A Fixed Parameter Algorithm
for Minimum Weight Triangulation:
Analysis and Experiments

Magdalene Grantson®, Christian Borgelt?, and Christos Levcopoulos!

! Department of Computer Science
Lund University, Box 118, 221 Lund, Sweden
{magdalene,christos}@cs.lth.se

2 Department of Knowledge Processing and Language Engineering
University of Magdeburg, Universitatsplatz 2, 39106 Magdeburg, Germany
borgelt@iws.cs.uni-magdeburg.de

Abstract. We describe a fixed parameter algorithm for computing the
minimum weight triangulation (MWT) of a simple polygon with (n — k)
vertices on the perimeter and k hole vertices in the interior, that is, for
a total of n vertices. We show that with our algorithm the minimum
weight triangulation can be found in time at most O(n*4*k), and thus
in time polynomial in n if £ < O(logn). We implemented our algorithm
in Java and report experiments backing our analysis.

1 Introduction

A triangulation of a set S of m points in the plane is a maximal set of non-
intersecting edges connecting the points in S. A minimum weight triangula-
tion (MWT) of S is a triangulation of minimum total edge length. (Note that
a MWT need not be unique.) Although it is unknown whether the problem of
computing a MWT of a set S of points is NP-complete or solvable in polynomial
time [3], it is surely a non-trivial problem, for which no efficient (i.e. polynomial
time) algorithm is known. The MWT problem has been studied extensively in
computational geometry and has applications in computer graphics [10], image
processing [9], database systems [7], and data compression [8].

In this paper we consider the slightly more general problem of finding a MWT
of a simple polygon with (n — k) vertices on the perimeter and k hole vertices
in the interior, that is, for a total of n vertices. In this case a triangulation is a
maximal set of non-intersecting edges (in addition to the perimeter edges), all
of which lie inside the polygon. Note that the problem of finding the MWT of a
set S of points can be reduced to this problem by finding the convex hull of .S,
which is then treated as a (convex) polygon, while all vertices not on the convex
hull are treated as holes. Here, however, we do not require the polygon to be
convex and thus solve a more general problem. Note also that for £ = 0 (no
holes) a MWT can be found by dynamic programming in time O(n?) [4, 6].

Published as Technical Report LU-CS-TR:2005-234 on April 20, 2005
ISSN 1650-1276 Report 154, Lund University, Sweden 2005

2 Magdalene Grantson, Christian Borgelt, Christos Levcopoulos

Recent attempts to give exact algorithms for computing a MWT in the gen-
eral case exploit the idea of parameterization. The basis of such approaches is the
notion of a so-called fixed parameter algorithm. Generally, such an algorithm has
a time complexity of O(n®- f(k)), where n is the input size, k is a (constrained)
parameter, ¢ is a constant independent of k, and f is an arbitrary function [2].
The idea is that an algorithm with such a time complexity can be tractable if the
parameter k is constrained. For example, for constant k the problem becomes
efficiently tractable, because the time complexity is then polynomial in n.

W.r.t. a MWT of a simple polygon with holes the total number n of vertices
is the size of the input and we may choose the number k of hole vertices as
the constrained parameter. A first algorithm based on such an approach was
presented in [5] and analyzed to run in O(n®log(n) 6*) time. In this paper we
describe a fixed parameter algorithm that is inspired by the basic idea of this
algorithm, but deviates in some respects. Due to improvements in both the
algorithm and its analysis, we are able to show that the time needed to find a
MWT of a polygon with holes is at most O(n*4*k). In addition, we implemented
our algorithm in Java and performed experiments backing our analysis.

2 Preliminaries and Basic Idea

As already pointed out, we consider as input a simple polygon with (n — k)
vertices on the perimeter and k hole vertices, thus a total of n input vertices.
Following [1], we call such a polygon with holes a pointgon for short. We denote
the set of perimeter vertices by Vj, = {v1,v2,...,v,_1}, assuming that they are
numbered in counterclockwise order starting at an arbitrary vertex. The set of
hole vertices we denote by Vi, = {vp—k+1,Vn—k+2,--.,0n}. The set of all vertices
is denoted by V = V,, U V},, the pointgon formed by them is denoted by G.

Definition 1. A vertex uw € V is said to be lexicographically smaller than a
verter v € V., written u < v, iff one of the following conditions is satisfied:

1. The x-coordinate of u is smaller than the x-coordinate of v.
2. The x-coordinate of u is equal to the x-coordinate of v,
but the y-coordinate of u is smaller than the y-coordinate of v.

W.l.o.g. we assume that the hole vertices (i.e. the vertices in V},) are in lexico-
graphical order, that is, we assume that Vi;n—k < i < n:v; < v;41. (Otherwise
we can sort and renumber them, incurring negligible computation costs.)

Definition 2. A path in a pointgon G, defined by a sequence of vertices from V,
1s called lexi-monotone iff the sequence of vertices is either lexicographically
increasing or lexicographically decreasing. A separating lexi-monotone path
(or simply a “separating path”) of a pointgon G is a lexi-monotone path with
start and end vertices on the perimeter of G (i.e. vertices in Vp,) and a (possibly
empty) sequence of hole vertices (i.e. vertices in V3,) in the middle, which does not
intersect the perimeter of G (start and end vertex do not count as intersections).

A Fixed Parameter Algorithm for Minimum Weight Triangulation 3

With these definitions, the core idea of our algorithm (as well as the core idea
of the algorithm in [5]) is based on the following simple observation:

Let v € V,, be an arbitrary vertex on the perimeter of a pointgon G. Then in
every triangulation T of G there exists: either a separating path m starting at v
or two perimeter vertices v. and v.. that are adjacent to v and that together
with v form a triangle without any hole vertices in its interior.

As a consequence, we can try to find the MWT of a given pointgon G, which is
not a triangle without hole vertices, with the following recursion that considers
possible splits of G into two sub-pointgons: In the first place we consider all
separating paths starting at an arbitrarily chosen vertex v € V). Each such
path splits the pointgon into two sub-pointgons, one to the left and one to
the right of the separating path. Secondly, we consider the special path that
connects the two perimeter vertices that are adjacent to v and thus “cuts off”
v from the rest of the pointgon, provided that the triangle formed by v and
its adjacent perimeter vertices does not contain any hole vertices. In any case
we have two sub-pointgons, which can be processed recursively. The minimum
weight triangulation is then obtained as the minimum over all these splits [5].

Formally, we can describe the solution procedure as follows: Let G be a given
pointgon and v € V, an arbitrary vertex on the perimeter of G. Let IT(G,v) be
the set of all separating paths of G starting at v. If m € I1(G,v) is a separating
path, let |7| be the length of 7 (that is, the sum of its edge lengths) and L(G,)
and R(G,) the sub-pointgons to the left and to the right of 7, respectively.
Furthermore, let v. and v.. be the perimeter vertices that are adjacent to v
in clockwise and counterclockwise direction, respectively. Then the weight of a
MWT of G can be computed recursively as

MWT(G) = min { Lmin {MWT(L(G, m)) + MWT(R(G, m)) ~ [xl}

MWT(R(G, (v, ve))) + (0, vee)| + (0,06}

The first term in the outer minimum considers all splits by separating lexi-
monotone paths. Note that we have to subtract the length of the path = from
the sum of the minimum triangulation weights of the two sub-pointgons, because
this path is part of both sub-pointgons. The second term in the outer minimum
refers to the special path (vee,v.) that “cuts off” v from the rest of the point-
gon. Note that in this second term only one recursion is necessary, because we
consider it only if the triangle formed by v, v.., and v. does not contain any
hole vertices. Obviously, for such a triangle no recursive processing is necessary.
Note also that the length of the third edge (vee,v.) of the triangle is contained
in MWT(R(G, (Vee, ve))), so that it need not be added.

Although the above recursive formula only computes the weight of a MW'T,
it is easy to see how it can be extended to yield the edges of a MWT. For this,
each recursive call also has to return the set of edges that is added in order to
achieve a triangulation. The union of these sets of edges for the term that yields
the minimum weight is a MW'T for the original pointgon G.

4 Magdalene Grantson, Christian Borgelt, Christos Levcopoulos

Fig. 1. A sub-pointgon is represented by a coun-
terclockwise walk round its perimeter, following
the at most two lexi-monotone bounding paths.
The encircled vertex is the anchor, the thick line
represents a coherent perimeter piece.

3 Dynamic Programming

The basic idea, as it was outlined in the preceding section, solves the MWT
problem in a recursive manner. However, it is immediately clear that it should
not be implemented in this way, because several branches of the tree recursion
lead to the same sub-pointgon. Hence a direct implementation would lead to
considerable redundant computations. A better approach consists in using dy-
namic programming, which ensures that each possible subproblem is solved at
most once, thus rendering the computation much more efficient.

To apply dynamic programming, we have to identify the different subprob-
lems that we meet in the recursion, and we have to find a representation for
them. The core idea here is the following: if in the recursion we prefer to use
the same vertex v for attaching separating paths as in the preceding split, every
subproblem we encounter can be described by one or two lexi-monotone paths
that start at the same vertex v (which we call the anchor of the subproblem) and
a coherent piece of the perimeter of the input pointgon (see Figure 1). A detailed
analysis of this statement, providing a proof, will be given later.

We represent a subproblem by an index word over an alphabet with n charac-
ters, which uniquely identifies each subproblem. This index word has the general
form (v, e, ™) and describes a counterclockwise walk round the perimeter of
the subproblem. The first element is the anchor v, which may be either a perime-
ter vertex or a hole vertex of the input pointgon and thus can have n possible
values. 7., and 7. describe the sequences of hole vertices of the input pointgon
that are on the separating paths. All elements of 7., and 7. are in V;,—with the
possible exception of the last elements, which may be perimeter vertices s.. and
S¢, respectively. Note that either 7. or 7. or both may be empty. Note also that
in the case where the separating paths bounding a subproblem end at a hole
vertex of the input pointgon, or at the same perimeter vertex, this end vertex is
contained only in 7. to avoid duplicate entries.? Finally, note that the vertices
in a coherent perimeter piece between the end vertices s.. and s. (if it exists)
are not part of the subproblem representation, but are left implicit.

The general idea of using such an index word is the following: in order to
avoid redundant computations, we have to be able to efficiently store and re-
trieve the solutions of already solved subproblems. For the problem at hand it
is most convenient to use a trie structure, which is accessed through the index
word representing a subproblem. That is, for our implementation, we do not
use the standard, table-based form of dynamic programming, but a version of

3 Tt is, of course, an arbitrary choice to include it only in m... One may just as well
decide to include it only in 7.

A Fixed Parameter Algorithm for Minimum Weight Triangulation 5

implementing the recursion outlined above, which is sometimes called “memo-
rized”. In each recursive call, we first access the trie structure (using the index
word of a sub-pointgon) in order to find out whether the solution to the current
subproblem is already known. If it is, we simply retrieve and return the solution.
Otherwise we actually carry out the split computations and in the end store the
found solution in the trie. Although this approach is slightly less efficient than a
true table-based version (since there are superfluous accesses to the trie, namely
the unsuccessful ones), its additional costs do not worsen the asymptotic time
complexity. The following pseudocode describes our algorithm:

function MWT (word key) : real
begin
if key is in trie
then return trie.getweight(key); fi;
if polygon(key) is a triangle
and polygon(key) contains no holes
then wgt = perimeter_length(polygon(key));
trie.add(key, wgt, L);
return wgt;
fi;
min = 400; best = 1;
for all paths 7w € II(polygon(key), key.v) U {(vec(key.v), ve(key.v)} do
wgt = MWT(L(key, 7)) + MWT(R(key, 7)) — |7];
if (wgt < min)
then min = wgt; best = 7; fi;
done;
trie.add(key, min, best);
return min;
end;

)

In this pseudocode the symbol L is used to indicate that there is no separating
path. To collect the edges of the solution, the following function is used:

function collect (word key) : set of edges
begin

m = trie.getpath(key);

if 7 = 1 then return 0; fi;

return collect(L(key, w)) U collect(R(key, 7)) U edges(r);
end;

Before we proceed with a detailed analysis of the different types of pointgons and
how they are handled in our algorithm, it is worthwhile to make a few remarks
about how to code index words representing sub-pointgons in a computer. The
simplest way would be to use lists of vertices for 7.. and w.. However, from a
theoretical point of view, this has the disadvantage that in this case each element
needs log k space, leading to a worst case space complexity of O(klog k). A better
way would be to use bit vectors of length k, each bit of which corresponds to

6 Magdalene Grantson, Christian Borgelt, Christos Levcopoulos

type A type B type C type D

Fig. 2. The four types of pointgons we encounter. A black point indicates a vertex belonging to V,,
a white point a vertex belonging to V3, and a gray point a vertex belonging to V' = V}, U V},. The
encircled point is the anchor, thick lines indicate pieces of the perimeter of the input pointgon.

one hole vertex. If a bit is set, the corresponding hole is on the path, otherwise
it is not. In this case the worst case space complexity is only O(k). For an
implementation, however, such a way of coding the vertex sequences 7. and 7.
is, at best, inconvenient. Therefore we use the simple list representation, relying
on the fact that a real-world computer has limited memory and thus in practice
every vertex is coded with a fixed amount of memory even in this case.

4 Types of Pointgons

Apart from the input pointgon, which is of neither of these types, we encounter
four types of sub-pointgons (see Figure 2 for sketches):

A Sub-pointgons of this type have only one separating path starting at the
anchor v, which must be on the perimeter of the input pointgon. The vertices
on the path are lexicographically increasing. In addition, there is a coherent
perimeter piece of the input pointgon.

B Sub-pointgons of this type are bounded by two separating paths starting at
the anchor v, which may be either a perimeter vertex or a hole vertex of the
input pointgon. The vertices on both paths are lexicographically increasing.
There may or may not be a coherent perimeter piece of the input pointgon.
(Note that it may consist of only a single perimeter vertex as a special case.)

C Sub-pointgons of this type are bounded by two separating paths starting at
the anchor v, which must be a perimeter vertex of the input pointgon. One
of the two paths is lexicographically increasing, the other decreasing. As a
consequence there must be a perimeter piece of the input pointgon.

D Sub-pointgons of this type are bounded by two separating paths starting at
the anchor v, which may be either a perimeter vertex or a hole vertex of the
input pointgon. The vertices on both paths are lexicographically decreasing.
There must be a perimeter piece of the input pointgon, which contains at
least two vertices (with only one vertex it could be turned into type B).

The general principle of the choice of the anchor is that it is the leftmost vertex
on the separating path if there is just one path, and the vertex that is on both
paths if there are two separating paths. If there are two vertices that are on both
paths (because they share both start and end vertex), we choose the leftmost one.

A Fixed Parameter Algorithm for Minimum Weight Triangulation 7

Fig. 3. Behavior of Type A pointgons in the recursion (possible splits). v denotes the original anchor
and v,, * € {A, B, C}, denotes the anchor of a sub-pointgon of type * due to the split.

Fig. 4. Behavior of Type B pointgons in the recursion (possible splits). v denotes the original anchor
and v, * € {A, B}, denotes the anchor of a sub-pointgon of type * due to the split.

For the input pointgon, we choose the lexicographically smallest perimeter
vertex as the anchor (just for convenience). Regardless of the path we use to split
this pointgon (whether it starts at the anchor or cuts off the anchor), we obtain
a sub-pointgon of type A for both subproblems. The other types of pointgons
can only be created in deeper levels of the recursion. In the following we consider
how these types of pointgons are treated in the recursion in our algorithm and
thus also prove that these are the only types that occur.

4.1 Type A Pointgons

The different splits of a type A pointgon are sketched in Figure 3. On the very
left a path “cutting off” the anchor, which is seen as leading from the coun-
terclockwise neighbor of v to its clockwise neighbor, can be merged with the
existing separating path to give a new type A pointgon. Otherwise, we obtain
a type B pointgon (second sketch). For a path starting at the anchor, we dis-
tinguish whether it is lexicographically increasing (third sketch) or decreasing
(fourth sketch, note the different anchor). In the former case, we obtain one
type A and one type B pointgon, which receive the same anchor as the original
pointgon. In the latter case, we obtain one type A pointgon, with its anchor at
the end of the new separating path, and one type C pointgon, with its anchor
equal to that of the original pointgon. Note that all cases may also occur mirrored
at a horizontal axis, which should also be kept in mind for the other types.

4.2 Type B Pointgons

Type B pointgons behave similar to type A pointgons (see Figure 4). Again we
have to check whether a type A pointgon can result (note that in this case one
separating path must consist of only one edge, see leftmost sketch). Otherwise we
get a type B pointgon with an anchor that is one end of the cutting path (second

8 Magdalene Grantson, Christian Borgelt, Christos Levcopoulos

UUcUB -

Fig. 5. Behavior of Type C pointgons in the recursion (possible splits). v denotes the original anchor
and v, * € {A, B,C, D}, denotes the anchor of a sub-pointgon of type * due to the split.

Fig. 6. Behavior of Type D pointgons in the recursion (possible splits). v denotes the original anchor
and v, * € {A, B, D}, denotes the anchor of a sub-pointgon of type * due to the split.

sketch). For separating paths starting at the anchor only type B pointgons can
result (third and fourth sketch), because there is not the possibility of a path
leading to the left (as there was for type A pointgons), since both bounding
separating paths are lexicographically increasing.

4.3 Type C Pointgons

Type C pointgons are the most complicated case (see Figure 5). If the anchor
is “cut off”, we only have one separating path, so the anchor is set to its start-
ing vertex and thus we obtain a type A pointgon (leftmost sketch). If a new
separating path is attached to the anchor, we have to distinguish whether it is
lexicographically increasing or decreasing. Increasing paths are simpler, leading
to a split into one type C and one type B pointgon (second sketch). If the path is
lexicographically decreasing, we have to check whether there is a perimeter piece
of the input pointgon with at least two vertices. If there is not, we obtain one
type B pointgon, with its anchor at its leftmost vertex, and one type C pointgon,
which maintains the anchor of the original pointgon (third sketch). Otherwise
we obtain one type D and one type C pointgon, both of which receive the anchor
of the original pointgon (rightmost sketch).

4.4 Type D Pointgons

Type D pointgons behave symmetrically to type B pointgons. When the anchor
is “cut off” we also have to check whether a type A pointgon results (note that in
this case one separating path must consist of only one edge, see leftmost sketch).
Otherwise we get a type D pointgon with an anchor that is one end of the
cutting path (second sketch). For separating paths starting at the anchor either
one type B and one type D pointgon (third sketch), namely if one perimeter
piece is empty, or two type D pointgons result (rightmost sketch).

A Fixed Parameter Algorithm for Minimum Weight Triangulation 9

5 Analysis

To estimate the time complexity of our algorithm, we proceed generally in the
same way as the authors of [5], that is, by multiplying the (worst case) number
of subproblems by the (worst case) time it takes to process one subproblem. This
time is computed as the (worst case) number of possible splits (paths) of a sub-
pointgon multiplied with the (worst case) time for processing one split. However,
one of our refinements consists in grouping the subproblems and analyzing the
groups separately. The groups we consider are defined by the number of perimeter
vertices of the input pointgon a sub-pointgon has on its perimeter.

So consider the number of subproblems with [, 0 < [< k, hole vertices on
the perimeter. The worst case is that we have three perimeter vertices of the
input pointgon, namely the anchor and the two ends of the separating paths.
This gives us a factor of n3. Next we have to choose [of the k input hole ver-
tices, for which we have (];) possibilities, and then we have to distribute the
chosen hole vertices on the two paths, for which there are 2! possibilities. As a
consequence we have in the worst case O(n? (];) 2!) possible sub-pointgons with [
holes on the perimeter. To check the consistency of this number with the total
number of O(n®3%) subproblems in the worst case (where the 3% stems from
the possible ways of distributing the k holes onto the tree states “on counter-
clockwise separating path”, “on clockwise path”, and “on neither path”), we
sum the numbers of subproblems for all different values of [. That is, we com-
pute Zf:o n? (’;)21 = n? Zf:o (?)21 = n33%, where the last step follows from
Newton’s binomial series (1 + x)* = Zf:o (];):rl with ¢ = 2.

Given a sub-pointgon with [holes on the perimeter, there are at most k — [
holes left to form a separating path and at most n end points. This gives us
a maximum of n2¥~! possible paths. For each path, we have to check whether
it intersects the perimeter of the sub-pointgon. This check can be made very
efficient by a preprocessing step in which we determine for each edge that could
be part of a separating path whether it intersects the perimeter of the input
pointgon or not. The resulting table has a size of at most n2, which is negligible
compared to the number of subproblems. With this table we can check in O(k—1)
whether a given separating path intersects a (possibly existing) perimeter piece.
In addition, we have to check for an intersection with the at most two already
existing separating paths, which contain at most [+ 2 edges. By exploiting that
all paths are lexi-monotone, this check can be carried out in O(k). Once a path
is found to be valid, the sub-pointgons have to be constructed by collecting their
at most k 4 3 defining vertices, and their solutions have to be looked up. Both
operations take O(k) time. Finally the length of the path has to be computed,
which takes O(k —1) time. Therefore processing one path takes in all O(k) time.

As a consequence the overall time complexity is

k k
k k
3 U ok—l _ 4ok _ 44k
O< lgo n <l>2 n2 k > O(n 2 klgo (l)) O(n*47k).
— -
~~ ~———

paths time
subproblems path e

10 Magdalene Grantson, Christian Borgelt, Christos Levcopoulos

n — k| k| time in seconds | time/n*4"k n — k| k| time in seconds | time/n°4*k
3 |1| 0.010+ 0.000]9.766-10~° 3 |1| 0.010+ 0.000|2.441-10~°
6 |1| 0.011% 0.000]1.145-10~° 6 |1| 0.011+ 0.000]1.636-1077
9 |2| 0.049+ 0.004]1.046-1077 9 |2| 0.048+ 0.004|9.314-107°
12 |3| 0.076+ 0.006 |7.819-107° 12 3] 0.075+ 0.006|5.144-1071°
15 |4| 0.151+ 0.029]1.132-107° 15 |4| 0.144+ 0.027|5.679-10" 1
18 |5| 0.535+ 0.144[3.734-1071° 18 |5| 0.490+ 0.129]1.487-10~ !
21 [6] 2.115+ 0.869|1.619-10~1° 21 |6| 1.844+ 0.763|5.229-107 2
24 7] 9.142+ 3.982|8.631-107%! 24 |7| 7.437+ 3.217|2.265-107'2
27 | 8| 43.5484+19.198|5.535-10~ 1! 27 | 8| 34.617+14.639|1.257-10712
30 [9]176.588+71.4733.235-107 1! 30 |9]131.192+52.538|6.163-10713

Table 1. Results obtained with our Java implementation of the described MW'T algo-
rithm and a modification. All results are averages over 20 runs, with randomly gener-
ated convex pointgons. The left table refers to the normal algorithm, the right to the
alternative version with bookkeeping of the hole vertices.

6 Implementation

As already pointed out above, we implemented our algorithm in Java. In addi-
tion to the standard algorithm as it was described above, this implementation
offers an alternative version of the algorithm: it can optionally keep track of the
hole vertices that are inside a sub-pointgon, thus reducing the number of can-
didate separating paths that are considered in the recursion. Theoretically such
bookkeeping worsens the (worst case) time complexity to O(n’4*k) due to the
test which of the two sub-pointgons contains a hole. Such a test, which is carried
out by counting how many times a half-line from a hole cuts the perimeter of a
sub-pointgon, has time complexity of O(n) for each hole. Hence the checks for all
holes incur costs in the order of O(nk), which are then the costs for processing
one path (instead of O(k)). In practice, however, activating this option resulted
in shorter processing times in all tests we did. The reason seems to be that the
reduction of the number of holes in the recursion leads to bigger gains than the
losses incurred by the bookkeeping w.r.t. the holes.

Example results for different numbers of holes and perimeter vertices are
shown in Table 1. The test system was an Intel Pentium 4C@2.6GHz with 1GB
of main memory running S.u.S.E. Linux 9.2 and Sun Java 1.4.2_05. All execu-
tion times are averages of 20 runs, carried out on randomly generated convex
pointgons. We used convex pointgons, because they seem to represent the worst
case. Non-convex pointgons, due to intersections of candidate paths with the
perimeter, are usually processed faster. The left table shows the results for the
normal algorithm as it was described in the preceding sections, while the right
table shows the results for the modification in which it is determined which hole
vertices are inside a subproblem (see above). As these tables show, it pays in
practice to invest the additional costs of this bookkeeping, since the execution
times in the right table are generally lower than those in the left.

A Fixed Parameter Algorithm for Minimum Weight Triangulation 11

l—ﬁﬂ Fig.7. A screenshot of the graphical user
File Actions Help interface to our implementation of the de-
scribed algorithm. The program allows for
loading pointgons from a text file, gener-
ating random pointgons, finding their min-
imum weight triangulation, and modifying
a triangulation as well as recomputing its
weight in order to check whether it is actu-
ally minimal. When a MWT is computed,
search statistics are printed about the num-
ber of triangles, subproblems, and sepa-
rating paths considered. This screenshot
shows the MWT of a randomly generated
(star-like) pointgon with 16 vertices on the
perimeter and 8 holes, which has 37 edges
(excluding the perimeter edges). It was
computed in about 2.5 seconds (on a Intel
Pentium 4CQ2.6GHz system with 1GB of
minirnurm weight triangulation (37 edge(s), weight: 211.928) main memory running S.u.S.E. Linux 9.2).

To check our theoretical result about the time complexities, we computed
the ratios of the measured execution times to the theoretical values (see last
columns of both tables; note that the two versions of our algorithm have different
theoretical time complexities). As can be seen, these ratios are decreasing for
increasing values of n and k, indicating that the theoretical time complexity is
actually a worst case, while average results in practice are considerably better.
We even conjecture that there is still room for improvement of the analysis
(basically w.r.t. the dependence on k), and continue working on it.

To give an impression of the graphical user interface (GUI) of the program,
Figure 7 shows a screen shot of the main window. With this user interface it is
possible to load pointgons from text files, to generate random pointgons, to find
their minimum weight triangulation, and to modify a triangulation as well as to
recompute its weight in order to check whether it is actually minimal. Apart from
the GUI version, the program can be invoked on the command line, a feature we
exploited to script the test runs reported above. The Java source code of our im-
plementation as well as an executable Java archive (jar) can be downloaded free
of charge at http://fuzzy.cs.uni-magdeburg.de/ borgelt/pointgon.html.

7 Conclusions

We described a fixed parameter algorithm for computing the minimum weight
triangulation of a simple polygon with hole vertices, which is inspired by the al-
gorithm in [5]. Due to improvements of both the algorithm as well as its analysis,
we were able to show that its time complexity is O(n*4¥k). Thus we provided
a considerable improvement over the result of [5], who gave a time complex-
ity of O(n°log(n)6%). In addition, we presented a Java implementation of our
algorithm, and reported experiments that were carried out with this implemen-
tation. These experiments indicate that the actual time complexity may even be
considerably better than the result of our theoretical analysis.

12 Magdalene Grantson, Christian Borgelt, Christos Levcopoulos
References
1. O. Aichholzer, G. Rote, B. Speckmann, and I. Streinu. The Zigzag Path of a

10.

Pseudo-Triangulation. Proc. 8th Workshop on Algorithms and Data Structures
(WADS 2003), LNCS 2748, 377-388. Springer-Verlag, Berlin, Germany 2003

. R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, New York,

NY, USA 1999

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to Theory
of NP-Completeness. Freeman, New York, NY, USA 1979

P.D. Gilbert. New Results in Planar Triangulations. Report R-850. University of
Illinois, Coordinated Science Lab, 1979

M. Hoffmann and Y. Okamoto. The Minimum Triangulation Problem with Few
Inner Points. Proc. 1st Int. Workshop on Parameterized and Exact Computation
(IWPEC 2004), LNCS 8162, 200-212. Springer-Verlag, Berlin, Germany 2004
G.T. Klincsek. Minimal Triangulations of Polygonal Domains. Annals of Discrete
Mathematics 9:121-123. ACM Press, New York, NY, USA 1980

E. Lodi, F. Luccio, C. Mugnai, and L. Pagli. On Two-Dimensional Data Organi-
zation, Part I. Fundamenta Informaticae 2:211-226. Polish Mathematical Society,
Warsaw, Poland 1979

A. Lubiw. The Boolean Basis Problem and How to Cover Some Polygons by
Rectangles. SIAM Journal on Discrete Mathematics 3:98-115. Society of Industrial
and Applied Mathematics, Philadelphia, PA, USA 1990

D. Moitra. Finding a Minimum Cover for Binary Images: An Optimal Parallel
Algorithm. Algorithmica 6:624—657. Springer-Verlag, Heidelberg, Germany 1991
D. Plaisted and J. Hong. A Heuristic Triangulation Algorithm. Journal of Algo-
rithms 8:405-437 Academic Press, San Diego, CA, USA 1987

