate all decision trees
that could be constructed for a given classification problem.

◦ In order to overcome this problem, model sampling methods are employed,
which ideally should select a model with a probability that corresponds
to their likelihood given the data.

◦ However, most such methods are biased and
thus usually do not yield a representative sample of the total set of models,
sometimes seriously degrading the ensemble performance.
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Ensemble Methods: Bagging

• The method of bagging (bootstrap aggregating) predictors
can be applied with basically any learning algorithm.

• The basic idea is to select a single learning algorithm (most studied
in this respect are decision tree inducers) and to learn several models
by providing it each time with a different random sample of the training data.

• The sampling is carried out with replacement (bootstrapping). ⇒more on

Each sample is exactly as large as the original training data set. next slides

• Especially if the learning algorithm is unstable
(like decision tree inducers, where a small change of the data
can lead to a considerably different decision tree),
the resulting models will usually be fairly diverse,
thus satisfying one of the conditions needed for ensemble methods to work.

• The predictions of the individual models are then combined by simple
majority voting or by averaging them (with the same weight for each model).
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Bootstrap Samples

• Given a data set D with n cases/data points, a bootstrap sample (or replicate)
is a sample of size n that is drawn from D with replacement.

• Because drawing is done with replacement, some cases/data points may occur
multiple times, while others may not occur at all (to compensate duplicates).

original data set

A B C D E F

bootstrap samples

A E C A F D

C D E D D A

B F B F C E

B C F D C A

• In the original data set, data points
are considered as being unique.

• Note how in these example bootstrap
samples some data points occur once,
some 2 or 3 times, some do not occur.

• In principle, each original data point
may occur exactly once (permutation),
or some data point may occur n times.

This is fairly unlikely, though.
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Bootstrap Samples: Mathematical Excursion

• How many different bootstrap samples can be drawn from a data set of size n?

• Consider the following box/urn model:

◦ There are n (distinguishable) boxes/urns,
which represent the different cases/data points.

◦ There are n (indistinguishable) balls,
which represent the individual drawings.

• Each possible distribution of the balls into the boxes/urns
represents one possible bootstrap sample:

◦ The number of balls in the 1st box
represents the number of times case 1 is drawn (may be zero).

◦ The number of balls in the 2nd box
represents the number of times case 2 is drawn (may be zero).

◦ The number of balls in the i-th box
represents the number of times case i is drawn (may be zero).
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Bootstrap Samples: Mathematical Excursion

• How many different bootstrap samples can be drawn from a data set of size n?

⇒ In how many different ways can n balls be distributed into n boxes?

• Suppose the boxes are placed side by side in a row.

Then we have to compute the number of different sequences of

◦ n (indistinguishable) balls and

◦ n− 1 (indistinguishable) walls between boxes.

• In total, there are 2n− 1 objects (n balls plus n− 1 walls).

By choosing the n locations of the balls in a sequence of 2n− 1 objects
(or by choosing the n− 1 locations of the walls in this sequence)
we choose one placement of the balls into the boxes. (e.g. [• • • . . .])

• This yields as the total number of different bootstrap samples:

Nbootstrap(n) =

(
2n− 1

n

)
=

(
2n− 1

n− 1

)
=

(2n− 1)!

n!(n− 1)!
.
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Bootstrap Samples: Mathematical Excursion

• On average, how many different cases/data points are in a bootstrap sample?

• Since all n cases/data points in the original data set are treated the same
(they have the same probability of being selected in an individual drawing),
the expected fraction of different cases/data points equals the probability
that a certain specific case/data point x gets selected.

• In an individual drawing, the probability that x gets selected is P⊕1 (x) = 1
n.

Therefore, the probability that it does not get selected is P⊖1 (x) = 1− 1
n.

• In total, n drawings are executed, in each of which x may get selected.
The probability that x does not get selected in any of them is P⊖n (x) = (1− 1

n)
n.

• Hence the probability that x gets selected at least once is P⊕n (x) = 1− (1− 1
n)

n.

• If we let the data set size n go to infinity, we get P⊖∞(x) = limn→∞(1− 1
n)

n = 1
e

and therefore P⊕∞(x) = 1− 1
e .

• For large n the average number of different cases in a bootstrap sample
is therefore approximately (1− 1

e)n ≈ 0.632n.
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Ensemble Methods: Bagging

• Bagging (bootstrap aggregating) effectively yields predictions from an
“average model,” even though this model does not exist in simple form
— it may not even lie in the hypothesis space of the learning algorithm.

• It has been shown that bagging reduces the risk of overfitting
the training data (because each subsample has different special properties)
and thus produces very robust predictions.

• Experiments show that bagging yields very good results
especially for noisy data sets, where the sampling seems to be highly effective
to avoid any adaptation to the noise data points.

• A closely related alternative to bagging are cross-validated committees.

• Instead of resampling the training data with replacement (bootstrapping)
to generate the different predictors of an ensemble,
the predictors learned during a cross-validation run
are combined with equal weights in a majority vote or by averaging.
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Bagging and Cross-Validation

• In bagging, a specific bootstrap sample is also called the in-the-bag data set.
For large data sets, it contains approximately (1− 1

e)n data points on average.

• Its complement w.r.t. the given data set is also called the out-of-bag data set.
For large data sets, it contains approximately n

e data points on average.

(The out-of-bag data set contains all data points not in the bootstrap sample.)

• Since the out-of-bag data set has not been used to induce the predictor,
it can be used to estimate the predictor’s error on new data (out-of-bag error).

⇒ bagging has a built-in validation scheme

• This is analogous to cross-validation, where a predictor’s error
on the hold-out fold can be used to estimate the error one new data.

• However, there are significant differences:

◦ In cross-validation, each data point is exactly once in the hold-out fold.

◦ In bagging, a data point may occur in multiple out-of-bag data sets,
and some data points may not occur in any out-of-bag data set.
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Reminder: Cross-Validation

• General method to assess / to predict the performance of models
created by a given model building procedure (not of a specific model!).

• Serves the purpose to estimate the error (rate) on new example cases.

• Procedure of cross-validation:

◦ Split the given data set into k so-called folds of equal size
(k-fold cross-validation). Often recommended: k = 10.

◦ Combine k− 1 folds into a training data set,
build a classifier, and test it on the k-th fold (the hold-out fold).

◦ Do this for all k possible selections of k− 1 folds
and average the error (rates) (or some other quality measure).

• Special case: leave-1-out cross-validation (a.k.a. jackknife method).
(use as many folds as there are example cases)

• The final classifier is generated from the full data set
(in order to exploit all available information).
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Reminder: Cross-Validation

training validation

run 1:

run 2:

run 3:

· · · · · ·

run k:

quality

q1

q2

q3

qk

Build and evaluate a model in each run, then average their quality. q̂ =

1

k

k

∑
i=1

qi

• Cross-validation does not assess a single model (since k models are built).

It assesses the expected performance of models built with a certain procedure.
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Bagging and Cross-Validation

• In bagging, one should not simply average the out-of-bag errors.

◦ Evaluating the predictor induced from a bootstrap sample
on the corresponding out-of-bag data set only evaluates this predictor.

◦ However, the bagged predictor averages or takes the majority vote of
multiple predictors (this is what yields performance improvements).

◦ Hence simply averaging the out-of-bag errors is overly pessimistic.

• Better procedure to compute an out-of-bag error for an ensemble:

◦ Form the union Doob ⊆ D of all out-of-bag data sets.

◦ For each data point (x⃗, y) ∈ Doob collect all predictors
for the induction of which it was in the out-of-bag data set.

◦ Predict the target value of the data point with the collected predictors
(using averaging or majority voting). (use a specific subset of the ensemble)

◦ Compute the error rate on the data set Doob and
use this as an estimate of the performance on new data.
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Ensemble Methods: Random Subspace Selection

• While bagging obtains a set of diverse predictors
by randomly varying the training data, random subspace selection
employs a random selection of the features for this purpose.

• That is, all data points are used in each training run, but the features
the model construction algorithm can use are randomly selected.

• With a learning algorithm like a decision tree inducer
(for which random subspace selection was first proposed),
the available features may even be varied each time a split has to be chosen,
so that the whole decision tree can potentially use all features.

• Combining random subspace selection with bagging is a highly effective
and strongly recommended method if accuracy is the main goal.

• Applied to decision trees this method has been named random forests,
which is known to be among the most accurate classification methods.

• However, the often huge number of trees destroys the advantage
that decision trees are easy to interpret and can be checked for plausibility.
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Ensemble Methods: Injecting Randomness

• Both bagging and random subspace selection employ random processes
in order to obtain diverse predictors.

• Of course, this approach can be generalized to the principle of
injecting randomness into the learning process.

◦ Bagging: randomly select training data sets (as bootstrap samples)

◦ Random Subspace Selection: randomly select feature subsets

• For example, such an approach is very natural and straightforward
for artificial neural networks: ⇒ Lecture “Artificial Neural Networks and Deep Learning”

Different initializations of the connection weights and bias values
often yield different learning results (different local optima),
which may then be used as the members of an ensemble.

• Alternatively, the network structure can be modified, for example,
by randomly deleting a certain fraction of the connections between
two consecutive layers or a certain fraction of neurons (a.k.a. “dropout”).
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Ensemble Methods: Boosting

• Boosting constructs predictors progressively, with the prediction results
of the model learned last influencing the construction of the next model.

• Like bagging, boosting varies the training data. However, instead of drawing
random samples, boosting always works on the complete training data set,
and maintains and manipulates a data point weight for each training example.

• For low noise data, boosting clearly outperforms bagging
and random subspace selection in experimental studies.

• However, if the training data contains noise, the performance of boosting
can degrade quickly, because it tends to focus on the noise data
(which are necessarily difficult to classify and thus receive high weights after fairly few steps).

• As a consequence, boosting tends to overfit the data.
For noisy data bagging and random subspace selection yield better results.

• Boosting is usually described for classification problems with two classes,
which are assumed to be encoded by +1 and −1.
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Ensemble Methods: AdaBoost

• The best-known boosting approach is AdaBoost and works as follows:
[Freund & Schapire 1995–1998]

• Initially, all data point weights are equal and therefore set to
wi = 1, i = 1, . . . n, where n = |D| is the size of the data set.

• After a predictor mt with mt(x⃗) ∈ {−1,+1} has been constructed in step t
with current weights wi,t, i = 1, . . . , n, it is applied to the training data and

et =
∑

n
i=1 1(yi ̸=mt(x⃗i))wi,t

∑
n
i=1 wi,t

and αt =
1

2
ln

(
1− et

et

)
1(φ) =

{
1 if φ is true,
0 otherwise.

are computed, where x⃗i is the input vector, yi ∈ {−1,+1} the class of the i-th
training example, and mt(x⃗i) the prediction of the model mt for the input x⃗i.

• The data point weights are then updated according to

wi,t+1 = ct+1 wi,t exp(−αt yi mt(x⃗i)),

where ct+1 is a normalization constant chosen in such a way that ∑
n
i=1 wi,t+1 = n.
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Ensemble Methods: AdaBoost

• The procedure of learning a predictor and updating the data point weights
is repeated a user-specified number of times tmax.

• The constructed ensemble classifies new data points by majority voting,
with each model mt weighted with αt. (definition of αt: see preceding slides)

• That is, the joint prediction is (the sign of) the function

mjoint(x⃗i) =
tmax

∑
t=1

αtmt(x⃗i).

• Since there is no convergence guarantee and the performance of the ensemble
classifier can even degrade after a certain number of steps, the inflection point
of the error curve over t is often chosen as the ensemble size.

• Reminder: if the training data contains noise, the performance of boosting
can degrade quickly, because it tends to focus on the noise data
(which are necessarily difficult to classify and thus receive high weights after fairly few steps).

As a consequence, boosting tends to overfit the data.
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Ensemble Methods: AdaBoost

• AdaBoost can be seen as minimizing the loss function [Schapire & Singer 1998]

L(D) =

[
1

n

] n

∑
i=1

exp
(
−

tmax

∑
t=1

αt yi mt(x⃗i)
)

where D = {(x⃗1, y1), . . . , (x⃗n, yn)} with yi ∈ {−1,+1} is the training data set.

• Optimization is done w.r.t. the model weighting factors αt,
which are to be chosen in such a way that L(D) becomes as small as possible.

• For some model m (either some mt or mjoint), the quantity

γi = yi m(x⃗i)

is called the margin of the model m at the point (x⃗i, yi).
It is positive for a correct prediction and negative for an incorrect one.

• With this notion, we may say that AdaBoost tries to minimize the sum of
the exponentials of the weighted negative margins of the individual predictors.
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Excursion: Exponential Loss

• Loss functions represent the price paid for inaccuracy of predictions
(usually: in classification problems).

• The usual goal is to minimize the expected loss (also known as risk)

EX⃗,Y(L(m(X⃗), Y)) =
∫

X×Y
L
(
m(x⃗), y

)
p(x⃗, y) dx⃗ dy,

where p(x⃗, y) is the probability density function of the data generating process,
which may also be written as p(y | x⃗)p(x⃗).

• In (binary) classification, many loss functions are written solely
in terms of the margin γ = y m(x⃗) at a point (x⃗, y), that is,

L
(
m(x⃗), y

)
= L◦

(
y m(x⃗)

)
= L◦(γ)

with L◦ : IR→ IR. These are called margin-based loss functions.

• The exponential loss function is a margin-based loss function that uses

L
(
m(x⃗), y

)
= L◦

(
y m(x⃗)

)
= L◦(γ) = e−γ = e−y m(x⃗).
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Excursion: Margin-Based Loss Functions

• In (binary) classification,
many loss functions are written
in terms of the margin γ = y m(x⃗)
at a point (x⃗, y), that is,

L
(
m(x⃗), y

)
= L◦

(
y m(x⃗)

)
= L◦(γ)

with L◦ : IR→ IR. These are called
margin-based loss functions.

3

2

1

0

L◦

−2 −1 0 1 2γ

misclassification
hinge loss
squared error
exponential loss
binomial deviance

• misclassification: L◦(γ) = 1(γ < 0) (constant almost everywhere, not continuous)

• hinge loss: L◦(γ) = max(0, 1− x) (used in support vector machines)

• squared error: L◦(γ) = (1− γ)2
(not monotone decreasing)

• exponential loss: L◦(γ) = e−γ
(used in AdaBoost)

• binomial deviance: L◦(γ) = ln(1 + e−2γ) (log-likelihood, cross-entropy)

(factor 2 to match the result to that of exponential loss, see later)
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Ensemble Methods: AdaBoost

Derivation of the Model Weights αt (using an additive modeling view)

• In step τ−1 of an AdaBoost approach the joint classifier is

m
joint
τ−1(x⃗i) =

τ−1

∑
t=1

αtmt(x⃗i).

• In step τ we have to find the best model mτ to add and its weight ατ:

m
joint
τ (x⃗i) = m

joint
τ−1(x⃗i) + ατmτ(x⃗i)

• The total error of the model m
joint
τ is the sum of its exponential loss:

L(D) =
n

∑
i=1

exp
(
−yi m

joint
τ (x⃗i)

)

=
n

∑
i=1

exp
(
−yi m

joint
τ−1(x⃗i)− ατ yi mτ(x⃗i)

)

=
n

∑
i=1

exp
(
−yi m

joint
τ−1(x⃗i)

)
exp(−ατ yi mτ(x⃗i)) .
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Ensemble Methods: AdaBoost

Derivation of the Model Weights αt

• By defining wi,1 = 1 and wi,t = exp(−yi m
joint
t−1 (x⃗i)), t = 2, . . . , τ, we get

L(D) =
n

∑
i=1

wi,τ exp(−ατ yi mτ(x⃗i)) .

• Splitting into correctly and incorrectly classified data points yields

L(D) =
n

∑
i=1

1(yi=mτ(x⃗i))wi,τ e−ατ +
n

∑
i=1

1(yi ̸=mτ(x⃗i))wi,τ e+ατ assuming that
mτ(x⃗) ∈ {−1,+1}

= e−ατ

n

∑
i=1

wi,τ + (e+ατ−e−ατ)
n

∑
i=1

1(yi ̸=mτ(x⃗i))wi,τ. 1(φ) =

{
1 if φ is true,
0 otherwise.

• The sum ∑
n
i=1 wi,τ is obviously independent of the model mτ.

Only the sum ∑
n
i=1 1(yi ̸=mτ(x⃗i))wi,τ depends on the model mτ.

• Hence the best model mτ is the one minimizing ∑
n
i=1 1(yi ̸=mτ(x⃗i))wi,τ

with data point weights wi,τ = exp(−yi m
joint
τ−1(x⃗i)).

Christian Borgelt Advanced Data Mining 2 49



Ensemble Methods: AdaBoost

Derivation of the Model Weights αt

• The best model weight ατ is determined by exploiting that
a necessary condition for a minimum is that the derivative vanishes:

d

dατ
L(D) =

d

dατ

( n

∑
i=1

1(yi=mτ(x⃗i))wi,τ e−ατ +
n

∑
i=1

1(yi ̸=mτ(x⃗i))wi,τ e+ατ

)
!
= 0

• It follows

−e−ατ

n

∑
i=1

1(yi=mτ(x⃗i))wi,τ + e+ατ

n

∑
i=1

1(yi ̸=mτ(x⃗i))wi,τ = 0

⇔ e−ατ

n

∑
i=1

1(yi=mτ(x⃗i))wi,τ = e+ατ

n

∑
i=1

1(yi ̸=mτ(x⃗i))wi,τ

⇔ −ατ + ln
( n

∑
i=1

1(yi=mτ(x⃗i))wi,τ

)
= ατ + ln

( n

∑
i=1

1(yi ̸=mτ(x⃗i))wi,τ

)

⇔ ατ =
1

2
ln

(
∑

n
i=1 1(yi=mτ(x⃗i))wi,τ

∑
n
i=1 1(yi ̸=mτ(x⃗i))wi,τ

)
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Ensemble Methods: AdaBoost

Derivation of the Model Weights αt

• The derivation on the preceding slide led to

ατ =
1

2
ln

(
∑

n
i=1 1(yi=mτ(x⃗i))wi,τ

∑
n
i=1 1(yi ̸=mτ(x⃗i))wi,τ

)

=
1

2
ln

(
∑

n
i=1 wi,τ −∑

n
i=1 1(yi ̸=mτ(x⃗i))wi,τ

∑
n
i=1 1(yi ̸=mτ(x⃗i))wi,τ

)
.

• By computing the weighted error rate eτ

eτ =
∑

n
i=1 1(yi ̸=mτ(x⃗i))wi,τ

∑
n
i=1 wi,τ

, we get ατ =
1

2
ln

(
1− eτ

eτ

)
,

which is half the negative logit function of eτ. (cf. logistic regression)

• It can be shown that L(D) is convex and hence
that this ατ yields the global minimum of the loss function.

• Remark: This derivation of the model weights requires mt(x⃗) ∈ {−1,+1} (hard classification).
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Ensemble Methods: AdaBoost (Alternative Formulation)

• The best-known boosting approach is AdaBoost and works as follows:
[Freund & Schapire 1995–1998]

• Initially, all data point weights are equal and therefore set to
wi = 1, i = 1, . . . n, where n = |D| is the size of the data set.

• After a predictor mt with mt(x⃗) ∈ {−1,+1} has been constructed in step t
with current weights wi,t, i = 1, . . . , n, it is applied to the training data and

ot =
∑

n
i=1 wi,t yi mt(x⃗i)

∑
n
i=1 wi,t

=
∑

n
i=1 wi,t γi,t

∑
n
i=1 wi,t

and αt =
1

2
ln

(
1 + ot

1− ot

)

are computed, where x⃗i is the input vector, yi ∈ {−1, 1} the class of the i-th
training example, and mt(x⃗i) the prediction of the model mt for the input x⃗i.

• The data point weights are then updated according to

wi,t+1 = ct+1 wi,t exp(−αt yi mt(x⃗i)) = ct+1 wi,t exp(−αt γi,t),

where ct+1 is a normalization constant chosen in such a way that ∑
n
i=1 wi,t+1 = n.
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Ensemble Methods: AdaBoost (Original Formulation)

• The best-known boosting approach is AdaBoost and works as follows:
[Freund & Schapire 1995–1998]

• Initially, all data point weights are equal and therefore set to
wi = 1, i = 1, . . . n, where n = |D| is the size of the data set.

• After a predictor mt with mt(x⃗) ∈ {−1,+1} has been constructed in step t
with current weights wi,t, i = 1, . . . , n, it is applied to the training data and

et =
∑

n
i=1 1(yi ̸=mt(x⃗i))wi,t

∑
n
i=1 wi,t

and αt =
1

2
ln

(
1− et

et

)

are computed, where x⃗i is the input vector, yi ∈ {−1, 1} the class of the i-th
training example, and mt(x⃗i) the prediction of the model mt for the input x⃗i.

• The data point weights are then updated according to

wi,t+1 = ct+1 wi,t exp(−αt yi mt(x⃗i)),

where ct+1 is a normalization constant chosen in such a way that ∑
n
i=1 wi,t+1 = n.
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Ensemble Methods: AdaBoost

• Up to now: Boosting by Weighting (the data points).

• Problem: Not all model building methods allow for weighted data points.

◦ Logistic Regression and Decision Tree Induction do easily.

◦ Rule Induction with the Aq Algorithm does not. (⇒ “Advanced Data Mining 1”)

(at least it is not straightforward)

• Can boosting be used with methods that do not allow for weighted data points?

• Answer: Use Boosting by Sampling (from the data points).

◦ Interpret the weights as a probability distribution over the data points.
(This requires the data point weights to be normalized to sum 1.)

◦ Draw data points from this probability distribution
(and give each of the drawn data points unit weight).

◦ Then the expected number of copies of a data point in the sample
is proportional to the weight of the data point.
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Ensemble Methods: AdaBoost

• AdaBoost Example 1

• Simple data set with two classes:

◦ 5 data points belong to the blue class.

◦ 5 data points belong to the red class.

• A single decision tree would achieve
perfect classification.

x1
420−2−4

x2

4

2

0

−2

−4

x1
420−2−4

x2

4

2

0

−2

−4

• Here, however: decision stumps, e.g.

If x2 ≤ 1, then class red.
If x2 > 1, then class blue.

(only one split, cyan line in left diagram)

• Apply AdaBoost with decision stumps
as the base learning algorithm.
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Ensemble Methods: AdaBoost

x1
420−2−4

x2

4

2

0

−2

−4
x1

420−2−4

x2

4

2

0

−2

−4
x1

420−2−4

x2

4

2

0

−2

−4

• Procedure for decision stump selection:

◦ Collect all x-thresholds (middle between two consecutive x-coordinates).
(cyan lines in middle diagram)

◦ Collect all y-thresholds (middle between two consecutive y-coordinates).
(cyan lines in right diagram)

◦ Select threshold with minimum number of errors; here: x2 = 1.
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Ensemble Methods: AdaBoost

x1
420−2−4
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4

2

0

−2

−4
x1

420−2−4
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x2

4

2

0

−2

−4

• First model is the decision stump:

If x2 ≤ 1, then class red.
If x2 > 1, then class blue.

Data point weights are shown by the sizes
of the dots; dot area is proportional to weight.

• This decision stump produces two errors (blue points on the left).

◦ The weight of the two errors is increased (1→ 2.5).

◦ The weight of all other data points is reduced (1→ 0.625).
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Ensemble Methods: AdaBoost

x1
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• Second model is the decision stump:

If x1 ≤ −2, then class blue.
If x1 > −2, then class red.

• This decision stump produces
3× 0.625 = 1.875 errors.

Mind the data point weights!

• Misclassified points
are weighted up.

• Correctly classified points
are weighted down.

• Right diagram shows
new data point weights.
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Ensemble Methods: AdaBoost
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• Third model is the decision stump:

If x1 ≤ +2, then class blue.
If x1 > +2, then class red.

• This decision stump produces
3× 0.3846 = 1.1538 errors.

Mind the data point weights!

• Misclassified points
are weighted up.

• Correctly classified points
are weighted down.

• Right diagram shows
new data point weights.
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Ensemble Methods: AdaBoost
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• The joint classifier (shown on the left,
weighted sum of decision stumps)
classifies all data points correctly.

• Decision boundary (shown in cyan) is not
representable by a single decision stump.

• This illustrates the representational reason
why ensemble methods work.
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Ensemble Methods: AdaBoost

• AdaBoost Example 2

• Simple data set with two classes:

◦ 20 data points belong to the blue class.

◦ 20 data points belong to the red class.

• Classification with decision stumps.
(just more complex data set)
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• Data point weights
get increased along
the separating line.

• Perfect classification
is achieved with
7 decision stumps.
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Ensemble Methods: Bagging

• Bagging Example 1

• Simple data set with two classes:

◦ 5 data points belong to the blue class.

◦ 5 data points belong to the red class.

• Classification with decision stumps.
(but different model building than boosting)
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• Left: models from
5 bootstrap samples

• Right: models from
7 bootstrap samples

(different random seeds,
hence also different
bootstrap samples)
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Ensemble Methods: Bagging

• Bagging Example 2

• Simple data set with two classes:

◦ 20 data points belong to the blue class.

◦ 20 data points belong to the red class.

• Classification with decision stumps.
(bagging with decision stumps does not work well)
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• Left: models from
7 bootstrap samples

• Right: models from
13 bootstrap samples

(different random seeds,
hence also different
bootstrap samples)
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Ensemble Methods: Bagging

• Bagging Example 2

• Simple data set with two classes:

◦ 20 data points belong to the blue class.

◦ 20 data points belong to the red class.

• Classification with decision trees.
(bagging with decision stumps does not work well)
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• Left: tree depth 2,
7 bootstrap samples

• Right: tree depth 3,
7 bootstrap samples

(different random seeds,
hence also different
bootstrap samples)
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Ensemble Methods: Mixture of Experts

• In the approach referred to as mixture of experts the individual predictors
to combine are assumed as already given, for example, selected by a user.

• They may be, for instance, results of different learning algorithms
(like decision tree, neural networks with different structure, support vector machine etc.),
whatever a user sees as promising to solve the application task.

• Alternatively, they may be the set of models obtained
from any of the ensemble methods described so far.

• The focus is then placed on finding an optimal rule
to combine the predictions of the individual models.

• For classification tasks, for example, the input to this combination rule are
the class probability distributions produced by the individual classifiers.

• Note that this requires more than simple (weighted) majority voting,
which only asks each classifier for its best guess of the class of a new object:
each classifier must assign a probability to each class.
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Ensemble Methods: Mixture of Experts

• The most common rules to combine such class probabilities are

◦ the so-called sum rule, which simply averages, for each class,
the probabilities provided by the individual classifiers and

◦ the so-called product rule, which assumes conditional independence
of the classifiers given the class and therefore multiplies,
for each class, the probabilities provided by the different classifiers.

• In both cases the class with the largest sum or product
is chosen as the prediction of the ensemble.

• Experiments show that the sum rule is usually preferable,
likely because due to the product a class that is seen as
(very) unlikely by a single classifier has little chance of being predicted,
even if several other classifiers assign a high probability to it.

• Both the sum rule and the product rule can be seen as special cases
of a general family of combination rules that are known as f -means.
Other such rules include Dempster–Shafer combination and rank based rules.
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Ensemble Methods: Stacking

• Like a mixture of experts, stacking takes the set of predictors as already given
and focuses on combining their individual predictions.

• The core idea is to view the outputs of the predictors as new features and
to use a learning algorithm to find a model that combines them optimally.

• Technically, a new data table is set up with one row for each training example,
the columns of which contain the predictions of the different (level-1) models
for each training example.
In addition, a final column states the true classes.

• With this new training data set a (level-2) model is learned,
the output of which is the prediction of the ensemble.

• Note that the level-2 model may be of the same type as
or of a different type than the level-1 models.

• For example, the output of several regression trees (e.g. a random forest)
may be combined with a linear regression, or with a neural network.
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Ensemble Methods: Measuring Diversity

• Reminder: A necessary and sufficient condition for an ensemble to out-perform
the individuals is that the predictors are reasonably accurate and diverse.

• Cohen’s κ (kappa) [Jacob Cohen 1960]
Measures the agreement between two classifiers and is defined as

κ =
po − pe

1− pe
= 1− 1− po

1− pe
,

where po is the observed relative agreement between the classifiers
and pe is the hypothetical relative agreement expected by chance.

• Perfect agreement between the classifiers yields κ = 1.
Mere chance agreement between the classifiers yields κ = 0.

• Cohen’s κ is computed from a confusion matrix of the two classifiers.
(Note that this allows us to use the ground truth as one of the classifiers.)

This is a contingency table with entries nij that count how many data points
are assigned to class i by classifier 1 and to class j by classifier 2.
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Ensemble Methods: Measuring Diversity

• Cohen’s κ is computed
from a confusion matrix
of the two classifiers.

(c is the number of classes.)

(Note that one of the classifiers
may be the ground truth classification,
yielding a standard confusion matrix.)

classifier 2

1 2 . . . c ∑

1 n11 n12 . . . n1c n1.

2 n21 n22 . . . n2c n2.
... ... ... . . . ... ...

cl
as

si
fi

er
1

c nc1 nc2 . . . ncc nc.

∑ n.1 n.2 . . . n.c n..

• The two classifiers agree on the (sum of the) diagonal entries:

po =
1

n..

c

∑
i=1

nii.
(This is the accuracy if one of the
two classifiers is the ground truth.)

This is the observed relative agreement of the two classifiers.

• Note that po can not be used directly as a measure of agreement
(or 1− po as a measure of diversity), because unbalanced class distributions
induce a tendency towards higher agreement (on the more frequent class(es)).
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Ensemble Methods: Measuring Diversity

• In order to deal with unbalanced class distributions,
we have to work out the relative chance agreement to obtain pe.

• We assume that the classifiers assign classes independently and randomly
(respecting the marginal probabilities as given by the marginal counts).

• That is, we assume that

◦ the probability that classifier 1 assigns class i to a data point is p̂i. = ni./n..

◦ the probability that classifier 2 assigns class j to a data point is p̂.j =
n.j/n..

◦ the assignments of the two classifiers are stochastically independent.

• Under these assumptions, we expect the number of data points that
are assigned by classifier 1 to class i and by classifier 2 to class j to be

n̂ij = n.. p̂i. p̂.j = n.. ·
ni.

n..
· n.j

n..
=

ni.n.j

n..
.

and therefore

pe =
1

n..

c

∑
i=1

n̂ii =
1

n..

c

∑
i=1

ni.n.i

n..
=

1

n2
..

c

∑
i=1

ni.n.i.
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Ensemble Methods: Measuring Diversity

• Cohen’s κ is defined as

κ =
po − pe

1− pe
= 1− 1− po

1− pe
.

• Two classifiers that are in perfect agreement have po = 1.

• Hence Cohen’s κ measures how different the agreement of two classifiers
is from perfect agreement if the expected chance agreement is deducted.
That is, only the excess over chance agreement is considered.

• If the ground truth is used for one of the classifiers, Cohen’s κ measures
by how much a given classifier is better than a random classifier.

• Even though the most relevant values of Cohen’s κ are
κ = 1 (perfect agreement) and κ = 0 (only chance agreement),
it is not limited to the interval [0, 1], but can actually be negative.

• If the two classifiers disagree fully (always predict different classes),
it is po = 0 and hence κ = pe

pe−1 (for example, for pe =
1
2, it is κ = −1).
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Ensemble Methods: Measuring Diversity

• With Cohen’s κ the classifier properties of reasonably accurate and diverse
can be explored with κ-error diagrams. [Margineantu & Dietterich 1997]

◦ Scatter plot with one point for each pair of classifiers.

◦ On the x-axis: Cohen’s κ for the pair of classifiers.

◦ On the y-axis: average of the error rates of the two classifiers.

• Note that the requirement that the classifiers should be reasonably accurate
(better than random guessing) does not prevent Cohen’s κ from being negative.

• Suppose that for a binary classification problem we have (4k + 2) triplets
(prediction classifier 1, prediction classifier 2, true class) consisting of

k× (0, 1, 0), k× (1, 0, 0), 1× (0, 0, 0),

k× (0, 1, 1), k× (1, 0, 1), 1× (1, 1, 1).

• The probabilities of the classes as well as of the predictions are p0 = p1 =
1
2.

• For k = 24, the classifier accuracies are acc1 = acc2 ≈ 0.51 >
1
2 and κ ≈ −0.96.
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Ensemble Methods: Measuring Diversity

• Bagging Example

• Training data set with two classes:

◦ 20 data points belong to the blue class.

◦ 20 data points belong to the red class.

• Classification with decision stumps.
(bagging with decision stumps does not work well)

x1
420−2−4

x2

4

2

0

−2

−4

κ 10.80.60.40.20

e

0.4

0.3

0.2

0.1

0

training data • 13 bootstrap samples
⇒ 13 classifiers in principle,

but some are identical.

• Actually 9 different classifiers,
therefore (9

2) = 36 classifier pairs,
but only 19 different κ-error pairs.

(diagram: dot area is proportional to multiplicity)
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Ensemble Methods: Measuring Diversity

• Bagging Example

• Test data set with two classes:

◦ 20 data points belong to the blue class.

◦ 20 data points belong to the red class.

• Classification with decision stumps.
(bagging with decision stumps does not work well)

x1
420−2−4

x2

4

2

0

−2

−4

κ 10.80.60.40.20

e

0.4

0.3

0.2

0.1

0

test data • 13 bootstrap samples
⇒ 13 classifiers in principle,

but some are identical.

• Actually 9 different classifiers,
therefore (9

2) = 36 classifier pairs,
but only 31 different κ-error pairs.

(diagram: dot area is proportional to multiplicity)
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Ensemble Methods: Summary

• Fundamental Ideas

◦ Combine Multiple Classifiers/Predictors

◦ Why Do Ensemble Methods Work?

• Ingredients: Predictor Construction + Combination Rule

• Popular Ensemble Methods

◦ Bayesian Voting / Averaging (theoretically optimal)

◦ Bagging (Bootstrap Aggregating) (predictor construction)

◦ Random Subspace Selection (predictor construction)

◦ Injecting Randomness (predictor construction)

◦ Boosting, especially AdaBoost (predictor construction & combination rule)

◦ Mixture of Experts (combination rule)

◦ Stacking (combination rule)
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Random Forests

(Forest of Decision Trees induced with an Injection of Randomness)
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Reminder: Decision Trees

• A classifier is an algorithm that assigns a class from a predefined set
to a case or object, based on the values of descriptive attributes.

• A decision tree is a classifier with tree structure, in which
the classification process starts at the root node and
proceeds down the branches until a leaf is reached.

◦ In inner nodes, descriptive attributes are tested Blood pressure

AgeDrug A Drug B

Drug A Drug B

normal

high low

≤ 40 > 40

and the case to classify is directed down the
branch corresponding to the test outcome.

◦ When finally a leaf node is reached, the
leaf node class is assigned to the case.

• Decision tree induction is characterized by:

◦ Top-down approach (from root to leaves).

◦ Greedy selection of test attributes / tests.

◦ Divide-and-conquer / recursive descent.
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Decision Trees: Advantages and Disadvantages

• Decision Trees are attractive, because they have various advantages:

◦ fairly intuitive idea, interpretable model, easy to check for plausibility

◦ invariant under scaling and various other transformations of feature values

◦ induction is often straightforward (e.g. TDIDT)
(top-down induction
of decision trees)

◦ once a decision tree is built, classification is very fast

• However, decision trees also have disadvantages:

◦ They tend to overfit the training data, at least unless

– a minimum number of cases per leaf is required or

– induced decision trees are pruned.

Both approaches limit the accuracy on the training data.

◦ The number of attributes that can be used for a decision is limited
(the path length in a tree and thus the number of tests is limited)

⇒ limited “model capacity” / “model expressivity”
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Random Forests: A Brief History 1

• Random Decision Forests [Ho 1995]

Build multiple decision trees in randomly selected subspaces.

◦ Idea: Decision trees induced for different feature subsets generalize
in different ways (they are invariant for unselected features).

◦ Choosing random subsets is a convenient way of exploring feature subsets.

◦ For each (randomly) chosen feature subset a decision tree T is induced.

◦ The class assigned by a random decision forest T to a data point x⃗ is

T (x⃗) = argmax
c∈dom(C)

P̂T (c | x⃗), (choose most likely class)

where C is the target (i.e. class) attribute and

P̂T (c | x⃗) =
1

|T | ∑
T∈T

P̂T(c | x⃗) (effectively: sum rule)

with P̂T(c | x⃗) the confidence with which tree T assigns class c to x⃗
(that is, the relative frequency of class c in the leaf node reached by x⃗ in T).
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Random Forests: A Brief History 2

• Bagging Predictors [Breiman 1996]

Build multiple decision trees from bootstrap samples / bootstrap replicates.

◦ Idea: “Unstable” learning methods (like decision tree induction)
produce diverse predictors from bootstrap replicates.

◦ Reminder: bootstrap samples are random samples of the same size
as the given data set that are drawn with replacement.

◦ The class assigned by a bootstrapped decision forest T to a data point x⃗ is

T (x⃗) = argmax
c∈dom(C)

∑
T∈T

1I(T(x⃗) = c) (majority voting)

where C is the target (i.e. class) attribute and

T(x⃗) = argmax
c∈dom(C)

P̂T(c | x⃗) (most likely class)

with P̂T(c | x⃗) the confidence with which tree T assigns class c to x⃗
(that is, the relative frequency of class c in the leaf node reached by x⃗ in T).
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Random Forests: A Brief History 3

• Random Decision Forests [Ho 1998]

Build multiple decision trees in randomly selected subspaces.

Extensions of random decision forests mentioned in [Ho 1998]:

◦ Random feature subspaces may be selected globally or whenever
an internal tree node is generated (“local” subspace selection).
Note: The latter does not limit the features a decision tree as a whole can use.

◦ An alternative to build multiple decision trees is cross-validation:
Each cross-validation split yields one decision tree of a decision forest.

⇒ cross-validated committees

◦ Bagging (bootstrap aggregating) and boosting
may also be used to obtain multiple decision trees.
Note: Boosting also weights the influence of the individual decision trees (different prediction rule).

Side remarks: [Breiman 1996] found no advantage of random subspace selection over bagging
when using a majority vote of the individual trees or the sum rule for result combination.
[Ho 1998] did find an advantage when using the sum rule to combine tree predictions.
[Ho 1998] found trees to be more diverse when obtained with random subspace selection,
using a measure of classification region overlap of different trees.
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Random Forests: A Brief History 4

• Ensembles of Decision Trees [Dietterich 2000]

Build multiple decision trees using three methods:
Bagging, Boosting or Random Split Selection (as alternatives).

◦ For random split selection the split is chosen uniformly at random
from the best k splits (e.g. k = 20).

◦ For numeric attributes each possible threshold yields a separate split.
(Each threshold θ gives rise to a binary pseudo-attribute with values ≤ θ and > θ.)

◦ Alternative: Make the probability of choosing a split
proportional to the information gain of that split.
(⇒ better splits are chosen with higher probability)

◦ Refinement: At most smax splits are randomized within a tree
(for some user-specified value of smax).

Explicitly consider s = 0, 1, . . . , smax random splits (instead of a random s).

This would ensure that the “best” tree is included in the ensemble.
(That is, the decison tree that is induced without random split selection.)
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Random Forests: A Brief History 5

• Random Forests [Breiman 2001]

Build multiple decision trees from bootstrap samples / bootstrap replicates
and/or using randomly chosen feature subsets for each split.

◦ Definition: A random forest (classifier) consists of a collection
T = {Tk}k=1,2,... of tree-structured classifiers Tk : X → dom(C),
each induced via Tk = FTDIDT(D, Θk), where D is the data and

(C is the class
attribute)

the Θk are independent and identically distributed random vectors.
Each tree Tk casts a unit vote for a class c ∈ dom(C) at an input x⃗ ∈ X .

◦ In bagging the random vectors Θk describe the bootstrap samples.
(e.g., by a collection of independent random integers from {1, . . . , n} where n is the number of data points.)

◦ In random subspace selection or random split selection
the random vectors Θk describe the feature or split selection.
(e.g., by a collection of independent random integers from {1, . . . , m} where m is the number of features.)

◦ Since bagging may be combined with random subspace or random split selection,
the random vectors Θk may also describe both aspects.
(in this case Θk consists of two separate parts, that is, Θk = Θk,bag ∪Θk,rss)
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Random Forests: A Brief History 6

• Extremely Randomized Trees (ExtRaTrees) [Geurts, Ernst & Wehenkel 2006]

Build multiple decision trees from the whole data set (no bagging/sampling)
using Random Split Selection for a subset of the attributes.

◦ For each attribute, choose a random split point uniformly at random
between the minimum and the maximum attribute value.
(This implictly assumes metric attribute values, but nominal attributes can be handled analogously:
split the set of occurring nominal attribute values randomly into two non-empty subsets.)

◦ Evaluate the randomly chosen candidate splits (one per attribute) and
select the split/attribute with the best evaluation.

◦ Difference to ensemble approach by [Dietterich 2000] (brief history 4):

– [Dietterich 2000] evaluates all splits and then chooses randomly
from the k best splits (e.g. k = 20). ⇒ focus more on tree accuracy

– In ExtRaTrees only one randomly chosen split per attribute
is considered, from which the best split/attribute is selected.

– Thus, ExtRaTrees are much more random (“extremely random”)
and hence (individually) less accurate. ⇒ focus more on tree diversity
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Random Forests: Regression Trees

• Although originally introduced for classification,
random forests can just as well be used for regression:

◦ Definition: A random forest regressor consists of a collection
T = {Tk}k=1,2,... of tree-structured regressors Tk : X → R,
each induced via Tk = FTDIRT(D, Θk), where D is the data and
the Θk are independent and identically distributed random vectors.
Each tree Tk produces a prediction Tk(x⃗) = ŷ ∈ R at an input x⃗ ∈ X ;
these predictions are simply averaged to obtain an overall prediction.

◦ As for random forest classifiers, the random vectors Θk describe
bagging and/or random subspace or random split selection in the induction.

• From an ensemble point of view, there is no fundamental difference between
random forest classifiers and random forest regressors:

◦ Both use tree-structured base models / base learners.

◦ Both use the same methods to inject randomness into the induction process
(bagging, random subspace selection, and random split selection).
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Random Forests: Subspace / Split Selection

• Standard Random Forests (as implemented in many libraries)
use both bagging and random subspace or random split selection.

• Bagging is conducted in the standard fashion: (not used in ExtRaTrees)

Draw bootstrap samples and induce a separate tree for each sample.

• Typically, random forests use (local) random subspace selection,
controlled by a parameter mrss ≤ m for the maximum size of the subspace.
(Here m is the total number of attributes/features.)

• Typical suggestions for the choice of mrss are: (generally target-/data-dependent)

mrss = ⌊m/3⌋ or mrss = ⌊
√

m⌋ or mrss = ⌊log2(m[+1])⌋.

• In Extremely Randomized Trees, all available attributes may be used
or they may be constrained to a subset (mrss chosen as stated above).

A subset increases the randomization even more (“extremely randomized”).

Choosing mrss = 1 yields totally randomized trees (w.r.t. chosen splits).
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Random Forests: Bias

• In the limit |T | → ∞, a random forest of regression trees predicts at point x⃗:

T̂∞(x⃗) = lim|T |→∞
1
|T |∑T∈T T(x⃗) = ED,Θ(TD,Θ(x⃗)),

where TD,Θ = FTDIRT(D, Θ). (D: data, Θ: random vector)

• The bias of a random forest of regression trees is the same as the bias
of any of the individual sampled trees TD,Θ(x⃗): [Hastie et al. 2009]

bias(x⃗) = µ f (x⃗)− T̂∞(x⃗) = µ f (x⃗)−ED,Θ(TD,Θ(x⃗)),

where f describes the true underlying dependence of the target variable on x⃗;
the expected value µ f (x⃗) takes noise into account, that is, y = f (x⃗) + ε.

• Typically, the absolute value of this bias is greater then the bias
of an (unpruned) single regression tree induced from the data D,
because randomization introduces restrictions into the induction process.
(restricted set of features for the splits, only a subset (bootstrap sample) of the data is considered)

• The improvements in prediction obtained by random forests
are solely a result of variance reduction.
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Reminder: Why Do Ensemble Methods Work?

• According to [Dietterich 2000] there are essentially three reasons
why ensemble methods work: statistical, computational, and representational.

• Representational Reason

M

f

m1

m2

m3

• The gray areaM is the space
of all attainable models (or hypotheses).
(“model class” in lecture “Elementary Data Mining”)

• m1, m2 and m3 are individual models,
e.g. the individual models of an ensemble.

• f is the best model, the true hypothesis.
However, f lies outside ofH.

• The average prediction of the models
m1, m2 and m3 is close(r) to the prediction
of the true hypothesis f .

⇒ Ensemble methods can enrich
the space of representable hypotheses.
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Random Forests: Bias

• The representational reason why ensemble methods work states that by
combining several models in an ensemble, the model space can be enriched.

• An enriched model space has a lower bias, because additional dependences
between the inputs and the target variable can be represented.

• Why do random forests have the same bias as the individual trees?

• The reason is that the trees in a random forest are usually

◦ grown without any lower limit for the number of cases per leaf,
(if necessary, the splits are continued down to a single case per leaf)

◦ not pruned.

• Therefore the trees of a random forest usually achieve perfect prediction
on the data they are induced on, unless this data contains contradictions.
(contradiction: two sample cases that differ only in their target values)

• Actually, the bias is increased by the randomization.
(more contradictions on average due to the subspace selection: distinction may need an unselected feature)
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Excursion: Variance of Mean of (Correlated) Random Variables

• Consider n i.i.d. random variables Xi, i = 1, . . . , n, with var(Xi) = σ2.
The variance of the mean of these variables is

var
(

1
n ∑

n

i=1
Xi

)
= 1

n σ2.

• If the random variables are i.d. (identically distributed, but not necessarily
independent) with pairwise correlation ρ, the variance of their mean is

var
(

1
n ∑

n

i=1
Xi

)
= ρσ2 + (1−ρ)1

n σ2.

• This can be derived as follows: (covariance is bi-linear)

var
(

1
n ∑

n

i=1
Xi

)
= cov

(
1
n ∑

n

i=1
Xi,

1
n ∑

n

i=1
Xi

)
= 1

n2 ∑
n

i=1 ∑
n

j=1
cov(Xi, Xj)

= 1
n2

(
∑

n

i=1
var(Xi) + ∑

n

i=1 ∑
n

j=1;j ̸=i
cov(Xi, Xj)

)

= 1
n2(nσ2 + n(n− 1)ρσ2)

= 1
nσ2 + n−1

n ρσ2 = 1
nσ2 + ρσ2− 1

nρσ2

= ρσ2 + (1−ρ)1
n σ2
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Random Forests: Variance and De-Correlation

• In the limit |T | → ∞, a random forest of regression trees predicts at point x⃗:

T̂∞(x⃗) = lim|T |→∞
1
|T |∑T∈T T(x⃗) = ED,Θ(TD,Θ(x⃗)),

where TD,Θ = FTDIRT(D, Θ). (D: data, Θ: random vector)

• The variance of this limit prediction is [Hastie et al. 2009]

varD,Θ(T̂∞(x⃗)) = ρD,Θ(x⃗) σ2
D,Θ(x⃗),

where ρD,Θ(x⃗) is the sampling correlation between pairs of trees, that is,

ρD,Θ(x⃗) = corrD,Θ(TD,Θ1
(x⃗), TD,Θ2

(x⃗)),

where TD,Θi
= FTDIRT(D, Θi), i = 1, 2, and (Θi: i.i.d. random vectors)

σ2
D,Θ(x⃗) is the sampling variance of single trees, that is,

σ2
D,Θ(x⃗) = varD,Θ(TD,Θ(x⃗)).

• Note that in this description both the data D and Θ are random variables.
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Excursion: Law of Total Expectation

• If X and Y are two random variables on the same probability space,
and the expected value of Y is defined, then it can be written as

EX(X) = EY(EX|Y(X)),

that is, the expected value of the conditional expected value of X given Y
is the same as the expected value of X.

• In the continuous case, this law can be demonstrated as follows:

EX|Y=y(X) =
∫

x
xP(X = x|Y = y) dx

EY(EX|Y(X)) =
∫

y

(∫
x

xP(X = x|Y = y) dx
)

P(Y = y) dy

=
∫

y

∫
x
xP(X = x, Y = y) dx dy

=
∫

y

(∫
x

xP(X = x|Y = y) dx
)

P(Y = y) dy

=
∫

x
x
(∫

y
P(X = x, Y = y) dy

)
dx

=
∫

x
xP(X = x) dx = EX(X)
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Excursion: Law of Total Variance

• If X and Y are two random variables on the same probability space,
and the variance of X is finite, then it can be decomposed as

varX(X) = EY(varX|Y(X)) + varY(EX|Y(X)).

• This can be derived as follows:

varX(X)
(1)
= EX(X2)− (EX(X))2

(2)
= EY(EX|Y(X2))− (EY(EX|Y(X)))2

(3)
= EY(varX|Y(X) + (EX|Y(X))2)− (EY(EX|Y(X)))2

(4)
= EY(varX|Y(X)) + EY((EX|Y(X))2− (EY(EX|Y(X)))2

(5)
= EY(varX|Y(X)) + varY(EX|Y(X))

(1) definition of variance: varX(X) = EX((X− EX(X))2) = EX(X2)− (EX(X))2

(2) law of total expectation (2×: once for EX(X2) and once for EX(X))

(3) definition of variance: varX|Y(X) = EX|Y(X2)− (EX|Y(X))2

(4) expected value is linear (expectation of sum is sum of expectations)

(5) definition of variance: varY(EX|Y(X)) = EY((EX|Y(X))2)− (EY(EX|Y(X)))2
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Random Forests: Variance and De-Correlation

• The total variance varD,Θ(TD,Θ(x⃗)) can be decomposed: [Hastie et al. 2009]

varD,Θ(TD,Θ(x⃗))︸ ︷︷ ︸
total variance

= varD(EΘ|D(TD,Θ(x⃗))︸ ︷︷ ︸
data variance

+ ED(varΘ|D(TD,Θ(x⃗))︸ ︷︷ ︸
randomization variance

.

• The randomization variance increases, for example,
if the number mrss of features considered for a split is reduced.

• However, the data variance decreases with more randomization,
and it usually decreases more than the randomization variance increases.

• Suppose there was no randomization. (no bagging, no random subspace/split selection)

◦ All trees are the same (deterministic induction procedure).

◦ If the trees are unpruned and not restricted during induction,
they vary considerably with the data (overfitting to the data).

• With randomization, averaging multiple different trees
reduces the overfitting of the individual trees to the training data.
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Random Forests: Convergence

• For fixed data D, the conditional correlation at point x⃗, that is, [Hastie et al. 2009]

ρΘ|D(x⃗) = corrΘ1,Θ2
(TΘ1|D(x⃗), TΘ2|D(x⃗)),

is actually zero, because bootstrap and feature sampling are i.i.d.

• For fixed data D, the variance of the limit prediction is

varΘ|D(T̂∞(x⃗)) = ρΘ|D(x⃗) σ2
Θ|D(x⃗),

which vanishes due to the vanishing correlation ρΘ|D(x⃗).

• This means that a random forest converges for |T | → ∞.

• This does not mean that a random forest converges to perfect predictions,
but only that it converges to a certain generalization error.

• It also does not mean that the concrete trees of a concrete random forest
are uncorrelated. Rather, it is a statement about the sampling distribution.

(that is, considering all possible Θ and their probability of occurrence)
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Random Forests: Convergence

• If more and more trees are added to a random forest, its performance
converges to a certain generalization error (i.e., error on new data).

• The value of this generalization error depends on

◦ the strength of the individual trees and

◦ the correlation between the individual trees. (attention: different from slide 91!)

(More details for decision forests below and in [Breiman 2001] and [Hastie et al. 2009].)

• This guaranteed convergence to a certain generalization error
is often interpreted as “Random forests cannot overfit.”

• However, this is misleading, since the convergence limit may be overfitting.

• The reason is that the data sets from which the individual trees are built
are not independent random samples from the underlying distribution,
but bootstrap samples from a specific given data set (data sample).

• A random forest may still overfit to the pecularities of this specific data set.
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Random Forests: Generalization Error

• The margin function of a random decision forest T is [Breiman 2001]

γT (x⃗, y) = 1
|T | ∑

T∈T
1(T(x⃗) = y) − max

c∈dom(C); c ̸=y

1
|T | ∑

T∈T
1(T(x⃗) = c).

This function is positive where the random forest predicts the correct class
and negative where it predicts an incorrect class.

• The larger the margin, the greater the confidence in the classification.

• The generalization error of a random decision forest T is

ET =
∫

X
∑

y∈dom(C)

1(γT (x⃗, y) < 0) p(x⃗, y) dx⃗ = PX⃗,Y(γT (X⃗, Y) < 0),

that is, the total probability mass of data points that are misclassified.

• If more and more trees are added, the margin function converges to

γD(x⃗, y) = EΘ(1(TΘ|D(x⃗) = y))− max
c∈dom(C); c ̸=y

EΘ(1(TΘ|D(x⃗) = c))

= PΘ( TΘ|D(x⃗) = y )− max
c∈dom(C); c ̸=y

PΘ( TΘ|D(x⃗) = c ).
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Random Forests: Generalization Error

• If more and more trees are added, the margin function converges to

γD(x⃗, y) = PΘ(TΘ|D(x⃗) = y)− max
c∈dom(C); c ̸=y

PΘ(TΘ|D(x⃗) = c).

• As a consequence, the generalization error converges to

ED =
∫

X
∑

y∈dom(C)

1(γD(x⃗, y) < 0) p(x⃗, y) dx⃗ = PX⃗,Y(γD(X⃗, Y) < 0),

that is, the total probability mass of data points that are misclassified.

• The strength of a random decision forest (in the limit) is [Breiman 2001]

sD = EX⃗,Y(γD(X⃗, Y)).

• Assuming sD ≥ 0, Chebychev’s inequality yields for the generalization error

ED ≤ varX⃗,Y(γD(X⃗, Y)) / s2
D.

Chebychev’s inequality states that for finite mean and finite non-vanishing variance
no more than a certain fraction of values can be further than a certain distance from the mean.
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Random Forests: Generalization Error

• Chebychev’s inequality generally states that for a random variable Z
with finite mean µZ and finite non-vanishing variance σ2

Z and for any k > 0:

P(|Z− µZ| ≥ kσZ) ≤ 1/k2.

• If one chooses k = µZ/σZ, one obtains

P(|Z− µZ| ≥ µZ) ≤ σ2
Z/µ2

Z.

• Now choose Z = γD(X⃗, Y) as the random variable.

Then µZ = EX⃗,Y(γD(X⃗, Y)) = sD and σ2
Z = varX⃗,Y(γD(X⃗, Y)).

• Drawing on the definition of the generalization error, with sD > 0 this leads to

ED = PX⃗,Y(γD(X⃗, Y) < 0)

= PX⃗,Y(sD− γD(X⃗, Y) > sD)

≤ PX⃗,Y(|sD− γD(X⃗, Y)| ≥ sD)

≤ varX⃗,Y(γD(X⃗, Y)) / s2
D.
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Random Forests: Strength and Correlation

• We now derive a more expressive characterization of the generalization error.

• Define the raw margin function as [Breiman 2001]

γD,Θ(x⃗, y) = 1(TΘ|D(x⃗) = y)− 1(TΘ|D(x⃗) = ζD(x⃗, y)), where

ζD(x⃗, y) = argmax
c∈dom(C); c ̸=y

EΦ(1(TΦ|D(x⃗) = c)).

Note: ζD(x⃗, y) is an expectation over all possible trees, but Θ refers to one tree.

• The margin function is the expectation of the raw margin function: (cf. slide 97)

γD(x⃗, y) = EΘ(γD,Θ(x⃗, y)).

• We will also need that for any function f (Θ) it is
(
EΘ( f (Θ))

)2
= EΘ1,Θ2

( f (Θ1) f (Θ2)),

provided Θ1 and Θ2 are independent and have the same distribution (as Θ).

• This allows us to find a better expression for the variance of the margin function.
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Random Forests: Strength and Correlation

• We can now find a better expression for the variance of the margin function:

varX⃗,Y(γD(X⃗, Y)) = covX⃗,Y(γD(X⃗, Y), γD(X⃗, Y))

= covX⃗,Y(EΘ1
(γD,Θ1

(X⃗, Y)), EΘ2
(γD,Θ2

(X⃗, Y)))

= EΘ1,Θ2
(covX⃗,Y(γD,Θ1

(X⃗, Y), γD,Θ2
(X⃗, Y)))

= EΘ1,Θ2
(ρX⃗,Y(Θ1, Θ2, D) σX⃗,Y(Θ1, D) σX⃗,Y(Θ2, D)),

where ρX⃗,Y(Θ1, Θ2, D) = corrX⃗,Y(γD,Θ1
(X⃗, Y), γD,Θ2

(X⃗, Y)) for fixed Θ1, Θ2,

and σX⃗,Y(Θ, D) = sdX⃗,Y(γD,Θ(X⃗, Y)) for fixed Θ (standard deviation).

• With this we have (using also EZ(Z)2 ≤ EZ(Z2)) [Breiman 2001]

varX⃗,Y(γD(X⃗, Y)) = ρ̄D(EΘ(σX⃗,Y(Θ, D)))2 ≤ ρ̄D EΘ(σ
2
X⃗,Y

(Θ, D)),

where ρ̄D is the mean value of the correlation, that is, (cf. slide 100)

ρ̄D =
EΘ1,Θ2

(ρX⃗,Y(Θ1, Θ2, D) σX⃗,Y(Θ1, D) σX⃗,Y(Θ2, D))

EΘ1,Θ2
(σX⃗,Y(Θ1, D) σX⃗,Y(Θ2, D))

.

Christian Borgelt Advanced Data Mining 2 101



Random Forests: Strength and Correlation

• The considered correlation ρ̄D is the mean value of the (tree) correlations

ρX⃗,Y(Θ1, Θ2, D) = corrX⃗,Y(γD,Θ1
(X⃗, Y), γD,Θ2

(X⃗, Y)).

• Note that this correlation is different from the correlation (cf. slide 91)

ρD,Θ(x⃗) = corrD,Θ(TD,Θ1
(x⃗), TD,Θ2

(x⃗)),

which is the sampling correlation between pairs of trees, or

ρΘ|D(x⃗) = corrD,Θ(TΘ1|D(x⃗), TΘ2|D(x⃗)),

which is the same, but refers to a fixed (training) data set D.

• The former refers to the margin functions of two trees over the data space.

◦ The pair of trees is fixed (the specific trees induced with Θ1 and Θ2).

◦ The (query) point x⃗ is varied over the data space (X⃗ is a random variable).

• The latter refers to the predictions at a specific (query) point x⃗.

◦ The (query) point x⃗ is fixed (it is one specific point in the data space).

◦ The pair of trees is varied (Θ1 and Θ2 are random variables).
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Random Forests: Strength and Correlation

• The second factor in the expression for varX⃗,Y(γD(X⃗, Y)) can be bounded as

EΘ(varX⃗,Y(Θ)) = EΘ(varX⃗,Y(γD,Θ(X⃗, Y))

= EΘ

(
EX⃗,Y

((
γD,Θ(X⃗, Y)−EX⃗,Y(γD,Θ(X⃗, Y))

)2
))

= EΘ

(
EX⃗,Y

(
γD,Θ(X⃗, Y)2

))
−EΘ

(
EX⃗,Y

(
γD,Θ(X⃗, Y)

)2
)

≤ EΘ

(
EX⃗,Y

(
γD,Θ(X⃗, Y)2

))
−EX⃗,Y

(
EΘ

(
γD,Θ(X⃗, Y)

)
︸ ︷︷ ︸

=γD(X⃗,Y)

)2

= EΘ

(
EX⃗,Y

(
γD,Θ(X⃗, Y)2

))
− s2

D

≤ 1− s2
D. (inequalities: EZ(Z2) ≥ EZ(Z)2 and γD,Θ(X⃗, Y) ∈ [−1, 1])

• Therefore an upper bound for the generalization error is [Breiman 2001]

E∞
D ≤ ρ̄D (1− s2

D) / s2
D.

• Clearly, this bound is the lower, ◦ the greater the strength sD and

◦ the smaller the mean correlation ρ̄D.
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Random Forests: Strength and Correlation

• Reminder: The margin function of a random forest converges to

γD(x⃗, y) = EΘ(1(TΘ|D(x⃗) = y))− max
c∈dom(C); c ̸=y

EΘ(1(TΘ|D(x⃗) = c))

= PΘ( TΘ|D(x⃗) = y )− max
c∈dom(C); c ̸=y

PΘ( TΘ|D(x⃗) = c ).

• If there are only two classes, this limit margin function simplifies to

γD(x⃗, y) = PΘ(TΘ|D(x⃗) = y)−
(
1− PΘ(TΘ|D(x⃗) = y)

)
.

= 2PΘ(TΘ|D(x⃗) = y)− 1.

• A requirement of positive strength is thus similar to the weak learning condition

EX⃗,Y(PΘ(TΘ|D(X) = Y)) > 1
2,

that is, an individual classifier should be better than random guessing.

• The raw margin function is 2 1(TΘ|D(X) = Y)− 1 and

the correlation ρ̄ is between 1(TΘ1|D(X) = Y) and 1(TΘ2|D(X) = Y).
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Random Forests: Out-of-Bag Error

• Reminder out-of-bag error: For each data point (x⃗, y), construct a predictor
by averaging / letting vote only those individual predictors corresponding
to bootstrap samples in which the data point (x⃗, y) does not appear.

• In random forests, the out-of-bag error can be determined
in parallel with the induction of decision trees.

(Note that this does not mean that the trees have to be induced sequentially.
Induction parallelization is still possible: The trees are induced in batches,
the size of which is determined by the number of processor cores.
The out-of-bag error is (re-)computed after each batch.)

• An out-of-bag error estimate is usually very close to the error estimate
obtained by k-fold cross-validation (but unbiased).

• This can be used to determine the number of trees (individuals of the ensemble):
Once the out-of-bag error stabilizes, the training can be terminated.

• Alternatively, a good number of trees may be found by cross-validation
or a user may specify the number of trees beforehand.
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Random Forests: Out-of-Bag Strength

• Strength can also be estimated using out-of-bag methods.

• The strength of a random decision forest (in the limit) is (cf. slide 98)

sD = EX⃗,Y

(
PΘ(TΘ|D(x⃗) = y)− max

c∈dom(C); c ̸=y
PΘ(TΘ|D(x⃗) = c)

)
.

• Define the relative frequencies ∀y ∈ dom(C): [Breiman 2001]

QD,T (x⃗, y) =
∑T∈T 1((x⃗, y) ∈ OT ∧ T(x⃗) = y)

∑T∈T 1((x⃗, y) ∈ OT)
with OT = D−DT,

where DT is the in-the-bag data set from which T was induced.

• QD,T (x⃗, y) is the fraction of votes cast at the point x⃗ for class y
and hence QD,T (x⃗, y) is an estimate for PΘ(TΘ|D(x⃗) = y).

• As a consequence we get the strength estimate [Breiman 2001]

ŝD,T =
1

|D| ∑
(x⃗,y)∈D

(
QD,T (x⃗, y)− max

c∈dom(C); c ̸=y
QD,T (x⃗, c)

)
.
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Random Forests: Out-of-Bag Correlation

• Correlation can also be estimated using out-of-bag methods.

• The mean value of the correlation is (cf. slide 101)

ρ̄D =
varX⃗,Y(γD(X⃗, Y))

EΘ(σX⃗,Y(Θ, D))2
.

• The numerator of this quotient is (cf. slide 97)

varX⃗,Y(γD(x⃗, y))

= varX⃗,Y(PΘ(TΘ|D(x⃗) = y)− max
c∈dom(C); c ̸=y

PΘ(TΘ|D(x⃗) = c))

= EX⃗,Y

(
(PΘ(TΘ|D(x⃗) = y)− max

c∈dom(C); c ̸=y
PΘ(TΘ|D(x⃗) = c))2

)
− s2

D,

the first term of which can be estimated as

δ̂ 2
D,T =

1

|D| ∑
(x⃗,y)∈D

(
QD,T (x⃗, y)− max

c∈dom(C); c ̸=y
QD,T (x⃗, c)

)2

,

while for the strength sD we can use the out-of-bag estimate ŝD. (cf. slide 106)
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Random Forests: Out-of-Bag Correlation

• The denominator is EΘ(σX⃗,Y(Θ, D))2 = EΘ(sdX⃗,Y(γD,Θ(X⃗, Y)))2,
where γD,Θ(x⃗, y) is the raw margin function (cf. slide 100)

γD,Θ(x⃗, y) = 1(TΘ|D(x⃗) = y)− 1(TΘ|D(x⃗) = ζD(x⃗, y)), where

ζD(x⃗, y) = argmax
c∈dom(C); c ̸=y

EΦ(1(TΦ|D(x⃗) = c)).

(Note that ζD(x⃗, y) ̸= y by definition and that TΘ|D(x⃗) yields one specific class for each x⃗.)

• Therefore the standard deviation σX⃗,Y(Θ, D) is given by [Breiman 2001]

σX⃗,Y(Θ, D) =
√

p1(Θ, D) + p2(Θ, D) + (p1(Θ, D)− p2(Θ, D))2, where

p1(Θ, D) = EX⃗,Y(1(TΘ|D(X⃗) = Y)) and

p2(Θ, D) = EX⃗,Y(1(TΘ|D(X⃗) = ζD(X⃗, Y))).

• Hint: Look at 1(TΘ|D(X⃗) = Y) versus 1(TΘ|D(X⃗) = ζD(X⃗, Y)).

◦ What are the possible values of their difference?

◦ What are the probabilities of these values? (details⇒ Exercise Sheet 2)
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Random Forests: Out-of-Bag Correlation

• For estimation compute for each tree T ∈ T and for each data point (x⃗, y) ∈ D
the relative frequencies QD,T (x⃗, y), y ∈ dom(C), and from them estimates

ζ̂D,T (x⃗, y) = max
c∈dom(C); c ̸=y

QD,T (x⃗, y).

• Then estimate for each tree T ∈ T with OT = D−DT: (DT: in-the-bag data for T,
OT: out-of-bag data for T)

p̂1(T, D) =
1

|OT| ∑
(x⃗,y)∈OT

1(T(x⃗) = y) and

p̂2(T, D) =
1

|OT| ∑
(x⃗,y)∈OT

1(T(x⃗) = ζ̂D(x⃗, y)).

(Same principle as also used before:
Replace expected values over the whole data space with averages over the given data.)

• With p̂1(T, D) and p̂2(T, D) we can estimate

σ̂D(T, D) =
√

p̂1(T, D) + p̂2(T, D) + ( p̂1(T, D)− p̂2(T, D))2.
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Random Forests: Out-of-Bag Correlation

• With p̂1(T, D) and q̂1(T, D) we can estimate

σ̂D(T, D) =
√

p1(T, D) + p2(T, D) + (p1(T, D)− p2(T, D))2

and thus get as an estimate of the expected value of the standard deviation

¯̂σD,T =
1

|T | ∑
T∈T

σ̂D(T, D).

(Still same principle as also used before:
Replace expected value over Θ with average over the trees in the random forest.)

• We finally arrive at the correlation estimate (cf. slides 106, 107 and above)

ˆ̄ρD,T =
δ̂ 2

D,T − ŝ2
D,T

¯̂σ
2
D,T

of the random forest T , which is an estimate of the (limit) mean correlation

ρ̄D =
varX⃗,Y(γD(X⃗, Y))

EΘ(σX⃗,Y(Θ, D))2
.
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Random Forests: Prediction Uncertainty

• If the task is regression, the prediction uncertainty may be estimated as
the standard deviation of the individual predictions:

σ(x⃗) =

√
1

|T | − 1 ∑
T∈T

(T(x⃗)− T̂(x⃗))2, where T̂(x⃗) =
1

|T | ∑
T∈T

T(x⃗)

is the prediction of the random forest as a whole.

• If the task is classification, the prediction uncertainty may be characterized by
the Shannon entropy of the class vote distribution:

∀c ∈ dom(C) : pT (c|⃗x) =
1

|T | ∑
T∈T

1(T(x⃗) = c)),

U(x⃗) = H(pT (C|⃗x)) = − ∑
c∈dom(C)

pT (c|⃗x) log2 pT (c|⃗x).

• A very simple alternative is

U(x⃗) = 1− pT (c∗ |⃗x) with c∗ = argmax
c∈dom(C)

pT (c|⃗x).
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Random Forests: Variable Importance

• Single decision and regression trees have the advantage that they are
interpretable: they can easily be checked for plausibility.

• This no longer holds for random forests, due to the multitude of trees.
(Usually dozens to hundreds of trees are induced; each tree treats a case differently.)

• As a substitute for direct interpretability of the model,
one may consider variable (or feature) importance scores.

• In applications the descriptive variables are seldom equally relevant.

• Often only a few of them have a substantial influence on the prediction;
the vast majority are irrelevant and could just as well have been excluded.

• It is often useful to learn the relative importance or contribution
of each descriptive variable in predicting the response.

• This can be a reasonable substitute for the loss of interpretability,
though one has to pay attention to correlated informative variables.
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Reminder: Hypothesis Testing

• A hypothesis test is a statistical procedure with which a decision is made
between two contrary hypotheses about the process that generated the data.

• The two hypotheses may refer to, for example,

◦ the value of a parameter (Parameter Test),

◦ a distribution assumption (Goodness-of-Fit Test),

◦ the dependence of two attributes (Dependence Test).

• One of the two hypothesis is preferred, that is, in case of doubt the decision
is made in its favor. (One says that it gets the “benefit of the doubt”.)

• The preferred hypothesis is called the Null Hypothesis H0,

the other hypothesis is called the Alternative Hypothesis H1.

• Intuitively: The null hypothesis H0 is put on trial. It is accused to be false.

Only if the evidence is strong enough, it is convicted (that is, rejected).

If there is (sufficient) doubt, however, it is acquitted (that is, accepted).
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Reminder: Hypothesis Testing

• The test decision is based on a test statistic,
that is, a function of the sample values.

• The null hypothesis is rejected if the value of the test statistic
lies inside the so-called critical region C.
(Outside the critical region C the evidence against the null hypothesis H0 is not strong enough.)

• Developing a hypothesis test consists in finding the critical region
for a given test statistic and significance level (see below).

• The test decision may be wrong. There are two possible types of errors:

Type 1 (or α): The null hypothesis H0 is rejected, even though it is correct.

Type 2 (or β): The null hypothesis H0 is accepted, even though it is false.

• Type 1 errors are considered as more severe,
since the null hypothesis gets the “benefit of the doubt”.

• Hence it is tried to limit the probability of a type 1 error to a certain maximum α.
This maximum value α is called significance level.
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Reminder: Parameter Test

• In a parameter test the contrary hypotheses refer to the value of a parameter,
for example (one-sided test):

H0 : θ ≥ θ0, H1 : θ < θ0.

• For such a test usually a point estimator T is chosen as the test statistic.
(A point estimator yields a single “best” value as an estimate for the parameter.)

• The null hypothesis H0 is rejected if the value t of the point estimator does not
exceed a certain value c, the so-called critical value (that is, C = (−∞, c]).

• Formally the critical value c is determined as follows: We consider

Preject(θ) = Pθ(H0 is rejected) = Pθ(T ∈ C),

the probability of rejecting H0 depending on the parameter θ.

• This value must not exceed the significance level α for values θ satisfying H0:

max
θ: θ satisfies H0

Preject(θ) ≤ α. (here: Preject(θ0) ≤ α)
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Reminder: Parameter Test

• The probability of a type 1 error is the area under the estimator’s
probability density function f (T | θ0) to the left of the critical value c.

(Note: This example illustrates H0 : θ ≥ θ0 and H1 : θ < θ0.)

T

f (T | θ0)

critical region C c θ0

probability of
a type 1 error

β(θ)

• Obviously the probability of a type 1 error depends on the location
of the critical value c: higher values mean a higher error probability.

• Idea: Choose the location of the cricital value so that the maximal
probability of a type 1 error equals α, the chosen significance level.

(That is, limit the probability of a type 1 error to the significance level α.)
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Reminder: Parameter Test

• What is so special about θ0 that we use f (T | θ0)?

T

f (T | θ)probability of
a type 1 error

β(θ)

critical region C c θ0 θ satisfying H0

• In principle, all θ satisfying H0 have to be considered,
that is, all density functions f (T | θ) with θ ≥ θ0.

• Among these values θ, the one with the highest probability of a type 1 error
(that is, the one with the highest power β(θ)) determines the critical value.

Intuitively: we consider the worst possible case.

• General principle: The test result should hold even in the worst possible case.
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Reminder: Parameter Test

• Consider a one-sided test of the expected value µ of a normal distribution
N (µ, σ2) with known variance σ2, that is, consider the hypotheses

H0 : µ ≥ µ0, H1 : µ < µ0.

• As a test statistic we use the standard point estimator for the expected value

X̄ =
1

n

n

∑
i=1

Xi.

This point estimator has the probability density

fX̄(x) = N
(

x; µ, σ2

n

)
.

• Therefore it is (with the N (0, 1)-distributed random variable Z)

α = β(µ0) = Pµ0
(X̄ ≤ c) = P

(
X̄− µ0

σ/
√

n
≤ c− µ0

σ/
√

n

)
= P

(
Z ≤ c− µ0

σ/
√

n

)
.

(Here α is the chosen significance level of the hypothesis test.)
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Reminder: Parameter Test

• We have as a result that

α = Φ

(
c− µ0

σ/
√

n

)
,

where Φ is the distribution function of the standard normal distribution.

• The distribution function Φ is tabulated or approximated by rational functions,
because it cannot be represented in closed form. From such a table or
approximation we retrieve the value zα satisfying α = Φ(zα) (α-quantile of Φ).

• Then the critical value is
c = µ0 + zα

σ√
n

.

(Note that the value of zα is negative due to the usually small value of α.
Typical values are α = 0.1, α = 0.05 or α = 0.01.)

• H0 is rejected if the value x̄ of the point estimator X̄ does not exceed c,
otherwise it is accepted.
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Reminder: Parameter Test

• Example: Let σ = 5.4, n = 25 and x̄ = 128. We choose µ0 = 130 and α = 0.05.

• From a standard normal distribution table we retrieve z0.05 ≈ −1.645 and get

c0.05 ≈ 130− 1.645
5.4√

25
≈ 128.22.

Since x̄ = 128 < 128.22 = c, we reject the null hypothesis H0.

• If, however, we had chosen α = 0.01, it would have been (with z0.01 ≈ −2.326):

c0.01 ≈ 130− 2.326
5.4√

25
≈ 127.49

Since x̄ = 128 > 127.49 = c, we would have accepted the null hypothesis H0.

• Instead of fixing a significance level α one may state the so-called p-value

p = Φ

(
128− 130

5.4/
√

25

)
≈ 0.032.

For α ≥ p = 0.032 the null hypothesis is rejected, for α < p = 0.032 accepted.
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Reminder: p-value

• Let t be the value of the test statistic T
that has been computed from a given data set.

(Note: This example illustrates H0 : θ ≥ θ0 and H1 : θ < θ0.)

T

f (T | θ0)

t θ0

p-value of t

• The p-value is the probability that a value of t or less
can be observed for the chosen test statistic T.

• The p-value is a lower limit for the significance level α
that may have been chosen if we wanted to reject the null hypothesis H0.

(. . . but α has to be chosen before knowing p, see below!)
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Reminder: p-value

Attention: p-values are often misused or misinterpreted!

• A low p-value does not mean that the result is very reliable!

All that matters for the test result is whether the computed p-value
is below the chosen significance level or not.

(A low p-value could just be a chance event, an accident!)

• The significance level may not be chosen after computing the p-value,
since we tend to choose lower significance levels if we know that they are met.

Doing so would undermine the reliability of the procedure!

• Stating p-values is just a convenient way of avoiding a fixed significance level
(since significance levels are a matter of choice and thus user-dependent;
they express a user’s attitude toward the risk of a wrong test result).

However: A significance level must still be chosen
before a reported p-value is looked at.
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Excursion: Surrogate Data Tests

• Often, as in the above example, the null hypothesis is represented analytically.

• In this case the distribution of the test statistic under the null hypothesis
can (often) be determined analytically.

• Then a p-value can be obtained analytically from this distribution.
(As demonstrated in the example discussed above.)

• If this is not possible, because the distribution of the test statistic under
the null hypothesis is unknown or cannot be obtained in a feasible manner,
one may resort to an implicit representation of the null hypothesis.

• Core idea: Represent the null hypothesis by surrogate data sets.

◦ Each surrogate data set is generated in such a way
that it can be seen as resulting under the null hypothesis.

◦ For a surrogate data set, the test statistic can be computed.

◦ By generating sufficiently many surrogate data sets,
we can obtain (an approximation of) the distribution of the test statistic.
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Excursion: Permutation Tests

• A permutation test (also known as shuffle test or re-randomization test)
is a non-parametric hypothesis test that is based on resampling.

• Core idea: Surrogate data sets are obtained by permuting the sample values.

◦ Example: Test for dependence of two variables.

◦ By permuting the values of one of the variables over the sample,
any dependence between the two variables is destroyed.

◦ Therefore the resulting data set can be seen as resulting
under the null hypothesis of independence (H0).

◦ By collecting the values of the test statistic for many different permutations,
(an approximation of) the test statistic distribution (under H0) is obtained.

◦ From this (approximate) distribution a p-value can be derived
by checking where the test statistic for the original sample
falls in the sorted list of test statistic values for the permutations.

• Permutation tests exist in many situations where parametric tests do not exist.
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Excursion: Permutation Tests

• Example: Do the distributions underlying two samples have the same mean?

Sample 0: x1, x2, · · ·, xn.

Hypothesis H0: µX = µY,

Sample 1: y1, y2, · · ·, ym.

Hypothesis H1: µX < µY.

Test statistic: mean difference, that is, d =
(

1
m ∑

m
i=1 yi

)
−
(

1
n ∑

n
i=1 xi

)
.

• Concrete example: n = m = 20, X ∼ N (− 1
20, 1), Y ∼ N (+ 1

20, 1).

◦ Represent data as a table
with variables z (value)
and s (sample index):

◦ Permute values of s.
(Randomly reassign
values to samples.)

◦ Collect test statistics
for many permutations.

z x1 x3 · · · x20 y1 y3 · · · y20

s 0 0 · · · 0 1 1 · · · 1

1

0

s

z −1.5 −1 −0.5 0 +0.5 +1 +1.5
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Excursion: Permutation Tests

• Example: 10000 permutations of the variable s and collection of
the mean differences between z for s = 1 and z for s = 0.

• Distribution of the test statistic values (histogram, bin width 0.02):

5% 1% p = 0.33%

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

600

light blue: critical value for α = 5%,
dark blue: critical value for α = 1%,
red: p-value for given sample.

Since it is p = 0.33% < 1%,
H0 can be rejected at α = 1%,
i.e., (likely) H1 : µX < µY holds.
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Excursion: Permutation Tests

• Example: Is a (positive) correlation coefficient significant?
(Consider both Pearson and Spearman correlation.)

• Concrete example: 100 data points
(xi, yi), i = 1, . . . , 100, are sampled
with xi =

i
n + ε and yi =

i
n + ε, where

ε ∼ U (0, 3) (uniform distribution).

• The values of the yi are permuted
over the sample.
(One may just as well permute the xi.)

This should destroy any correlation
between the two variables
(other than chance correlation).

• Collect correlation coefficients
for many permutations and thus
derive an (approximate) distribution.

y

0

1

2

3

4

x0 1 2 3 4

ρPearson ≈ 0.292 ρSpearman ≈ 0.251
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Excursion: Permutation Tests

original sample

y

0

1

2

3

4

x0 1 2 3 4

ρPearson ≈ 0.292 ρSpearman ≈ 0.251

one permutation

y

0

1

2

3

4

x0 1 2 3 4

ρPearson ≈ 0.069 ρSpearman ≈ 0.065

another permutation

y

0

1

2

3

4

x0 1 2 3 4

ρPearson ≈ −0.036 ρSpearman ≈ −0.034

• Note that the correlation coefficients of the permutations are not exactly zero.

• However, they tend to be very small and show mere chance correlation.

• The original sample exhibits significant correlation
if the observed correlation is unlikely to occur by chance.
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Excursion: Permutation Tests

• Example: 10000 permutations of the variable y and collection of
the correlation coefficients (both Pearson and Spearman).

• Distribution of Pearson correlation coefficients (histogram, bin width 0.02):

5% 1% p = 0.16%

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

600

700

light blue: critical value for α = 5%,
dark blue: critical value for α = 1%,
red: p-value for given sample.

Since it is p = 0.16% < 1%,
H0 can be rejected at α = 1%,
i.e., x, y are (likely) correlated.
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Excursion: Permutation Tests

• Example: 10000 permutations of the variable y and collection of
the correlation coefficients (both Pearson and Spearman).

• Distribution of Spearman correlation coefficients (histogram, bin width 0.02):

5% 1% p = 0.77%

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

600

700

light blue: critical value for α = 5%,
dark blue: critical value for α = 1%,
red: p-value for given sample.

Since it is p = 0.77% < 1%,
H0 can be rejected at α = 1%,
i.e., x, y are (likely) correlated.
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Random Forests: Variable Importance via Permutations

• For each variable X do the following: [Breiman 2001]

◦ For each tree T in a random forest T , consider its out-of-bag data set OT.

◦ Permute the values of the variable X over OT to produce OT,π(X).

◦ Classify all x⃗ ∈ OT,π(X) with tree T; record the result for the original of x⃗.

◦ Collect the class votes for all data points in Doob =
⋃

T∈T OT.

◦ Compare the accuracy to the accuracy on Doob without permutation.

◦ The accuracy difference is a measure of the importance of variable X.

• In principle, multiple permutations would have to be considered
in order to obtain an average performance under permutation.

• In practice, often only one permutation is considered for efficiency.

• Multiple permutations would allow to conduct a significance test
on the variables (⇒ feature selection, but this is costly with permutations).
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Random Forests: Variable Importance via Mean Impurity Reduction

• Core idea: In the decision tree induction process, a split is chosen based on
how much it reduces the (expected) impurity of the class distribution.

• A (descriptive) variable may be used for different splits in a tree,
that is, it may be used in multiple inner nodes of the tree,
each time producing a different impurity reduction.

• Each such split refers to a different region of the data space,
which has a different probability of occurrence.

• Averaging over all impurity reductions (respecting occurrence probabilities)
yields a (relative) importance measure for the (descriptive) variable.

In a random forest, these importance values are averaged over all trees.

• Since such an importance measure is only relative, it is common
to rescale the individual importance values so that the maximum is 100.

• In principle, any impurity measure works, but Gini impurity is most common
(as used in CART). [Breiman, Friedman, Olshen & Stone 1984]
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Reminder: Information Gain

Information Gain (used in ID3) [Kullback and Leibler 1951, Quinlan 1986]

Based on Shannon Entropy H = −
n

∑
i=1

pi log2 pi (Shannon 1948)

Igain(C, A) = H(C) − H(C|A)

=

︷ ︸︸ ︷

−
nC

∑
i=1

pi. log2 pi. −

︷ ︸︸ ︷
nA

∑
j=1

p.j

(
−

nC

∑
i=1

pi|j log2 pi|j

)

H(C) Entropy of the class distribution (C: class attribute)

(intuitively: measures the impurity of the class distribution
or the lack of information about the obtaining class)

H(C|A) Expected entropy of the class distribution
if the value of the attribute A becomes known

H(C)− H(C|A) Expected entropy reduction or information gain
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Reminder: Variants of Information Gain

Normalized Information Gain

• Information gain is biased towards many-valued attributes.

• Normalization removes / reduces this bias.

Information Gain Ratio (used in C4.5) [Quinlan 1986 / 1993]

Igr(C, A) =
Igain(C, A)

H(A)
=

Igain(C, A)

−∑
nA
j=1 p.j log2 p.j

Symmetric Information Gain Ratio [López de Mántaras 1991]

I
(1)
sgr(C, A) =

Igain(C, A)

H(A, C)
or I

(2)
sgr(C, A) =

Igain(C, A)

H(A) + H(C)

“Symmetric” means that I
(1)
sgr(C, A) = I

(1)
sgr(A, C) and I

(2)
sgr(C, A) = I

(2)
sgr(A, C).
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Reminder: Generalized Entropy and Gini Impurity

• Shannon entropy can be generalized, for example, as: [Daróczy 1970]

H
(general)
β =

2β−1

2β−1− 1

n

∑
i=1

pi(1− p
β−1
i ) =

2β−1

2β−1− 1

(
1−

n

∑
i=1

p
β
i

)

• Shannon entropy results as a special case in the limit for β→ 1:

H(Shannon) = lim
β→1

H
(general)
β = −

n

∑
i=1

pi log2 pi

• Another commonly used variant is quadratic entropy, which results for β = 2:

H(quad) = H
(general)
2 = 2

n

∑
i=1

pi(1− pi) = 2− 2
n

∑
i=1

p2
i

• Intuitively: choosing each alternative si with its probability pi leads to:

P(wrong guess) =
n

∑
i=1

pi(1− pi) = 1−
n

∑
i=1

p2
i = 1

2 H(quad) = IGini

This is also known as Gini impurity (= half of quadratic entropy).
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Reminder: Evaluation Measures based on Quadratic Entropy

• Shannon information gain may be written in two ways:

I
(Shannon)
gain (C, A) = H(Shannon)(C)− H(Shannon)(C|A)

= −
nC

∑
i=1

pi. log2 pi.−
nA

∑
j=1

p.j

(
−

nC

∑
i=1

pi|j log2 pi|j

)

= −
nC

∑
i=1

pi. log2 pi.−
nA

∑
j=1

p.j log2 p.j +
nC

∑
i=1

nA

∑
j=1

pij log2 pij

= H(Shannon)(C) + H(Shannon)(A)− H(Shannon)(CA)

• For quadratic entropy the two versions differ: [Breiman, Friedman, Olshen & Stone 1984]

Using the former variant leads to the Gini index: (used in CART)

Gini(C, A) =
1

2

(
H(quad)(C)− H(quad)(C|A)

)
=

nA

∑
j=1

p.j

nC

∑
i=1

p2
i|j−

nC

∑
i=1

p2
i.

• Using the latter leads to what may be called quadratic information gain:

I
(quad)
gain (C, A) = H(quad)(C) + H(quad)(A)− H(quad)(CA)
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Random Forests: Variable Importance via Mean Impurity Reduction

• Let T ∈ T be a decision tree in a random forest T .
Let VT be the set of vertices (or nodes) of the decision tree T.
Let πT describe the partitioning of the data space induced by T,
that is, πT(v) for v ∈ VT is the region of the data space covered by v.
Let S(v) be the split attribute used in v (or the class attribute C for leaves).

• For an inner vertex v of T the (weighted) reduction in Gini impurity is

∆Gini(v) = P(πT(v)) ·Gini(C, S(v)),

where P(πT(v)) is the probability of the data space region πT(v),
that is, the probability of observing a data point x⃗ ∈ πT(v).

• In practice, the probability P(πT(v)) of the data space region πT(v)
is estimated from a given data set D as

P̂(πT(v)) =
|{x⃗ ∈ D | x⃗ ∈ πT(v)}|

|D| ,

that is, as the fraction of data points falling into the region πT(v).
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Random Forests: Variable Importance for Regression Trees

• The importance of variable X resulting for a single decision tree T is thus

IT(X) = ∑
v∈VT

1(S(v) = X) · P(πT(v)) ·Gini(C, S(v)).

• For a random forest T these importance values are averaged over the trees:

IT (X) =
1

|T | ∑
T∈T

IT(X).

• Note that these importance values are relative measures.
In variable rankings they are rescaled so that the maximum value is 100.

• Variable importance based on impurity reduction of the class distribution
is most commonly computed with the Gini index, because this approach was
first suggested in connection to CART. [Breiman, Friedman, Olshen & Stone 1984]

• It is convenient with CART, because then the Gini values are directly available.

• However, in principle other impurity (reduction) measures may be used as well.

Christian Borgelt Advanced Data Mining 2 138



Random Forests: Variable Importance for Regression Trees

• The prediction quality of a random forest of regression trees is measured by
the sum (or mean) of squared errors (instead of accuracy)

[SSE|MSE](Y) =

[
1

|D|

]
∑

(x⃗,y)∈D

(y− T (x⃗))2,

where D is a (test/validation) data set, Y is the target variable to predict,
and T (x⃗) = 1

T ∑T∈T T(x⃗) is the prediction of the random forest T .

• Variable importance may be obtained as the increase of SSE (or MSE)
resulting from the permutation of the values of a variable of interest.

• Instead of impurity reduction, regression trees use, for example, (expected)
variance reduction as it results from a split based on (discretized) variable X:

∆σ2(Y|X) = σ2(Y)− ∑
x∈dom(X)

σ2(Y | X = x) · P(X = x).

• (Relative) Variable importance may be obtained as the (weighted) average
of the variance reductions that are obtained from a variable of interest.
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Gradient Boosting

Gradient Boosted Trees
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AdaBoost Revisited

• Reminder: A usual goal is to minimize the expected loss (also known as risk)

EX⃗,Y(L(m(X⃗), Y)) =
∫

X×Y
L
(
m(x⃗), y

)
p(x⃗, y) dx⃗ dy,

where p(x⃗, y) is the probability density function of the data generating process,
which may also be written as p(y | x⃗)p(x⃗).

• Loss functions written in terms of the margin γ = y m(x⃗) at a point (x⃗, y),

L
(
m(x⃗), y

)
= L◦

(
y m(x⃗)

)
= L◦(γ)

with L◦ : IR→ IR, are called margin-based loss functions.

• The exponential loss function is a margin-based loss function that uses

L
(
m(x⃗), y

)
= L◦

(
y m(x⃗)

)
= L◦(γ) = e−γ = e−y m(x⃗).

• AdaBoost: minimize the expected exponential loss with an additive model

m
joint
τ (x⃗i) =

τ

∑
t=1

αtmt(x⃗i), with the goal m
joint
τ = argmin

m

EX⃗,Y(e
−Ym(X⃗)).
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Excursion: Margin-Based Loss Functions

• In (binary) classification,
many loss functions are written
in terms of the margin γ = y m(x⃗)
at a point (x⃗, y), that is,

L
(
m(x⃗), y

)
= L◦

(
y m(x⃗)

)
= L◦(γ)

with L◦ : IR→ IR. These are called
margin-based loss functions.

3

2

1

0

L◦

−2 −1 0 1 2γ

misclassification
hinge loss
squared error
exponential loss
binomial deviance

• misclassification: L◦(γ) = 1(γ < 0) (constant almost everywhere, not continuous)

• hinge loss: L◦(γ) = max(0, 1− x) (used in support vector machines)

• squared error: L◦(γ) = (1− γ)2
(not monotone decreasing)

• exponential loss: L◦(γ) = e−γ
(used in AdaBoost)

• binomial deviance: L◦(γ) = ln(1 + e−2γ) (log-likelihood, cross-entropy)

(factor 2 to match the result to that of exponential loss, see below)
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Minimizing Exponential Loss

• Consider the general task of minimizing the expected exponential loss:

mexp = argmin
m∈M

EX⃗,Y(e
−Ym(X⃗)) = argmin

m∈M
EX⃗(EY|X⃗=x⃗(e

−Ym(X⃗))).

• Clearly, it suffices to minimize the expectation conditional on x⃗:

EY|X⃗=x⃗(e
−Ym(x⃗)) = P(Y=+1 | X⃗ = x⃗) e−m(x⃗) + P(Y=−1 | X⃗ = x⃗) e+m(x⃗),

because the prediction m(x⃗) depends only on individual input points x⃗.

• A necessary condition for the (conditional) expectation to be minimal is
that the derivative w.r.t. the model (prediction) vanishes:

∂
∂m(x⃗) EY|X⃗=x⃗(e

−Ym(x⃗))
!
= 0.

It follows

−P(Y=+1 | X⃗ = x⃗) e−mexp(x⃗) + P(Y=−1 | X⃗ = x⃗) e+mexp(x⃗) = 0

⇔ P(Y=+1|X⃗=x⃗)

P(Y=−1|X⃗=x⃗)
= e+2mexp(x⃗) ⇔ mexp(x⃗) = 1

2 ln
(

P(Y=+1|X⃗=x⃗)

P(Y=−1|X⃗=x⃗)

)
.
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Minimizing Exponential Loss

• Therefore, the model minimizing the expected exponential loss is

mel(x⃗) =
1

2
ln

(
P(Y=+1 | X⃗ = x⃗)

P(Y=−1 | X⃗ = x⃗)

)
.

• This implies p+(x⃗) = P(Y=+1 | X⃗ = x⃗) =
1

1 + e−2mexp(x⃗)

and p−(x⃗) = P(Y=−1 | X⃗ = x⃗) =
1

1 + e+2mexp(x⃗)
.

• This is closely related to logistic classification, which assumes a linear model:

ln

(
P(Y=+1 | X⃗ = x⃗)

P(Y=−1 | X⃗ = x⃗)

)
= a0 +

m

∑
i=1

aixi = a⃗◦⊤x⃗◦ = mlin(x⃗).

where a⃗◦ = (a0, a1, . . . , am)⊤ and x⃗◦ = (1, x1, . . . , xm)⊤.

• Logistic classification tries to maximize the expected (log-)likelihood
(or: minimize the cross-entropy, or: minimize the binomial deviance).
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Logistic Classification

• Logistic classification leads to p+(x⃗) = P(Y=+1 | X⃗ = x⃗) =
1

1 + e−⃗a◦⊤ x⃗◦

and p−(x⃗) = P(Y=−1 | X⃗ = x⃗) =
1

1 + e+⃗a◦⊤ x⃗◦
,

where a⃗◦ = (a0, a1, . . . , am)⊤ and x⃗◦ = (1, x1, . . . , xm)⊤.

• That is, it is assumed that the probability p+(x⃗) = P(Y=+1 | X⃗ = x⃗)

can be described by a logistic function f (⃗a◦⊤x⃗◦) = (1 + e−⃗a◦⊤x⃗◦)−1.

• Generalizing from a linear to a (more) general model yields

p+(x⃗) =
1

1 + e−m(x⃗)
and p−(x⃗) =

1

1 + e+m(x⃗)
.

• The expected likelihood given some model m is then

EX⃗

(
EY|X⃗=x⃗

(
p+(x⃗)1(Y=+1) p−(x⃗)1(Y=−1)

))

= EX⃗

(
EY|X⃗=x⃗

(
(1 + e−m(x⃗))−1(Y=+1) · (1 + e+m(x⃗))−1(Y=−1)

))
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Logistic Classification

• Considering the (conditional) expected log-likelihood yields

EY|X⃗=x⃗

(
−1(Y=+1) · ln(1 + e−m(x⃗))− 1(Y=−1) · ln(1 + e+m(x⃗))

)

= EY|X⃗=x⃗

(
−1(Y=+1) · ln(1 + e−Ym(x⃗))− 1(Y=−1) · ln(1 + e−Ym(x⃗))

)

= EY|X⃗=x⃗

(
− ln(1 + e−Ym(x⃗))

)

• The deviance is generally defined as −2 times the log-likelihood
and may be used as a loss function (here: binomial deviance):

L(m(x⃗), y) = [2] ln(1 + e−y m(x⃗)).

(The constant factor 2 is sometimes neglected, because it does not influence minimization.)

• The best model for the binomial deviance loss is (see above)

mbdl(x⃗) = ln

(
P(Y=+1 | X⃗ = x⃗)

P(Y=−1 | X⃗ = x⃗)

)
.

It differs from the model minimizing exponential loss only by a factor of 2.
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Reminder: Margin-Based Loss Functions

• In (binary) classification,
many loss functions are written
in terms of the margin γ = y m(x⃗)
at a point (x⃗, y), that is,

L
(
m(x⃗), y

)
= L◦

(
y m(x⃗)

)
= L◦(γ)

with L◦ : IR→ IR. These are called
margin-based loss functions.

3

2

1

0

L◦

−2 −1 0 1 2γ

misclassification
hinge loss
squared error
exponential loss
binomial deviance

• misclassification: L◦(γ) = 1(γ < 0) (constant almost everywhere, not continuous)

• hinge loss: L◦(γ) = max(0, 1− x) (used in support vector machines)

• squared error: L◦(γ) = (1− γ)2
(not monotone decreasing)

• exponential loss: L◦(γ) = e−γ
(used in AdaBoost)

• binomial deviance: L◦(γ) = ln(1 + e−2γ) (log-likelihood, cross-entropy)

(factor 2 to match the result to that of exponential loss)
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Additive Modeling

• Instead of completely general models, we consider additive models, that is,

m
joint
τ (x⃗) = m0(x⃗) +

τ

∑
t=1

αtmt(x⃗).

• Such a model is to be built incrementally (or: sequentially), that is,

m
joint
0 (x⃗) = m0(x⃗) = c,

m
joint
t (x⃗) = m

joint
t−1 (x⃗) + αtmt(x⃗),

where c is a constant, e.g. c = EX⃗,Y(Y) (or data set mean) for regression
or c = sign(EX⃗,Y(Y)) (or majority class) for (binary) classification.

• The model mt and the weight αt are to be chosen in such a way
that some loss function (e.g. exponential loss) is maximally reduced.

• We now re-derive the original AdaBoost algorithm (with mt(x⃗) ∈ {−1,+1})
and a continuous alternative (with mt(x⃗) ∈ R, also known as “Real AdaBoost”).

The latter often yields somewhat better results and converges faster.
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Additive Modeling for Exponential Loss

• Consider the task of minimizing the expected exponential loss:

mel = argmin
m∈M

EX⃗,Y(e
−Ym(X⃗)).

• Suppose we have a model m
joint
t−1 (x⃗) and seek an improved model

m
joint
t (x⃗) = m

joint
t−1 (x⃗) + αtmt(x⃗).

• Inserting into the expected exponential loss and computing the second-order
Taylor expansion at/around mt(x⃗) = 0 for fixed αt (and fixed x⃗) yields

EX⃗,Y

(
e−Ym

joint
t (X⃗)

)
= EX⃗,Y

(
e−Y
(

m
joint
t−1 (X⃗)+αtmt(X⃗)

))

≈ EX⃗,Y

(
e−Ym

joint
t−1 (X⃗)

(
1−Yαtmt(X⃗) + 1

2Y2α2
t mt(X⃗)2

))

= EX⃗,Y

(
e−Ym

joint
t−1 (X⃗)

(
1−Yαtmt(X⃗) + 1

2α2
t

))
,

where the last step follows from Y ∈ {−1,+1} and mt(x⃗) ∈ {−1,+1}.
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Reminder: Taylor Series / Taylor Expansion

• Let f (u) be a real-valued function, that is, f : R → R,
that is infinitely differentiable at a real number a.

• Then the Taylor series of f at/around a is the power series [Brook Taylor 1715]

f (a) + 1
1! f ′(a)(u− a) + 1

2! f ′′(a)(u− a)2 + 1
3! f ′′′(a)(u− a)3 + · · ·

=
∞

∑
k=0

1
i! f (i)(a)(u− a)n.

• The Maclaurin series of f is its Taylor series at a = 0. [Colin Maclaurin 17??]

• The second-order Taylor expansion is the above series up to the term with f ′′(a).

• The Taylor expansion on the preceding slide uses

f (u) = f
(

m
joint
t−1 (x⃗)︸ ︷︷ ︸

u

)
= e−y

(
m

joint
t−1 (x⃗)+αtmt(x⃗)

)
= e−ym

joint
t−1 (x⃗)−yαtmt(x⃗)

and expands at/around a = mt(x⃗) = 0 (and hence it is a Maclaurin expansion).
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Additive Modeling for Exponential Loss

• Let w(x⃗, y) = e−ym
joint
t−1 (x⃗) be a weighting function and define

E
(w)

Y|X⃗=x
(g(x⃗, Y)) =

EY|X⃗=x⃗(w(x⃗, Y)g(x⃗, Y))

EY|X⃗=x⃗(w(x⃗, Y))

as the weighted conditional expectation of the function g.

• With this, a pointwise minimization w.r.t. mt(x⃗) ∈ {−1,+1} can be written as

m
(opt)
t = argmin

mt∈M
E

(w)

Y|X⃗=x⃗

(
1−Yαtmt(x⃗) + 1

2α2
t

)

• For αt > 0, minimizing the above expression is equivalent to maximizing

m
(opt)
t = argmax

mt∈M
E

(w)

Y|X⃗=x⃗

(
Ymt(x⃗)

)
.

• The solution is (predict the (weighted) more likely class)

m
(opt)
t (x⃗) =

{
+1, if E

(w)

Y|X⃗=x⃗
(Y) = Pw(Y=+1|X⃗ = x⃗)− Pw(Y=−1|X⃗ = x⃗) > 0,

−1, otherwise.
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Additive Modeling for Exponential Loss

• By rewriting the objective as (using again Y ∈ {−1,+1} and mt(x⃗) ∈ {−1,+1})

E
(w)

Y|X⃗=x⃗

(
(Y−mt(x⃗))2

)
/2− 1 = E

(w)

Y|X⃗=x⃗

(
Y2− 2Ymt(x⃗) + mt(x⃗)2

)
/2− 1

= −E
(w)

Y|X⃗=x⃗
(Ymt(x⃗)),

we can interpret the optimization as minimizing a quadratic approximation.

(Reminder: Minimizing a quadratic function means finding the apex of a parabola.)

• Minimizing the quadratic
approximation leads to a
weighted least-squares choice
of mt(x⃗) ∈ {−1,+1}.

• Making one Newton–Raphson step
on a quadratic approximation
jumps directly to the minimum
of the quadratic approximation.

L

x

min xt+1 xt

apex

quadratic approximation
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Reminder: Newton–Raphson Method

• The Newton–Raphson method
is an iterative numeric algorithm
to approximate a root of a function.

• Idea: use slope/direction of a tangent
to the function at a current point
to find the next approximation.

• Formally:

x⃗t+1 = x⃗t + ∆x⃗t; ∆x⃗t = −
f (x⃗t)

∇⃗x f (x⃗t)

starting point

root

x∆x

f (x)

• The gradient describes the direction of steepest ascent of tangent (hyper-)planes
to the function (in one dimension: the slope of tangents to the function).

• In one dimension (see diagram):

Solve (xt+1, 0) = (xt, f (xt))⊤+ k · (1, d f
dx(xt))⊤, k ∈ IR, for xt+1.

Since 0 = f (xt) + k · d f
dx(xt), it is k = − f (xt)

/d f
dx(xt).
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Reminder: Newton–Raphson Method for Finding Optima

• The standard Newton-Raphson method finds roots of functions.

• By applying the Newton-Raphson method to the gradient of a function,
it may be used to find optima (minima, maxima, or saddle points),
because a vanishing gradient is a necessary condition for an optimum.

• In this case the update formula is

x⃗t+1 = x⃗t + ∆x⃗t, ∆x⃗t = −
(
∇2

x⃗ f (x⃗t)
)−1 · ∇⃗x f (x⃗t),

where ∇2
x⃗ f (x⃗t) is the so-called Hessian matrix, that is,

the matrix of second-order partial derivatives of the scalar-valued function f .

• In one dimension:

xt+1 = xt + ∆xt, ∆xt = −
d f
dx(xt)
d2 f

dx2(xt)
.

• For a quadratic function, this method finds the optimum in one step
(. . . and this is what was referred to before).
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Reminder: Newton–Raphson Method for Finding Optima

• Derivation of the Newton–Raphson Method for Finding Optima
in one dimension using a second-order Taylor expansion of the function.

• Objective: Solve the optimization (minimization/maximization) problem

xt+1 = xt + ∆xt, ∆xt = argopt
∆x∈R

f (xt + ∆x).

• Approach: Approximate f in the vicinity of the current estimate xt

by a second-order Taylor expansion (quadratic approximation):

f (xt + ∆x) ≈ f (xt) + d f
dx(xt)∆x + 1

2
d2 f

dx2(xt)∆x2.

• A necessary condition for an optimum is that the derivative w.r.t. ∆x vanishes:

d
d∆x

(
f (xt) +

d f
dx(xt)∆x + 1

2
d2 f

dx2(xt)∆x2
)

= d f
dx(xt) +

d2 f

dx2(xt)∆x
!
= 0.

• It follows

∆xt = −
d f
dx(xt)
d2 f

dx2(xt)
, which “jumps” to the apex of the parabola.
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Additive Modeling for Exponential Loss

• Given mt(x⃗) ∈ {−1,+1}, αt can be found as (E
(w)

X⃗,Y
: weighted expectation)

αt = argmin
α∈R

EX⃗,Y

(
e−Y
(

m
joint
t−1 (X⃗)+αmt(X⃗)

))

= argmin
α∈R

EX⃗,Y

(
e−Ym

joint
t−1 (X⃗)

︸ ︷︷ ︸
w(X⃗,Y)

e−αYmt(X⃗)
)

= argmin
α∈R

E
(w)

X⃗,Y

(
e−αYmt(X⃗)

)
.

• A necessary condition for a minimum is that the derivative w.r.t. α vanishes

d

dα
E

(w)

X⃗,Y

(
e−αYmt(X⃗)

)
=

d

dαt
E

(w)

X⃗,Y

(
e−α1(Y=mt(X⃗)) · e+α1(Y ̸=mt(X⃗))

)

= −e−αPw

(
Y=mt(X⃗)

)
+ e+αPw

(
Y ̸=mt(X⃗)

) !
= 0.

• It follows
e−αtPw

(
Y=mt(X⃗)

)
= e+αtPw

(
Y ̸=mt(X⃗)

)

⇔ −αt + ln Pw(Y=mt(X⃗)) = +αt + ln Pw(Y ̸=mt(X⃗))

⇔ αt =
1

2
ln

(
1− Pw(Y ̸=mt(X⃗))

Pw(Y ̸=mt(X⃗))

)
=

1

2
ln

(
1− et

et

)
.
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AdaBoost as Additive Modeling

• Adding mt(x⃗) thus updates the weighting function as

w(x⃗, y) ← w(x⃗, y)e−αtYmt(x⃗),

which due to −ymt(x⃗) = 2 · 1(Y ̸=mt(X⃗))− 1 can be written as

w(x⃗, y) ← w(x⃗, y) exp
(

ln
(

1−et
et

)
1(y ̸=mt(x⃗))

)
.

• This is the distribution-based version of the data set version on slide 51.

• Applied to decision trees as the model class for the models mt,

◦ the weighted conditional expectation
is approximated by the leaf node weighted averages,

◦ the weighted least-squares criterion may be used to grow the tree,

◦ the constant αt can be computed from the weighted training error of mt.

• Up to now we assumed that the model mt to be added is weighted with αt.
Now we explore the case in which there is no weight αt (or αt = 1).
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AdaBoost as Additive Modeling

• Suppose we have a model m
joint
t−1 (x⃗) and seek an improved model

m
joint
t (x⃗) = m

joint
t−1 (x⃗) + mt(x⃗).

• Consider again the task of minimizing the expected exponential loss

EY|X⃗=x⃗

(
e−Ym

joint
t (x⃗)

)
= EY|X⃗=x⃗

(
e−Y
(

m
joint
t−1 (x⃗)+mt(x⃗)

))

= EY|X⃗=x⃗

(
e−Ym

joint
t−1 (x⃗)e−Ymt(x⃗)

)
= E

(w)

Y|X⃗=x⃗

(
e−Ymt(x⃗)

)

= e−mt(x⃗)
E

(w)

Y|X⃗=x⃗

(
1(Y=+1)

)
+ e+mt(x⃗)

E
(w)

Y|X⃗=x⃗

(
1(Y=−1)

)
.

• A necessary condition for a minimum is that the derivative
w.r.t. mt(x⃗) vanishes. Using the usual transformations, this leads to

mt(x⃗) =
1

2
ln

(
Pw(Y=+1 | X⃗ = x⃗)

Pw(Y=−1 | X⃗ = x⃗)

)
.

• The weight update is
w(x⃗, y) ← w(x⃗, y)e−Ymt(x⃗).
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AdaBoost as Additive Modeling

• Without a weight αt, the best model to add can be found
without any assumption about the values that mt(x⃗) produces,
in particular, we no longer need the assumption mt(x⃗) ∈ {−1,+1}.
It may be mt(x⃗) ∈ R, that is continuous AdaBoost (also: real AdaBoost).

• Also, the distribution-based version we considered here would terminate
after a single step, since the optimal model would be found immediately.

• However, in practice we do not have access to the underlying distribution.

Rather, the weighted conditional distribution is estimated from a finite data set.

As a consequence, multiple iterations are needed to obtain a final model.

• It can be shown that at the optimal mjoint it is [Friedman et al. 2000]

EY|X⃗=x⃗(e
−Ymjoint(x⃗)·Y) = EY|X⃗=x⃗(w(x⃗, Y) ·Y) = E

(w)

Y|X⃗=x⃗
(Y) = 0.

• This supports the view that the weights are analogous to residuals in regression.
As long as the mean of the residuals does not vanish, mjoint can be improved.
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Gradient Boosting: General Idea

• For given training data D, the loss incurred by using model m to predict y is

L(m, D) = ∑
(x⃗,y)∈D

L(m(x⃗), y).

• Minimizing this loss can be viewed as analogous to numerical optimization
of the vector m⃗ = (m(x⃗))⊤(x⃗,y)∈D ∈ R

|D| of predictions for the data points as

ˆ⃗m = argmin
m⃗∈Rn

L(m⃗, y⃗) = argmin
m⃗∈Rn

∑
(x⃗,y)∈D

L(m(x⃗), y).

• In numerical optimization ˆ⃗m would be found as a sum of component vectors

m⃗
joint
τ = m⃗0 +

τ

∑
t=1

m⃗t with m⃗t ∈ R
|D|,

where m⃗0 is an initial guess and each increment m⃗t, t ∈ {1, . . . , τ},
is induced based on the sum of the preceding t−1 components.

• Different optimization methods differ in how the next m⃗t is computed.
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Reminder: Gradient Methods

• Presupposition: Ω ⊆ IRn, f : Ω→ IR is differentiable

• Gradient: differential operator that produces a vector field.

x

y

z

x0

y0

∂z

∂x
|~p

∂z

∂y
|~p

∇(x,y)z|~p=(x0,y0) • At each point in the domain
of a (scalar) function
the gradient operator yields
a vector in the direction of
of the steepest ascent
of that function.

• The length of this vector is
a measure of the steepness
(slope) at that point.

• Illustration of the gradient of a function z = f (x, y) at a point (x0, y0).

It is ∇(x,y)z|(x0,y0) =
(

∂z
∂x(x0, y0),

∂z
∂y(x0, y0)

)
. (∇ is pronounced “nabla” or “del”.)
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Gradient Methods: Cookbook Recipe

Idea: Starting from a randomly chosen point in the search space, make small steps
in the search space, always in the direction of the steepest ascent (or descent) of the
function to optimize, until a (local) maximum (or minimum) is reached.

1. Choose a (random) starting point x⃗(0) =
(

x
(0)
1 , . . . , x

(0)
m

)

2. Compute the gradient at the current point x⃗(t−1):

∇⃗x f (x⃗ (t−1)) =
(

∂ f
∂x1

(x⃗(t−1)), . . . , ∂ f
∂xm

(x⃗(t−1))
)

3. Make a small step in the direction (or against the direction) of the gradient:

x⃗(t) = x⃗(t−1)± η ∇⃗x f (x⃗ (t−1)).
+ : gradient ascent
− : gradient descent

η is a step width parameter (“learning rate” in artificial neural networks).

4. Repeat steps 2 and 3, until some termination criterion is satisfied
(e.g., a certain number of steps has been executed, current gradient is small).
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Gradient Descent: Simple Example

Example function: f (u) =
5

6
u4− 7u3 +

115

6
u2− 18u + 6

i ui f (ui) f ′(ui) ∆ui

0 0.200 3.112 −11.147 0.111
1 0.311 2.050 −7.999 0.080
2 0.391 1.491 −6.015 0.060
3 0.451 1.171 −4.667 0.047
4 0.498 0.976 −3.704 0.037
5 0.535 0.852 −2.990 0.030
6 0.565 0.771 −2.444 0.024
7 0.589 0.716 −2.019 0.020
8 0.610 0.679 −1.681 0.017
9 0.626 0.653 −1.409 0.014

10 0.640 0.635
x

0

1

2

3

4

5

6

0 1 2 3 4

starting point

global optimum

Gradient descent with initial value u0 = 0.2, step width/learning rate η = 0.01.

Due to a proper step width/learning rate, the minimum is approached quickly.
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Gradient Methods with Line Search

Idea: Choose the step width with a line search in the gradient direction.

1. Choose a (random) starting point x⃗(0) =
(

x
(0)
1 , . . . , x

(0)
m

)

2. Compute the gradient at the current point x⃗(t−1):

∇⃗x f (x⃗ (t−1)) =
(

∂ f
∂x1

(x⃗(t−1)), . . . , ∂ f
∂xm

(x⃗(t−1))
)

3. Find the optimum in the direction of the gradient (line search):

β(t) = argopt
β∈R

x⃗(t−1) + β ∇⃗x f (x⃗ (t−1))
argmax : gradient ascent
argmin : gradient descent

4. Move to the directional minimum found in the line search:

x⃗(t) = x⃗(t−1) + β(t) ∇⃗x f (x⃗ (t−1)).

5. Repeat steps 2 to 4, until some termination criterion is satisfied
(e.g., a certain number of steps has been executed, current gradient is small).
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Gradient Boosting: General Idea

• Applying an analog of gradient descent (also known as steepest descent)
to model optimization (as described above) means choosing

m⃗t = −βtg⃗t,

where g⃗t is the gradient of the loss function evaluated at m⃗
joint
t−1 , that is,

g⃗t = ∇m⃗L(m⃗joint
t−1 , y⃗),

and βt is a scalar step width computed as the solution of

βt = argmin
β∈R

L(m⃗joint
t−1 − βg⃗t).

• This is analogous to gradient descent with line search.

• Gradient (or steepest) descent can be seen as a greedy strategy,
because −g⃗t is the direction in which L(m⃗, y⃗) is most rapidly decreasing
at the current point L(m⃗joint

t−1 , D) ∈ R
|D|.

• For actual model optimization −βtg⃗t has to be represented by a model mt.
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Gradient Boosting / Gradient Boosted Trees

• Since the “gradients” play a role analogous to the weights in boosting,
methods based on this general approach are called gradient boosting.

• Reconsider that we have a model m
joint
t−1 (x⃗) and seek an improved model

m
joint
t (x⃗) = m

joint
t−1 (x⃗) + [βt]mt(x⃗).

The models mt are supposed to model the “gradient” of the loss function
w.r.t. the (joint) model predictions at the training data points.

• The individual models may be tree-structured, actually regression trees.
(Even if we are trying to solve a classification problem!)
This leads to the method of gradient boosted trees.

• We consider two variants:

◦ standard gradient boosting / gradient boosted trees (GBM)
(analogous to gradient descent with line search)

◦ extreme gradient boosting / gradient boosted trees (XGBoost)
(analogous to the Newton–Raphson method)
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Gradient Boosting: Cookbook Recipe

1. Initialize m0(x⃗) = argmin
β∈R

∑
(x⃗,y)∈D

L(β, y). (e.g. majority class or zero)

2. Compute the ”gradient” of the current model m
joint
t−1 , that is,

g⃗t = ∇mL(mjoint
t−1 , D) =

(
∂L(m(x⃗), y)

∂m(x⃗)

)⊤

(x⃗,y)∈D

∣∣∣∣
m=m

joint
t−1

.

3. Fit a (regression) model mt to the “data points” Dt = {(x⃗,−gt,(x⃗,y))}(x⃗,y)∈D.

4. Find a model weight/multiplier βt by solving

βt = argmin
β∈R

∑
(x⃗,y)∈D

L(mjoint
t−1 + βmt(x⃗), y).

5. Set m
joint
t (x⃗) = m

joint
t−1 (x⃗) + βtmt(x⃗). (update the additive model)

6. Repeat steps 2 to 5 until some termination criterion is satisfied
(e.g., certain number of steps executed, or loss sufficiently small).
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Gradient Boosted Trees

• Suppose the regression models mt are regression trees TΘt|Dt
.

(This would be the case for both regression and classification, since for both −gt,(x⃗,y) ∈ R.)

• Here Θt represents hyper-parameters used for the regression tree induction,
for example, a maximum tree height or a maximum number of leaves.
(While for standard random forests the trees are grown without restriction or pruning,
gradient boosted trees are usually constrained in height or number of leaves.)

• Each regression tree mt is induced with a squared error criterion: (cf. slide 152)

minimize ∑
(x⃗,z)∈Dt

(mt(x⃗)− z)2 w.r.t. mt.

• Let Vmt be the set of leaves of the regression tree mt = TΘt|Dt
. (Note the difference

to VT on slide 137.)

Let πmt describe the partitioning of the data space induced by mt = TΘt|Dt
,

that is, πmt(v) for v ∈ Vmt is the region of the data space covered by leaf v.

∀v ∈ Vmt : βv = argmin
β∈R

∑
(x⃗,y)∈D, x⃗∈πmt(v)

L(mjoint
t−1 (x⃗) + β, y).
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Gradient Boosted Trees

• Note that instead of a line search for a best β, here we have a “region search”
for the best βv in each region covered by a leaf node v of the regression tree.

As a consequence, there is not a single “step width” parameter β,
but multiple, region-specific step width parameters βv.

• With regression trees, the model update is

m
joint
t (x⃗) = m

joint
t−1 (x⃗) + mt(x⃗)

= m
joint
t−1 (x⃗) +

︷ ︸︸ ︷
∑

v∈Vmt

βv 1(x⃗ ∈ πmt(v)) .

• Note that the expression mt(x⃗) = ∑v∈Vmt
βv 1(x⃗∈πmt(v))

describes the prediction of the regression tree mt = TΘt|Dt
at the point x⃗.

For each x⃗ only one of the terms of the sum does not vanish,
namely the one for the leaf node v used to make the prediction for x⃗.

• As a consequence, m
joint
t (x⃗) = m

joint
t−1 (x⃗) + mt(x⃗)

merely means that the regression tree mt = TΘt|Dt
is added to the forest m

joint
t−1 .
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Gradient Boosting

• Shrinkage: Add a “learning rate” η to the model update:

m
joint
t (x⃗) = m

joint
t−1 (x⃗) + ηβtmt(x⃗) with η ∈ (0, 1], often η < 0.1.

Improves generalization at the price of increased costs (higher τ needed).

• Multiple Classes are treated in analogy to multinomial logistic classification.
A separate tree is built for each class (discriminating against all other classes).
To obtain a class probability, predictions are normalized over these trees.

Gradients of Typical Loss Functions

setting loss L(m(x⃗), y) gradient ∂L(m(x⃗), y)/∂m(x⃗)

regression 1
2(y−m(x⃗))2 m(x⃗)− y

regression |y−m(x⃗)| sign(m(x⃗)− y)

classification exponential −y exp(−y m(x⃗))

classification binomial deviance p±(x⃗)− 1(y = ±1)

classification deviance pk(x⃗)− 1(y = ck)
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Reminder: Newton–Raphson Method for Finding Optima

• The standard Newton-Raphson method finds roots of functions.

• By applying the Newton-Raphson method to the gradient of a function,
it may be used to find optima (minima, maxima, or saddle points),
because a vanishing gradient is a necessary condition for an optimum.

• In this case the update formula is

x⃗t+1 = x⃗t + ∆x⃗t, ∆x⃗t = −
(
∇2

x⃗ f (x⃗t)
)−1 · ∇⃗x f (x⃗t),

where ∇2
x⃗ f (x⃗t) is the so-called Hessian matrix, that is,

the matrix of second-order partial derivatives of the scalar-valued function f .

• In one dimension:

xt+1 = xt + ∆xt, ∆xt = −
∂ f
∂x(xt)
∂2 f

∂x2(xt)
.

• For a quadratic function, this method finds the optimum in one step
(. . . and this is what was referred to before).
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Extreme Gradient Boosting (XGBoost): Cookbook Recipe

1. Initialize m0(x⃗) = argmin
β∈R

∑
(x⃗,y)∈D

L(β, y). (e.g. majority class or zero)

2. Compute the ”gradient” and “Hessian” of the current model m
joint
t−1 , that is,

g⃗t = ∇mL(mjoint
t−1 , D) =

(
∂L(m(x⃗), y)

∂m(x⃗)

)⊤

(x⃗,y)∈D

∣∣∣∣
m=m

joint
t−1

and

h⃗t =

(
∂2L(m(x⃗), y)

∂m(x⃗)2

)⊤

(x⃗,y)∈D

∣∣∣∣
m=m

joint
t−1

.

Note that h⃗t is not a Hessian matrix, but only a vector with the second derivatives
for the individual data points (coinciding with the diagonal of the Hessian matrix).

Why not Ht = ∇2
m L(mjoint

t−1 , y⃗) as in the multivariate Newton–Raphson method?
⇒ next slide (Ht is actually a diagonal matrix)

3. Fit a (reg.) model mt to the “data points” Dt = {(x⃗,−gt,(x⃗,y)/ht,(x⃗,y))}(x⃗,y)∈D.

Note again that h⃗t is not a Hessian matrix, but only a vector of second derivatives.
However, using −H−1

t g⃗t as the data values yields exactly the same result. ⇒ next slide
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Side Remark on the Hessian Matrix

• Let f (x⃗) = f (x1, . . . , xm) be a scalar function, that is, f : R
m → R.

• The Hessian matrix H( f ,⃗x) of f at a point x⃗ is

H( f ,⃗x) =




∂2 f

∂x2
1
(x⃗) ∂2 f

∂x1∂x2
(x⃗) · · · ∂2 f

∂x1∂xm
(x⃗)

∂2 f
∂x2∂x1

(x⃗) ∂2 f

∂x2
2
(x⃗) · · · ∂2 f

∂x2∂xm
(x⃗)

... ... . . . ...
∂2 f

∂xm∂x1
(x⃗) ∂2 f

∂xm∂x2
(x⃗) · · · ∂2 f

∂x2
m
(x⃗)




or elementwise

H
( f ,⃗x)
ij =

∂ f

∂xi∂xj
(x⃗).

• Could extreme gradient boosting be improved by using the full Hessian matrix?

• No, because the loss function is a sum over the data points;
each term refers to just one data point, and there are no mixed terms:

L(m, D) = ∑
(x⃗,y)∈D

L(m(x⃗), y).

• All mixed derivatives vanish, the Hessian matrix is a diagonal matrix.
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Extreme Gradient Boosting (XGBoost): Cookbook Recipe

3. (continued)
Fit a model mt to the “data points” Dt = {(x⃗,−gt,(x⃗,y)/ht,(x⃗,y))}(x⃗,y)∈D by

mt = argmin
m∈M

∑
(x⃗,z)∈Dt

(
m(x⃗)− z

)2
.

4. Find a model weight/multiplier βt by solving

βt = argmin
β∈R

∑
(x⃗,y)∈D

L(mjoint
t−1 + βmt(x⃗), y).

5. Set m
joint
t (x⃗) = m

joint
t−1 (x⃗) + βtmt(x⃗). (update the additive model)

6. Repeat steps 2 to 5 until some termination criterion is satisfied
(e.g., certain number of steps executed, or loss sufficiently small).

• A second-order Taylor approximation is used in the model fitting,
to make the connection to the Newton–Raphson method.
(see details on next slide)
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Extreme Gradient Boosting (XGBoost)

• Consider that we have a model m
joint
t−1 (x⃗) and seek an improved model

m
joint
t (x⃗) = m

joint
t−1 (x⃗) + mt(x⃗).

• The loss function can be seen as a function of possible new models m
joint
t (x⃗):

f (u) = f
(

m
joint
t−1 (x⃗) + m(x⃗)︸ ︷︷ ︸

u=m
joint
t (x⃗)

)
= L

(
m

joint
t−1 (x⃗) + m(x⃗), y

)
.

• A second-order Taylor expansion of f at/around the old model m
joint
t−1 (x⃗) yields

L
(
m

joint
t−1 (x⃗) + m(x⃗), y

)
≈ L

(
m

joint
t−1 (x⃗), y

)
+ gt,(x⃗,y) m(x⃗) + 1

2ht,(x⃗,y) m(x⃗)2.

• At the optimum model mt(x⃗), the derivative must vanish:

d
dm(x⃗)

(
L
(
m

joint
t−1 (x⃗), y

)
+ gt,(x⃗,y) m(x⃗) + 1

2ht,(x⃗,y) m(x⃗)2
)
= gt,(x⃗,y) + ht,(x⃗,y) m(x⃗)

!
= 0.

• Thus we get mt(x⃗) = −gt,(x⃗,y)

ht,(x⃗,y)
.
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Extreme Gradient Boosted Trees (XGBoost)

• Suppose the regression models mt are regression trees TΘt|Dt
.

(This is the case for both regression and classification, since for both −gt,(x⃗,y)/ht,(x⃗,y) ∈ R.)

• Here Θt represents hyper-parameters used for the regression tree induction,
for example, a maximum tree height or a maximum number of leaves.
(While for standard random forests the trees are grown without restriction or pruning,
gradient boosted trees are usually constrained in height or number of leaves.)

• Let Vmt be the set of leaves of the regression tree mt = TΘt|Dt
. (Note the difference

to VT on slide 137.)

Let πmt describe the partitioning of the data space induced by mt = TΘt|Gt
,

that is, πmt(v) for v ∈ Vmt is the region of the data space covered by leaf v.

∀v ∈ Vmt : βv = argmin
β∈R

∑
(x⃗,y)∈D, x⃗∈πmt(v)

L(mjoint
t−1 (x⃗) + β, y).

• Set m
joint
t (x⃗) = m

joint
t−1 (x⃗) + mt(x⃗) = m

joint
t−1 (x⃗) + ∑

v∈Vmt

βv 1(x⃗ ∈ πmt(v)).

(Note that mt(x⃗) = ∑v∈Vmt
βv 1(x⃗∈πmt(v)) is the prediction of the regression tree mt = TΘt|Dt

at the point x⃗.)
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Random Forests and Gradient Boosted Trees

Experiments / Examples
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Random Forests and Gradient Boosted Trees: Data

• Experiments were conducted according to:

picture not available
in online version

Trevor Hastie, Robert Tibshirani & Jerome Friedman
The Elements of Statistical Learning
Springer, New York, NY, USA 2001/2009/2017

• Spambase (Spam Email Database)

◦ frequencies af 48 words and 6 characters

◦ avg./longest/total run length of capitals

◦ target: whether email is spam or not

https://archive.ics.uci.edu/dataset/94/spambase

• California Housing Prices

◦ house: location, age, rooms, bedrooms

◦ district: population, households, median income

◦ target: median house prices derived from the 1990 census

https://www.kaggle.com/datasets/camnugent/california-housing-prices
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Random Forests and Gradient Boosted Trees: Libraries

• Experiments can fairly easily be run

picture not available
in online version

with the Python library SciKit-learn.

• SciKit-learn (sklearn) is a free software
machine learning library for the
Python programming language.

• It features various classification, regression and clustering algorithms.

• Ensemble methods are available in the sub-library sklearn.ensemble.

• For the experiments reported here, the following methods were used:

◦ sklearn.ensemble.BaggingClassifier

◦ sklearn.ensemble.RandomForestClassifier

◦ sklearn.ensemble.ExtraTreesClassifier

◦ sklearn.ensemble.GradientBoostingClassifier

◦ sklearn.ensemble.RandomForestRegressor

◦ sklearn.ensemble.GradientBoostingRegressor
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Random Forests and Gradient Boosted Trees: Experiments

Spam Data

picture not available
in online version

Spam Data

#T

E
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0.07

0.08

0 500 1000 1500 2000 2500

out-of-bag
test

• Figure 15.4 from [Hastie et al. 2009]

• Both out-of-bag and test error
stabilize at around 500 trees,
but continue to decline.

• Out-of-bag error is always higher
than test error.

• Computation with SciKit-learn.

• Both out-of-bag and test error
stabilize at around 500 trees.

• Test error is always higher
than out-of-bag error.
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Random Forests and Gradient Boosted Trees: Experiments

Spam Data

picture not available
in online version

Spam Data

#T

Etest
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0 500 1000 1500 2000 2500

bagging
random forest
extra trees
grad. boosting 5

• Figure 15.1 from [Hastie et al. 2009]

• Gradient boosting outperforms
standard random forests,
which outperform bagging.

• Computation with SciKit-learn.

• Bagging is outperformed,
other methods converge
to same performance.
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Random Forests and Gradient Boosted Trees: Experiments

California Housing Prices

picture not available
in online version

California Housing Prices
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• Figure 15.3 from [Hastie et al. 2009]

• Gradient boosting continues
to improve for > 1000 trees.

• Computation with SciKit-learn.

• Gradient boosting continues
to improve only for depth 4.
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Advanced Clustering
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Cluster-Specific Distance Functions

The similarity of a data point to a prototype depends on their distance.

• If the cluster prototype is a simple cluster center,
a general distance measure can be defined on the data space.

In this case the Euclidean distance is most often used
due to its rotation invariance. It leads to (hyper-)spherical clusters.

• However, more flexible clustering approaches (with size and shape parameters)
use cluster-specific distance functions.

The most common approach is to use a Mahalanobis distance
with a cluster-specific covariance matrix Σ.

d(x⃗, y⃗; Σ) =
√
(x⃗− y⃗)⊤Σ−1(x⃗− y⃗).

The covariance matrix comprises shape and size parameters.

The Euclidean distance is a special case that results for Σ = 1.
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Reminder: Standard k-Means Clustering

• Given: a data set X = {x1, . . . , xn} of m-dimensional vectors xi ∈ IRm,
in which k clusters are to be found (k to be specified by a user).

• k-means clustering starts by choosing an initial set of k centers
(e.g. by sampling uniformly at random from the given data points).

• Subsequently, two update steps are executed alternatingly: [Lloyd 1957]

◦ each data point is assigned to the cluster center that is closest to it,

◦ cluster centers are recomputed as means of assigned data points.

• If νm(x) denotes the m-th closest center to a point x, this can be written

∀i; 1 ≤ i ≤ k : ct+1
i =

∑
n
j=1 1(νt

1(xj) = ct
i) · xj

∑
n
j=1 1(νt

1(xj) = ct
i)

,

where t denotes the time step and 1(φ) yields 1 if φ if true and 0 otherwise,
νt

1(xj) represents the assignment step, the fraction the mean computation.

• It can be shown that this scheme must converge. [Selim & Ismail 1984]
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Fuzzy Clustering
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Prototype-based Clustering

Prototype-based Clustering:

Each group/cluster is described by a prototype comprising information about

• the location of the group/cluster (its “center”),

• the size of the group/cluster (its “reference radius”),

• the shape (and orientation) of the group/cluster, and

• the (relative) weight the group/cluster.

The (degree of) membership of a data point to a given group/cluster
or the probability that it belongs to this group/cluster depends on

• the distance of the data point to the prototype
(taking into account the prototype properties) and

• a similarity function or probability density function.

The latter is usually specified as a radial function on the distance.
It is the same for all clusters (they differ only by the prototype properties).
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Fuzzy Clustering

• Allow degrees of membership of a datum to different clusters.
(Classical k-/c-means clustering assigns data crisply.)

Objective Function: (to be minimized)

J (X, B, U) =
c

∑
i=1

n

∑
j=1

uw
ij d

2(βi, x⃗j)

• U = [uij] is the c× n fuzzy partition matrix,

uij ∈ [0, 1] is the membership degree of the data point x⃗j to the i-th cluster.

• B = {β1, . . . , βc} is the set of cluster prototypes.

• w is the so-called “fuzzifier” (the higher w, the softer the cluster boundaries).

• Constraints:

∀i ∈ {1, . . . , c} :
n

∑
j=1

uij > 0 and ∀j ∈ {1, . . . , n} :
c

∑
i=1

uij = 1.
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Fuzzy and Hard Clustering

Relation to Classical c-Means Clustering:

• Classical c-means clustering can be seen as optimizing the objective function

J (X, B, U) =
c

∑
i=1

n

∑
j=1

uij d 2(βi, x⃗j),

where ∀i, j : uij ∈ {0, 1} (i.e. hard assignment of the data points)
and the cluster prototypes βi consist only of cluster centers.

• To obtain a fuzzy assignment of the data points, it is not enough
to extend the range of values for the uij to the unit interval [0, 1]:
The objective function J is optimized for a hard assignment
(each data point is assigned to the closest cluster center).

• To achieve actual degrees of membership: (this is not the only method)

Apply a convex function h : [0, 1]→ [0, 1] to the membership degrees uij.
Most common choice: h(u) = uw, usually with w = 2.
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Reminder: Function Optimization

Task: Find values x⃗ = (x1, . . . , xm) such that f (x⃗) = f (x1, . . . , xm) is optimal.

Often feasible approach:

• A necessary condition for a (local) optimum (minimum/maximum) is that the
partial derivatives w.r.t. the parameters vanish [Pierre de Fermat, 1607–1665].

• Therefore: (Try to) Solve the equation system that results from setting
all partial derivatives w.r.t. the parameters equal to zero.

Example task: Minimize f (x, y) = x2 + y2 + xy− 4x− 5y.

Solution procedure:

1. Take the partial derivatives of the objective function and set them equal to zero:

∂ f

∂x
= 2x + y− 4 = 0,

∂ f

∂y
= 2y + x− 5 = 0.

2. Solve the resulting (here: linear) equation system: x = 1, y = 2.
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Function Optimization with Constraints

Often a function has to be optimized subject to certain constraints.

First: restriction to k equality constraints Ci(x⃗) = 0, i = 1, . . . , k.

Note: the equality constraints describe a subspace of the domain of the function.

Problem of optimization with constraints:

• The gradient of the objective function f may vanish outside the constrained
subspace, leading to an unacceptable solution (violating the constraints).

• At an optimum in the constrained subspace the derivatives need not vanish.

One way to handle this problem are generalized coordinates:

• Exploit the dependence between the parameters specified in the constraints
to express some parameters in terms of the others and thus reduce the set x⃗
to a set x⃗′ of independent parameters (generalized coordinates).

• Problem: Can be clumsy and cumbersome, if possible at all,
because the form of the constraints may not allow for
expressing some parameters as proper functions of the others.
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Generalized Coordinates: Example

• Consider a simple stick pendulum, that is,
a mass at the end of a stick suspended from a hub
at the other end (like in the diagram on the right).

• Let the location of the mass be described
by Cartesian coordinates x and y
(coordinate origin is at the hub).

(0, 0)

ϕ

r

(x, y)

x
y

• Any optimization problem involving
the location (x, y) of the mass is constrained by x2 + y2 = r2

(because the stick is rigid, its length is constant). ⇒ y =
√

r2− x2

• This constraint may also be eliminated by switching to polar coordinates:

r = hypot(x, y) =
√

x2 + y2 and φ = atan2(x, y).

• Because r is constant (since the stick length is fixed),
one only needs to consider the angle φ (which may be varied freely).
Hence the angle φ may be used as a generalized coordinate.
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Function Optimization with Constraints

A much more elegant approach is based on the following nice insights:
Let x⃗∗ be a (local) optimum of f (x⃗) in the constrained subspace. Then:

• The gradient ∇⃗x f (x⃗∗), if it does not vanish, must be perpendicular to the con-
strained subspace. (If ∇⃗x f (x⃗∗) had a component in the constrained subspace,
x⃗∗ would not be a (local) optimum in this subspace.)

• The gradients ∇⃗x Cj(x⃗∗), 1 ≤ j ≤ k, must all be perpendicular to the
constrained subspace, because they are constant, namely 0, in this subspace.
Together they span the subspace perpendicular to the constrained subspace.

• Therefore it must be possible to find values λj, 1 ≤ j ≤ k, such that

∇⃗x f (x⃗∗)−
k

∑
j=1

λj∇⃗x Cj(x⃗∗) = 0⃗.

If the constraints (and thus their gradients) are linearly independent,
the values λj are uniquely determined. This equation can be used to
compensate the gradient of f (x⃗∗) so that it vanishes at x⃗∗.

Christian Borgelt Advanced Data Mining 2 193



Function Optimization with Constraints

∇~x
f (~x

∗)

λ
1∇

~x C
1(~x∗)

λ2
∇~x

C2
(~x

∗) ~x∗

C1
(~x)

= 0

C
2(~x) = 0

∇~x f (~x∗)− λ1∇~x C1(~x
∗)− λ2∇~x C2(~x

∗) =~0

• The gradient ∇⃗x f (x⃗∗) can
be compensated with the
gradients ∇⃗x C1(x⃗∗) and
∇⃗x C2(x⃗∗) using suitable
factors λ1 and λ2.

• These factors are called
Lagrange multipliers.

• Due to these factors, the
gradient of an enhanced
function vanishes at the
(local) optimum x⃗∗ in the
constrained subspace.

• The planes C1(x⃗) = 0 and C2(x⃗) = 0 represent two (here: linear) constraints.

• Their intersection (both conditions hold, blue line) is the constrained subspace.
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Function Optimization: Lagrange Theory

As a consequence of these insights we obtain the

Method of Lagrange Multipliers: [Joseph-Louis Lagrange, 1736–1813]

Given: ◦ a function f (x⃗), which is to be optimized,

◦ k equality constraints Cj(x⃗) = 0, 1 ≤ j ≤ k.

Procedure:

1. Construct the so-called Lagrange function by incorporating the equality
constraints Ci, i = 1, . . . , k, with (unknown) Lagrange multipliers λi:

L(x⃗, λ1, . . . , λk) = f (x⃗)−
k

∑
i=1

λiCi(x⃗).

2. Set the partial derivatives of the Lagrange function equal to zero:

∂L
∂x1

= 0, . . . ,
∂L
∂xm

= 0,
∂L
∂λ1

= 0, . . . ,
∂L
∂λk

= 0.

3. (Try to) Solve the resulting equation system.

Christian Borgelt Advanced Data Mining 2 195



Function Optimization: Lagrange Theory

Observations:

• Due to the representation of the gradient of f (x⃗) at a local optimum x⃗∗

in the constrained subspace (see above) the gradient of Lw.r.t. x⃗ vanishes at x⃗∗.

→ The standard approach works again!

• If the constraints are satisfied, the additional terms have no influence.

→ The original task is not modified (same objective function).

• Taking the partial derivative w.r.t. a Lagrange multiplier
reproduces the corresponding equality constraint (though negated):

∀j; 1 ≤ j ≤ k :
∂

∂λj
L(x⃗, λ1, . . . , λk) = −Cj(x⃗)

!
= 0,

→ Constraints enter the equation system to solve in a natural way.

Remark: Up to now we considered only equality contraints.

• Inequality constraints can be handled with Karush–Kuhn–Tucker theory.
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Lagrange Theory: Example 1

Example task: Minimize f (x, y) = x2 + y2 subject to x + y = 1.

–0.5

0

0.5

10

1

1

21

2

x

y

f

unconstrained
minimum
~p0 = (0, 0)

f (x, y) = x2 + y2minimum in the
constrained subspace
~p1 = ( 1

2 , 1
2 ) constrained

subspace
x + y = 1

The unconstrained minimum is not in the constrained subspace.
At the minimum in the constrained subspace the gradient of f does not vanish.
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Lagrange Theory: Example 1

Example task: Minimize f (x, y) = x2 + y2 subject to x + y = 1.

Solution procedure:

1. Rewrite the constraint, so that one side becomes zero: x + y− 1 = 0.

2. Construct the Lagrange function by incorporating the constraint
into the objective function with a Lagrange multiplier λ:

L(x, y, λ) = x2 + y2− λ(x + y− 1).

3. Take the partial derivatives of the Lagrange function and set them to zero
(necessary conditions for a minimum):

∂L
∂x

= 2x− λ
!
= 0,

∂L
∂y

= 2y− λ
!
= 0,

∂L
∂λ

= −(x + y− 1)
!
= 0.

4. Solve the resulting (here: linear) equation system:

λ = 1, x = y = 1
2.
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Lagrange Theory: Example 1

C(x, y) = x + y− 1

1

2

1

2

x

y

C
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1

x
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0.5

1

x + y − 1 = 0

L(x, y, 1) = x2 + y2− (x + y− 1)

–0.5
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10

0.5

1

1

21

2

x

y

L

minimum ~p1 = ( 1
2
, 1

2
)

The gradient of the constraint is perpendicular to the constrained subspace.
The (unconstrained) minimum of the Lagrange function L(x, y, λ)
is the minimum of the objective function f (x, y) in the constrained subspace.
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Lagrange Theory: Example 1

–0.5

0
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L

f (x, y) = x2 + y2 C(x, y) = x + y− 1 L(x, y, 1) =
x2 + y2− (x + y− 1)

The gradient of the function f is perpendicular to the constrained subspace.
The gradient of the constraint C is perpendicular to the constrained subspace.
With a proper Lagrange multiplier λ, the gradient of the function f
can be compensated by the gradient of the constraint C.
The (unconstrained) minimum of the Lagrange function L(x, y, λ)
is the minimum of the objective function f (x, y) in the constrained subspace.
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Lagrange Theory: Example 2

Example task: Find the side lengths x, y, z of a box with maximum volume
for a given area S of the surface.

Formally: Maximize f (x, y, z) = xyz
subject to 2xy + 2xz + 2yz = S.

Solution procedure:

1. The constraint is C(x, y, z) = 2xy + 2xz + 2yz− S = 0.

2. The Lagrange function is

L(x, y, z, λ) = xyz− λ(2xy + 2xz + 2yz− S).

3. Taking the partial derivatives yields (in addition to the constraint):

∂L
∂x

= yz− 2λ(y+ z)
!
= 0,

∂L
∂y

= xz− 2λ(x+ z)
!
= 0,

∂L
∂z

= xy− 2λ(x+ y)
!
= 0.

4. The solution is: λ = 1
4

√
S
6 , x = y = z =

√
S
6 (i.e., the box is a cube).
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Fuzzy Clustering: Alternating Optimization

Objective function: (to be minimized)

J (X, B, U) =
c

∑
i=1

n

∑
j=1

uw
ij d

2(x⃗j, βi)

Constraints:

∀i ∈ {1, . . . , c} :
n

∑
j=1

uij > 0 and ∀j ∈ {1, . . . , n} :
c

∑
i=1

uij = 1.

• Problem: The objective function J cannot be minimized directly.

• Therefore: Alternating Optimization

◦ Optimize membership degrees for fixed cluster parameters.

◦ Optimize cluster parameters for fixed membership degrees.

(Update formulae are derived by differentiating the objective function J .)

◦ Iterate until convergence (checked, e.g., by change of cluster center).
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Fuzzy Clustering: Alternating Optimization

First Step: Fix the cluster parameters.

Introduce Lagrange multipliers λj, 0 ≤ j ≤ n, to incorporate the constraints
∀j; 1 ≤ j ≤ n : ∑

c
i=1 uij = 1. This yields the Lagrange function (to be minimized)

L(X, B, U, Λ) =
c

∑
i=1

n

∑
j=1

uw
ij d2

ij

︸ ︷︷ ︸
=J (X,B,U)

−
n

∑
j=1

λj

(
c

∑
i=1

uij− 1

)
,

A necessary condition for a minimum is that the partial derivatives of the
Lagrange function w.r.t. the membership degrees vanish, i.e.,

∂

∂ukl
L(X, B, U, Λ) = w uw−1

kl d2
kl − λl

!
= 0,

which leads to

∀i; 1 ≤ i ≤ c : ∀j; 1 ≤ j ≤ n : uij =

(
λj

w d2
ij

) 1
w−1

.
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Fuzzy Clustering: Alternating Optimization

Summing these equations over the clusters (in order to be able to exploit
the corresponding constraints on the membership degrees), we get

1 =
c

∑
i=1

uij =
c

∑
i=1

(
λj

w d2
ij

) 1
w−1

.

Consequently the λj, 1 ≤ j ≤ n, are

λj =

(
c

∑
i=1

(
w d2

ij

) 1
1−w

)1−w

.

Inserting this into the equation for the membership degrees yields

∀i; 1 ≤ i ≤ c : ∀j; 1 ≤ j ≤ n : uij =
d

2
1−w
ij

∑
c
k=1 d

2
1−w
kj

.

This update formula results regardless of the distance measure.
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Standard Fuzzy Clustering Algorithms

Fuzzy C-Means Algorithm: Euclidean distance

d 2
fcm(x⃗j, βi) = (x⃗j− µ⃗i)

⊤(x⃗j− µ⃗i)

Necessary condition for a minimum: gradients w.r.t. cluster centers vanish.

∇⃗µk
Jfcm(X, B, U) = ∇⃗µk

c

∑
i=1

n

∑
j=1

uw
ij (x⃗j− µ⃗i)

⊤(x⃗j− µ⃗i)

=
n

∑
j=1

uw
kj ∇⃗µk

(x⃗j− µ⃗k)
⊤(x⃗j− µ⃗k)

= −2
n

∑
j=1

uw
kj (x⃗j− µ⃗k)

!
= 0⃗

Resulting update rule for the cluster centers (second step of alt. optimization):

∀i; 1 ≤ i ≤ c : µ⃗i =
∑

n
j=1 uw

ij x⃗j

∑
n
j=1 uw

ij
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Standard Fuzzy Clustering Algorithms

Gustafson–Kessel Algorithm: cluster-specific Mahalanobis distance

d 2
gk(x⃗j, βi) = (x⃗j− µ⃗i)

⊤C−1
i (x⃗j− µ⃗i)

Additional constraints: |Ci| = 1 (all cluster have unit size).
These constraints are incorporated again by Lagrange multipliers.

A similar derivation as for the fuzzy c-means algorithm
yields the same update rule for the cluster centers:

∀i; 1 ≤ i ≤ c : µ⃗i =
∑

n
j=1 uw

ij x⃗j

∑
n
j=1 uw

ij

Update rule for the covariance matrices (m is the number of dimensions):

Ci =
1

m
√
|Σi|

Σi where Σi =
n

∑
j=1

uw
ij(x⃗j− µ⃗i)(x⃗j− µ⃗i)

⊤.
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Fuzzy Clustering: Overlapping Clusters

Classical c-Means Fuzzy c-Means

So-called “butterfly” data set.
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Reminder: The Iris Data

pictures not available in online version

• Collected by Edgar Anderson on the Gaspé Peninsula (Canada).

• First data-analyzed by Ronald Aylmer Fisher (famous statistician).

• 150 cases in total, 50 cases per Iris flower type (specie).

• Measurements of sepal length and width and petal length and width (in cm).

• Most famous data set in pattern recognition and data analysis.
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Reminder: The Iris Data
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• Scatter plots of the iris data set for sepal length vs. sepal width (left)
and for petal length vs. petal width (right).
All quantities are measured in centimeters (cm).
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Fuzzy Clustering of the Iris Data

Fuzzy c-Means Gustafson–Kessel

All four attributes used (sepal width and length, petal width and length)
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Fuzzy Clustering of the Iris Data

3 clusters 4 clusters

Gustafson–Kessel, only petal width and petal length
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Expectation Maximization: Mixture of Gaussians
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Expectation Maximization: Mixture of Gaussians

• Assumption: Data was generated by sampling a set of normal distributions.
(The probability density is a mixture of Gaussian distributions.)

• Formally: We assume that the probability density can be described as

fX⃗(x⃗; C) =
c

∑
y=1

fX⃗,Y(x⃗, y; C) =
c

∑
y=1

pY(y; C) · fX⃗|Y(x⃗|y; C).

C is the set of cluster parameters

X⃗ is a random vector that has the data space as its domain

Y is a random variable that has the cluster indices as possible

values (i.e., dom(X⃗) = IRm and dom(Y) = {1, . . . , c})
pY(y; C) is the probability that a data point belongs to

(is generated by) the y-th component of the mixture

fX⃗|Y(x⃗|y; C) is the conditional probability density function of a data point

given the cluster (specified by the cluster index y)
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Expectation Maximization

• Basic idea: Do a maximum likelihood estimation of the cluster parameters.

• Problem: The likelihood function,

L(X; C) =
n

∏
j=1

fX⃗j
(x⃗j; C) =

n

∏
j=1

c

∑
y=1

pY(y; C) · fX⃗|Y(x⃗j|y; C),

is difficult to optimize, even if one takes the natural logarithm (cf. the maximum
likelihood estimation of the parameters of a normal distribution), because

ln L(X; C) =
n

∑
j=1

ln
c

∑
y=1

pY(y; C) · fX⃗|Y(x⃗j|y; C)

contains the natural logarithms of complex sums.

• Approach: Assume that there are “hidden” variables Yj stating the clusters that
generated the data points x⃗j, so that the sums reduce to one term.

• Problem: Since the Yj are hidden, we do not know their values.
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Expectation Maximization

• Formally: Maximize the likelihood of the “completed” data set (X, y⃗),
where y⃗ = (y1, . . . , yn) combines the values of the variables Yj. That is,

L(X, y⃗; C) =
n

∏
j=1

fX⃗j,Yj
(x⃗j, yj; C) =

n

∏
j=1

pYj
(yj; C) · fX⃗j|Yj

(x⃗j|yj; C).

• Problem: Since the Yj are hidden, the values yj are unknown
(and thus the factors pYj

(yj; C) cannot be computed).

• Approach to find a solution nevertheless:

◦ See the Yj as random variables (the values yj are not fixed) and
consider a probability distribution over the possible values.

◦ As a consequence L(X, y⃗; C) becomes a random variable,
even for a fixed data set X and fixed cluster parameters C.

◦ Try to maximize the expected value of L(X, y⃗; C) or ln L(X, y⃗; C)
(hence the name expectation maximization).
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Expectation Maximization

• Formally: Find the cluster parameters as

Ĉ = argmax
C

E([ln]L(X, y⃗; C) | X; C),

that is, maximize the expected likelihood

E(L(X, y⃗; C) | X; C) = ∑
y⃗∈{1,...,c}n

pY⃗|X (⃗y |X; C) ·
n

∏
j=1

fX⃗j,Yj
(x⃗j, yj; C)

or, alternatively, maximize the expected log-likelihood

E(ln L(X, y⃗; C) | X; C) = ∑
y⃗∈{1,...,c}n

pY⃗|X (⃗y |X; C) ·
n

∑
j=1

ln fX⃗j,Yj
(x⃗j, yj; C).

• Unfortunately, these functionals are still difficult to optimize directly.

• Solution: Use the equation as an iterative scheme, fixing C in some terms
(iteratively compute better approximations, similar to Heron’s algorithm).
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Excursion: Heron’s Algorithm

• Task: Find the square root of a given number x, i.e., find y =
√

x.

• Approach: Rewrite the defining equation y2 = x as follows:

y2 = x ⇔ 2y2 = y2 + x ⇔ y =
1

2y
(y2 + x) ⇔ y =

1

2

(
y +

x

y

)
.

• Use the resulting equation as an iteration formula, i.e., compute the sequence

yk+1 =
1

2

(
yk +

x

yk

)
with y0 = 1.

• It can be shown that 0 ≤ yk −
√

x ≤ yk−1− yn for k ≥ 2.
Therefore this iteration formula provides increasingly better approximations
of the square root of x and thus is a safe and simple way to compute it.
Example: x = 2: y0 = 1, y1 = 1.5, y2 ≈ 1.41667, y3 ≈ 1.414216, y4 ≈ 1.414213.

• Heron’s algorithm converges very quickly and is often used in
pocket calculators and microprocessors to implement the square root.
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Expectation Maximization

• Iterative scheme for expectation maximization:

Choose some initial set C0 of cluster parameters and then compute

Ck+1 = argmax
C

E(ln L(X, y⃗; C) | X; Ck)

= argmax
C

∑
y⃗∈{1,...,c}n

pY⃗|X (⃗y |X; Ck)
n

∑
j=1

ln fX⃗j,Yj
(x⃗j, yj; C)

= argmax
C

∑
y⃗∈{1,...,c}n

(
n

∏
l=1

pYl|X⃗l
(yl |⃗xl; Ck)

)
n

∑
j=1

ln fX⃗j,Yj
(x⃗j, yj; C)

= argmax
C

c

∑
i=1

n

∑
j=1

pYj|X⃗j
(i|⃗xj; Ck) · ln fX⃗j,Yj

(x⃗j, i; C).

• It can be shown that each EM iteration increases the likelihood of the data
and that the algorithm converges to a local maximum of the likelihood function
(that is, EM is a safe way to maximize the likelihood function).
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Expectation Maximization

Justification of the last step on the previous slide:

∑
y⃗∈{1,...,c}n

(
n

∏
l=1

pYl|X⃗l
(yl |⃗xl; Ck)

)
n

∑
j=1

ln fX⃗j,Yj
(x⃗j, yj; C)

=
c

∑
y1=1

· · ·
c

∑
yn=1

(
n

∏
l=1

pYl|X⃗l
(yl |⃗xl; Ck)

)
n

∑
j=1

c

∑
i=1

δi,yj
ln fX⃗j,Yj

(x⃗j, i; C)

=
c

∑
i=1

n

∑
j=1

ln fX⃗j,Yj
(x⃗j, i; C)

c

∑
y1=1

· · ·
c

∑
yn=1

δi,yj

n

∏
l=1

pYl|X⃗l
(yl |⃗xl; Ck)

=
c

∑
i=1

n

∑
j=1

pYj|X⃗j
(i|⃗xj; Ck) · ln fX⃗j,Yj

(x⃗j, i; C)

c

∑
y1=1

· · ·
c

∑
yj−1=1

c

∑
yj+1=1

· · ·
c

∑
yn=1

n

∏
l=1,l ̸=j

pYl|X⃗l
(yl |⃗xl; Ck)

︸ ︷︷ ︸
= ∏

n
l=1,l ̸=j ∑

c
yl=1 p

Yl |X⃗l
(yl |⃗xl;Ck) = ∏

n
l=1,l ̸=j 1 = 1

.
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Expectation Maximization

• The probabilities pYj|X⃗j
(i|⃗xj; Ck) are computed as

pYj|X⃗j
(i|⃗xj; Ck) =

fX⃗j,Yj
(x⃗j, i; Ck)

fX⃗j
(x⃗j; Ck)

=
fX⃗j|Yj

(x⃗j|i; Ck) · pYj
(i; Ck)

∑
c
l=1 fX⃗j|Yj

(x⃗j|l; Ck) · pYj
(l; Ck)

,

that is, as the relative probability densities of the different clusters
(as specified by the cluster parameters) at the location of the data points x⃗j.

• The pYj|X⃗j
(i|⃗xj; Ck) are the posterior probabilities of the clusters

given the data point x⃗j and a set of cluster parameters Ck.

• They can be seen as case weights of a “completed” data set:

◦ Split each data point x⃗j into c data points (x⃗j, i), i = 1, . . . , c.

◦ Distribute the unit weight of the data point x⃗j according to the above
probabilities, i.e., assign to (x⃗j, i) the weight pYj|X⃗j

(i|⃗xj; Ck), i = 1, . . . , c.
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Expectation Maximization: Cookbook Recipe

Core Iteration Formula

Ck+1 = argmax
C

c

∑
i=1

n

∑
j=1

pYj|X⃗j
(i|⃗xj; Ck) · ln fX⃗j,Yj

(x⃗j, i; C)

Expectation Step

• For all data points x⃗j:
Compute for each normal distribution the probability pYj|X⃗j

(i|⃗xj; Ck)
that the data point was generated from it
(ratio of probability densities at the location of the data point).
→ “weight” of the data point for the estimation.

Maximization Step

• For all normal distributions:
Estimate the parameters by standard maximum likelihood estimation
using the probabilities (“weights”) assigned to the data points
w.r.t. the distribution in the expectation step.
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Expectation Maximization: Mixture of Gaussians

Expectation Step: Use Bayes’ rule to compute

pC|X⃗(i|⃗x; C) =
pC(i; ci) · fX⃗|C(x⃗|i; ci)

fX⃗(x⃗; C)
=

pC(i; ci) · fX⃗|C(x⃗|i; ci)

∑
c
k=1 pC(k; ck) · fX⃗|C(x⃗|k; ck)

.

→ “weight” of the data point x⃗ for the estimation.

Maximization Step: Use maximum likelihood estimation to compute

ϱ
(t+1)
i =

1

n

n

∑
j=1

pC|X⃗j
(i|⃗xj; C(t)), µ⃗

(t+1)
i =

∑
n
j=1 pC|X⃗j

(i|⃗xj; C(t)) · x⃗j

∑
n
j=1 pC|X⃗j

(i|⃗xj; C(t))
,

and Σ
(t+1)
i =

∑
n
j=1 pC|X⃗j

(i|⃗xj; C(t)) ·
(

x⃗j− µ⃗
(t+1)
i

)(
x⃗j− µ⃗

(t+1)
i

)⊤

∑
n
j=1 pC|X⃗j

(i|⃗xj; C(t))

Iterate until convergence (checked, e.g., by change of mean vector).

Christian Borgelt Advanced Data Mining 2 222



Expectation Maximization: Technical Problems

• If a fully general mixture of Gaussian distributions is used,
the likelihood function is truly optimized if

◦ all normal distributions except one are contracted to single data points and

◦ the remaining normal distribution is the maximum likelihood estimate for
the remaining data points.

• This undesired result is rare,
because the algorithm gets stuck in a local optimum.

• Nevertheless it is recommended to take countermeasures,
which consist mainly in reducing the degrees of freedom, like

◦ Fix the determinants of the covariance matrices to equal values.

◦ Use a diagonal instead of a general covariance matrix.

◦ Use an isotropic variance instead of a covariance matrix.

◦ Fix the prior probabilities of the clusters to equal values.
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