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Abstract. In the past few years many algorithms for discovering frequent subgraphs
in graph databases have been proposed. However, most of these methods are limited
to finding only relatively small fragments or restrict the discovered structures in other
ways, which makes them not very useful for applications in biochemistry. Recently
the authors of the original gSpan algorithm have shown how the usage of closed frag-
ments can considerably speed up their algorithm. However, the main limitation to
small fragments still remains. In this paper we show how the more versatile search al-
gorithm underlyingloFa can benefit greatly from using closed fragments as well and
how the concept of perfect extensions quite naturally allows to prune the underlying
search tree. We demonstrate how this results in speed-ups on the NCI's HIV database.
Keywords: closed fragments, substructure mining, graphs, molecules, pruning

1 Introduction
1.1 Motivation

Finding common features in large sets of molecules is a frequently reoccurring problem in
many biological or chemical applications. Examples include drug discovery, where the goal

is to identify common properties that molecules share which were identified as “active” in a
so-called High-Throughput Screen. Such screens typically produce activity information for
hundreds of thousands of molecules. Other examples are compound synthesis, i.e. the gener-
ation of new molecules based on so-called virtual libraries. The ability to predict chances of

a successful synthesis before it is being attempted can save valuable resources. Again, results
for hundreds of thousands of attempted syntheses exist from which knowledge can be derived.
In all these cases there exist many possible modes of action, that is, reasons why a specific
molecule interacts with the sample or why a synthesis fails or succeeds, are manifold. This
makes it extremely hard to identify the right features to use. In sharp contrast to many other
data mining problems, this is not a simple problem of feature reduction but really a prob-
lem of finding suitable ways to describe molecules. In the past biologists and chemists have
spend much time developing just the right ways to describe molecules, ranging from simple
one-dimensional measurements to enormously complex thousand dimensional descriptors:
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e simple one-dimensional descriptors measure molecular weight, number of hydrogen donors
or acceptors, or rotatable bonds among many others.

e 2D descriptors model the connectivity of a molecule. Prominent examples are binary
feature vectors where each bit represents a specific constellation of atoms, for example
interesting substructural elements such as aromatic rings or amino groups but also simpler
features such as specific atom-atom pairs. These so-¢altgglprintscan range from a
few hundred to several thousand bits.

¢ 3D shape descriptors try to map a molecule to a 3D grid and attempt to model differences
in geometry, that is their physical coverage of 3D space. Related approaches measure
electrostatic properties at points in 3D space or other surface properties.

It is obvious that none of the methods above will be able to model all possible aspects of
possible interactions between molecules. Sometimes simple 3D shape is sufficient — although
quite often this only matters for part of a molecule, making matters complicated again since a
possible similarity measure would need to weight different parts of the molecules differently.
Sometimes the part of a molecule which is important can be described through the combina-
tion of a few bits of a fingerprint or by a small 2D fragment, literally a subgraph of the entire
molecule.

This latest approach is particularly interesting to the chemist because the resulting model
can be easily interpreted.

1.2 Mining Molecular Fragments

Finding fragments in a database of chemical structures is inherently different from the clas-
sical task of building a classification model for an arbitrary dataset. The latter focuses on
finding one common model that summarizes the underlying dependencies for the entire data
set. However, such an approach is futile for many chemical datatsstause the underlying
model consists of many different modes of action, which would need to be modeled indepen-
dently. In addition it is almost certain that not all data points will be explainable at all, thus
making the usual target of perfect classification impossible (and unimportant!) to achieve.
It is therefore much more suitable to extract individual, local models (“bits&pieces of evi-
dence”) that describe different types of chemical or biological interaction that result in the
same outcome, e.g. inhibition of a certain activity in a drug discovery context.

For the extraction of frequent or discriminative fragments, various methods have been de-
scribed recently. All of them are based on methods borrowed from the association rule min-
ing community, in particular the Apriori algorithni] and the Eclat approaciif]. Whereas
Apriori essentially implements a breadth-first search, Eclat follows a depth-first approach.
The difference to the classical application of these algorithms — finding frequent occurrences
of bits in large collections of high-dimensional bitvectors — can be summarized nicely when
looking at the two main steps of both methods, namely Candidate Generation and Support
Computation.

e Candidate GeneratiarGenerating new fragments is inherently based on the previous set
of smaller fragments. In a bit vector based domain such candidate generation is relatively

we simplify things slightly by ignoring very focused libraries that target one single mode of action very
late in the drug discovery process.
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straightforward, for graphs this becomes a more challenging task, since there are poten-
tially many different candidates to consider and it is not trivial to avoid generation of
duplicates.

e Support ComputatiarAgain, this step is relatively easy for bit vectors. For graphs, how-
ever, the support computation requires a test on subgraph isomorphism, which essentially
requires an embeddiAgf a fragment into each molecule in the database. Subgraph em-
bedding has been shown to be NP compléiedo this becomes — especially for larger
fragments — prohibitively expensive.

Quite a number of different approaches exist to date to find frequent fragments in molecu-
lar databases. Most of them concentrate only on a subset of the problems mentioned above,
in particular most of them ignore the problem of support computation and rely on available
graph embedding toolkits, which makes them applicable to finding small fragments only since
graph embedding is computationally extremely expensive if not optimized carefully. Some
examples are MolFed], FSG [8], gSpan 2], MoFa [2] and the relatively new FFSMg].
A more detailed discussion on this class of algorithms can be fouridl]nAll these algo-
rithms have in common that they operate on graphs. Besides there are also other approaches
relying for instance on methods from Inductive Logic Programming (ILP), where molecules
are essentially encoded as lists of basic facts and the result is a combination of facts (usually
based on first order logic) which is compatible with both, positive and negative exar@ples [

In the next sections we want to concentrate on one of the graph based appriviaffees,
and have a deeper look into it.

1.3 Mining Closed Fragments usimgoFa

In the following sections we will describe how an approach presented earligglicdn be
used to speed udoFa considerably. The method described18][concentrates on so-called
closed fragmenisthat is, fragments where no larger super-fragment occurs in exactly the
same examples of the molecular database. Doing this allows them to prune their search tree,
which achieves speedups of 1-2 orders of magnitude. However, the resulting algorithm is still
restricted to the discovery of fairly small fragments. In addition, they only report results on
small subsets~ 1000 molecules) of the HIV databas#},[suggesting problems with larger
databases.

In this paper we show how the concept of closed fragments can be incorporated in the
depth-first mining algorithm used byloFa. We introduceperfect extensionshat is, exten-
sions that do not alter the number of occurrences in the underlying database. Such perfect
extensions will be executed before any other alternative is explored, which results in substan-
tial speedups.

In the following we will summarize the algorithm underlyiddoFa before we show
experimental results on the National Cancer Insititute’s HIV déjta [

2An embeddings the same as a subgraph isomorphism but normally the isomorphism is cached for later
reuse thus the different name.
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2 Fragment Mining with MoFa

As stated above, the goal of molecular fragment mining is to find discriminative fragments in

a database of molecules, which are grouped into different classes, usually active or inactive.
To achieve this, the algorithm presented2hrepresents molecules as attributed graphs and
performs a depth first search on a tree of fragments. Stepping down one level in this search
tree corresponds to extending a fragment by adding a bond and maybe an atom (no new
atom is added if we close a ring for example). The important difference to other approaches
is that for each fragment a list of embeddings into the available molecules is maintained.
From this list, the subsequent list of embeddings for all its extensions when stepping down
along a branch of the fragment tree can easily be constructed. As a consequence, expensive
re-embeddings (i.e. subgraph isomorphism tests) of fragments are not necessary and we only
generate fragments that occur in at least one molecule of the database. This maintenance
of current embeddings is the main reason why this method outperforms other approaches —
especially for larger fragments. The support of a fragment (the number of molecules it is
contained in) is then determined by simply counting the number of different molecules these
embeddings refer to. If the support of a fragment is high in the set of active molecules and low
in the set of inactive molecules it is reported as a discriminative fragment. Note t@itirs [

also mentioned that in most cases it is sufficient to report only those fragments for which the
support values are different from the previous node, thus already reporting what is denoted as
closed fragmentm [13]. The important ingredients of the algorithm are different search tree
pruning methods, which can be categorized as follows:

e size based pruningvhich simply cuts off branches when nodes represent fragments with
more than a predefined number of bonds and/or atoms (and is seldomly used),

e support based pruningvhich cuts off branches for which fragments do not have embed-
dings in a sufficiently large number of molecules (this corresponds to the usual support
based pruning in association rule mining), and

e structural pruning which is the most important and unfortunately also most complicated
part. It is based on a definition of local orderings for the extensions of a fragment, which
eliminates most, but not all, generations of redundant fragments. Since we generate arbi-
trarily formed, connected subgraphs, we need to avoid the generation of the same frag-
ment in different branches of the search tree. In a depth first search we would not be able
to delete fragments. Seg][for details.

Since for the following the traversal of the search tree is important, let us briefly discuss
a small example. Figurgé shows the amino acids clycin, cystein and serin (hydrogens and
charges are neglected). The upper part of the tree (or forest if the empty fragment at the root
is removed) which is traversed by our algorithm for these molecules is shown in FAgure
The first level contains individual atoms, the second connected pairs of atoms and so on. The
dots indicate subtrees that are not depicted in order to simplify the figure. The numbers next
to these dots list the number of remaining fragments in these subtrees, indicating the total
size of the tree.

The order in which the atoms on the first level of the tree are processed, is determined by
their frequency of occurrence in the molecules. The least frequent atom type is considered
first. Therefore the algorithm starts on the left by embedding a sulfur atom into the exam-
ple molecules. That is, the molecules are searched for sulfur atoms and their locations are
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Figure 1: The amino acids clycin, cystein and serin
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Figure 2: The tree of fragments for the amino acids example

recorded. In our example there is only one sulfur atom in cystein, which leads to one em-
bedding of this (one atom) fragment. This fragment is then extended (depth first search) by
a single bond and a carbon ator€{), which produces the fragmeBtC on the next level.

All other extensions of fragments that are generated by going down one level in the tree are
created in an analogous way.

If a fragment allows for more than one extension (as is the case, for instance, for the
fragment€O-C andS-C-C-C ), we sort them according to the local ordering rules mentioned
above. The main purpose of this local order is to prevent certain extensions to be generated,
in order to avoid redundant search. For instance, the fragB«HC-C-O is not extended
by adding a single bond to a nitrogen atom at the second carbon atom, because this extension
has already been considered in the subtree rooted at the left sibling of this fragment.

Furthermore, in the subtree rooted at the nitrogen atom, extensions by a bond to a sulfur
atom are ruled out, since all fragments containing a sulfur atom have already been considered
in the tree rooted at the sulfur atom. Similarly, neither sulfur nor nitrogen are considered in
the tree rooted at the oxygen atom, and the rightmost tree contains fragments that consist of
carbon atoms only.

Up to now we only described how the search tree is organized, i.e., the manner in which
the candidates for discriminative fragments are generated and the order in which they are
considered. However, in an application this search tree is not traversed completely — that
would be much too expensive for a real world database. Since a discriminative fragment must
be frequent in the active molecules and extending a fragment can only reduce the support
(because only fewer molecules can contain it), subtrees can be pruned as soon as the support
falls below a user-defined threshold (support based pruning).

Discriminative fragments should also be rare in the inactive molecules, defined formally
by an user-specified upper support threshold. However, this threshold cannot be used to prune
the search tree: even if a fragment does not satisfy this threshold, its extension may (again
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extending a fragment can only reduce the support), and thus it has to be generated. Therefore
this threshold is only used to filter the fragments that are frequent in the active molecules.
Only frequent fragments that satisfy this threshold are reported as discriminative fragments.

In [2] the original form of this algorithm was applied to the NCI-HIV database with con-
siderable success. Several discriminative fragments could be found, some of which could be
related to known classes of HIV inhibitors. These and other experiments have demonstrated
thatMoFa is usually extremely fast.

3 Perfect extension pruning
3.1 Closed fragments and perfect extensions

The concept of closed itemsets was first introducedLf) find can easily be transferred to
graphs as was recently shown it3[. The idea behind it is quite simple: A subgraph (or
fragment) is said to be closed if there does not exist a supergraph that has the same support
values. Figur& illustrates this defintion. It shows part of the search Wed-a creates for the
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Figure 3: Part of MoFa search tree with closed fragments being highlighted

three molecules shown in the top left corner. The tree is built following the rules explained in
section2. Three of the fragments are circled, these are closed fragn&@d\ for example
occurs in the same number of molecules as its anceSt@sandS. Hence those two are not
closed. On the other hand, any fragment that is bigger &N has a lower support, so it
is indeed a closed fragment. The same holds for the other two circled structures. Obviously
every complete molecule is a closed fragment as well, so we do not mention this explicitly.
The fact that not all subgraphs in the lattice are closed can now be used to prune the search
tree in a dramatic fashion if the user is only interested in these closed structures. For most
applications of finding fragments in molecular databases this is indeed the main focus since
the user is interested in the largest, discriminative substructure and not the smallest or other
intermediate ones.
To make use of this new constraint we first introduce so-cglledect extensionsAn
extension of an existing fragment is perfect, if the following three conditions hold:

1. The number of embeddings must be the same as the embeddings of the parent fragment,
2. the number of supported molecules must be the same as for the parent fragment,

3. the number of embeddings in each single molecule must be the same as for the parent
fragment.
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Of course, for all fragments fulfilling conditioB the other two conditions hold as well. We
mention them separately because the test for the number of embeddings is very cheap (we
only have to compare the length of the embedding lists) and thus can be used as a shortcut
criterion. The check for the second condition is also cheaper than the third test. Hence the
test for urperfect extensions is quite fast whereas a positive result needs more computations.

The reason why the third condition is crucial will become clear once we have explained
the complete pruning process in the next section.

3.2 The pruning process MoFa

The idea underlying closed fragment prunindMoFa is the following: After the extensions

for an already discovered fragment have been created (and pruned using the standard tech-
niques)MoFa checks if there are any perfect extensions among them. Once such a perfect
extension has been foumadl other extensions are deleted and only the fragment belonging to
the perfect one is extended further. If we apply this step to the search tree in Biggerean

prune it, resulting in the one shown in FiguteThe highlighted fragmer$-C is a perfect

-C—N—C
Figure 4: The pruned search tree taking into account perfect extensions.

extension ofS and therefore the other branch that yieHO is pruned. Note thas-C is

a perfect extensionf S but is not aclosed fragmentThe other circled structur8-C-N is
also a perfect extension (&-C) which is why the other two branches can also be deleted.
(S-C-N s also aclosed fragmenthowever, this is irrelevant for the pruning process.)

It is easy to see that even for this small example, the search tree is substantially smaller
than before. However, you may have also noticed that we do not find all closed fragments
anymore. The fragmer®-S-C-N in the left branch is missing and also its descendant, the
complete molecule. The reason for this undesirable behaviour is that the structural pruning
interferes with the closed fragment pruning. We cannot add the oxygen atSaCtdl be-
cause the last extended atoooigstrained atonwas the carbon atom and the sulfur atom has
been added to the fragment before the carbon atom. The rules of structural pruning forbid any
extensions that start at atoms that have been added to a fragment before the constrained atom.
Therefore we have to change these rules slightly: if branches are deleted because a perfect
extension exists on the same level, the constrained atot set to the atom at which the
extension took place but instead stays the same as in the parent fragment. In effect we are
making sure that all extensions after the perfect extension remain applicable. If we apply this
rule to the example from before the result is the new search tree as shown in Fitjane it
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Figure 5: The new, correct search tree after the application of closed fragment pruning

is possible to add the oxygen atom to the perfect exter$i@N and a new branch is initi-

ated (circled and dashed arrows). In this braMdta finds the closed fragme@-S-C-N

and the complete molecule that were missing before. Instead of looking for extensions of
11 fragments in the original search tree onlyfragments had to be examined in the new
case. How this technique accelerates the mining process on real world datasets is shown in
sectiord.

Besides also the size based pruning will interfere with closed fragment pruning but this
does not lead to undiscovered fragments like with the structural pruning. If you cut off
branches because the structures get larger than the user defined size, the biggest fragment
will get reported but it need not necessarily be a closed one.

Finally we need to explain why the third condition above is indeed needed. That constraint
states, that the number of embeddimg® each single moleculeas to be the same for the
parent and child fragment. Let us assume that we mine on the two molecules shown on the
top of Figure6.

o The current fragment i§-S-C , which has two em-
T o_cl;_ -C—N beddings in the left molecule and two in the right.
0o—C- = -C (l) We can create two different extensios,S-C-N
and O-C-S-C . The first extension does not fulfill
| condition 1 for perfect extensions. The second one
-C fulfills the first two conditions but the distribution of
c- | -c the embeddings in the two molecules has changed.
212 embedeinge In the left molecule only one embedding remains
/\ but in the other one we now have three embeddings.
C—S—C=d. O—CIsSEt, If we did not have the third condition, this exten-

Figure 6: Non-perfect extensions. sion would be perfect and we would delete the other
branch. But then the other fragment — which is a
closed one — would never be found.

4 Experimental Results

To show the effect operfect extension pruninge ran experiments on the well known HIV
datasets from the NCI (National Cancer Institl@p.[As of March 2002, this library contains
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43,905 molecules tested for their reaction against the HI-virus. They are grouped into three
classes: 423 belong to the class CA (confirmed active), 1083 to CM (confirmed medium
active) and the rest belongs to ClI (confirmed inactive)

The standard application dMoFa is to find discriminative fragments. That is, we would
usually mine on molecules of class CA/CM of the HIV-data —fti@uis— but at the same time
also carry along the embeddings in all molecules of the other, inactive classtimement
Thus MoFa would in effect mine the entire dataset of nearly 44,000 molecules. However,
the results presented 13| were achieved by only mining on the classes CA and CM, in
total 1503 molecules. Therefore they only find fragments that are frequent in the active (and
medium active) molecules but they cannot include any upper limit on the frequency in the
inactive molecules. In order to be able to present comparable results we initially also restrict
the database to the structures in CA and CM and neglect all molecules in class CI. However,
in the following section we will also discuss results on the entire data base.

All experiments were conducted using the ring mining feature present&{ W¢ inter-
rupted experiments with a running time exceeding two hours (which is a more or less abritrary
choice). The experiments were performed on an Athlon XP 1800+ with 1GB RvdfFa
was run under Windows 2000 with Java 1.4.1 and a maximum heap of 750MB, 98asn
run under SUSE Linux 8.0.

4.1 Results: Finding Frequent Fragments

Figure7 shows the results on the HIV-dataset. The influence of perfect extension pruning is
not noticeable with minimum support thresholds greater than 3%. However, for lower support
threshold values the effect is quite dramatic. For example at 0.8% minimum occurrence,
MoFa with perfect extension pruning is more than eight times faster than without. It also
does not pose any problems to find even less frequent structures in reasonable time whereas
without the new pruning strategy the mining process used to take more than two hours.

We also comparetloFa with gSpan on this datasetf the minimum support is higher
than 3.0% gSpan is faster thdoFa (with or without perfect extension pruning) but if the
threshold is loweredyloFa outperforms gSpan. It is 30 times faster at a threshold of 2% and
gSpan does not terminate within two hours for lower support values.

The reason why the impact of the new pruning strategy is not quite as impressive as
reported for gSpan inlf3 lies in the already very effective structural pruning. Only for rel-
atively large fragments that have many branches perfect extension pruning accelerates the
mining process noticeably.

4.2 Results: Finding Discriminative Fragments

In order to demonstrate the performance of the proposed pruning strategy in the context of
mining discriminative fragments, we also performed experiments on the entire HIV database.
This topic is even more interesting to the end user, as a ,,good” fragment should be frequent
in one class (théocug and infrequent in the other (tle@mplement Looking at the HIV data

3The authors in13] mention only 1503 CA+CM molecules in the March 2003 HIV database, however, the
three additional structures should not affect the results noticeably.

4An executable to run gSpan was kindly provided by Xifeng Yan and Jiawei Han.

SKeep in mind, that gSpan uses C++ code wheMaBa is implemented in Java.
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Figure 7: The mining time on the NCI-HIV (classes CA/CM) data with and without perfect
extension pruning compared to gSpan. The area between 2.5 and 0.5 % is shown in greater
solution in the upper right corner of the diagramm.

that means, that a good candidate fragment is often found in molecules from classes CA and
CM and rarely in molecules from CI. This makes the search process more complex as you
now have to search in more than 40.000 molecules.
Figure 8 shows the results. We varied the support threshold in the focus group (classes
CA and CM, 1506 molecules) froml0% to 1% and fixed the threshold in the complement

class (class CH2, 400 molecules) td.1%. In order to allow a comparison we also included

the experiments mining for frequent fragments in classes CA and CM only.
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Figure 8: The mining time on the complete NCI-HIV data with and without perfect extension pruning.

Note how the behaviour stays essentially the same. For higher support thresholds, closed
fragment pruning and perfect extensions do not result in a speedup. However, as before, for



Discriminative Closed Fragment Mining and Perfect Extensions in MoFa 11

thresholds belows 3%, an ever increasing speedup is obvious.

We can not compare these results with gSpan, since the full data set was not available
in a format accepted by the available software. However, we would expect a similar, if not
better speed-up as before since gSpan will need to compute the frequencies on the comple-
ment database by full embeddings, wherbls-a produces these embeddings in parallel
throughout the search process.

5 Conclusion and outlook

We have shown that it is possible to mine meaningful, discriminative molecular fragments
from large databases. Using an existing algorithm that employs a depth-first strategy and a
sophisticated ordering scheme allows to avoid costly re-embeddings throughout the candidate
growth process, which in turn enables us to find also larger fragments. Employing the closed
fragment concept discussed ih3] stimulated the development of the concept of perfect
extensions, which — in some cases — resulted in speed ups of several orders of magnitude.
We have demonstrated how the resulting method finds discriminative fragments in molecular
databases of several tens of thousands of molecules within acceptable time.

For the future it would be very interesting, to make a much more detailed analysis of the
whole graph based data mining topic, comparing all of the currently known algorithms and
how such special extension like closed fragments can be included in the search. Therefore
one needs a standardized framework so that the performance of each individual approach is
not so much dependent on the actual implementation. Another issue that could be addressed
by this are the different data formats used, which imposes problems if the actual data set is
not in the required form.
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