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Abstract

The integration of algorithmic components into neural architectures has gained
increased attention recently, as it allows training neural networks with new forms of
supervision such as ordering constraints or silhouettes instead of using ground truth
labels. Many approaches in the field focus on the continuous relaxation of a specific
task and show promising results in this context. But the focus on single tasks also
limits the applicability of the proposed concepts to a narrow range of applications.
In this work, we build on those ideas to propose an approach that allows to integrate
algorithms into end-to-end trainable neural network architectures based on a general
approximation of discrete conditions. To this end, we relax these conditions in
control structures such as conditional statements, loops, and indexing, so that
resulting algorithms are smoothly differentiable. To obtain meaningful gradients,
each relevant variable is perturbed via logistic distributions and the expectation
value under this perturbation is approximated. We evaluate the proposed continuous
relaxation model on four challenging tasks and show that it can keep up with
relaxations specifically designed for each individual task.

1 Introduction

Artificial Neural Networks have shown their ability to solve various problems, ranging from classical
tasks in computer science such as machine translation [1] and object detection [2] to many other topics
in science such as, e.g., protein folding [3]. Simultaneously, classical algorithms exist, which typically
solve predefined tasks based on a given input and a predefined control structure such as, e.g., sorting,
shortest-path computation and many more. Recently, research has started to combine both elements by
integrating algorithmic concepts into neural network architectures. Those approaches allow training
neural networks with alternative supervision strategies, such as learning 3D representations via a
differentiable renderer [4], [5] or training neural networks with ordering information [6], [7]. We
unify these alternative supervision strategies, which integrate algorithms into the training objective,
as algorithmic supervision:
Definition 1 (Algorithmic Supervision). In algorithmic supervision, an algorithm is applied to
the predictions of a model and the outputs of the algorithm are supervised. In contrast, in direct
supervision, the predictions of a model are directly supervised. This is illustrated in Figure 1.

In general, to allow for end-to-end training of neural architectures with integrated algorithms, the
challenge is to estimate the gradients of a respective algorithm, e.g., by a differentiable approximation.
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Figure 1: Direct supervision (on the left) in comparison to algorithmic supervision (on the right).

Here, most solutions are tailored to specific problems like, e.g., differentiable sorting or rendering.
But also more general frameworks have recently been proposed, which estimate gradients for combi-
natorial optimizers. Examples for such approaches are the differentiation of black box combinatorial
solvers as proposed by Vlastelica et al. [8] and the differentiation of optimizers by stochastically
perturbing their input as proposed by Berthet et al. [9]. Both approaches focus on the problem that it
is necessary to estimate the gradients of an algorithm to allow for an end-to-end training of neural
architectures including it. To address this issue, Vlastelica et al. [8] estimate the gradients of an
optimizer by a one-step linearization method that takes the gradients with respect to the optimizer’s
output into account, which allows to integrate any off-the-shelf combinatorial optimizer. Berthet et al.
[9] estimate the gradients by perturbing the input to a discrete solver by random noise.

In this context, we propose an approach for making algorithms differentiable and estimating their
gradients. Specifically, we propose continuous relaxations of different algorithmic concepts such
as comparators, conditional statements, bounded and unbounded loops, and indexing. For this, we
perturb those variables in a discrete algorithm by logistic distributions, for which we want to compute
a gradient. This allows us to estimate the expected value of an algorithm’s output sampling-free and
in closed form, e.g., compared to methods approximating the distributions via Monte-Carlo sampling
methods (e.g., [9]). To keep the computation feasible, we approximate the expectation value by
merging computation paths after each conditional block in sequences of conditional blocks. For
nested conditional blocks, we compute the exact expectation value without merging conditional cases.
This trade-off allows merging paths in regular intervals, and thus alleviates the need to keep track of
all possible path combinations. As we model perturbations of variables when they are accessed, all
distributions are independent, which contrasts the case of modeling input perturbations, where all
computation paths would have to be handled separately.

To demonstrate the practical aspects, we apply the proposed approach in the context of four tasks,
that make use of algorithmic supervision to train a neural network, namely sorting supervision [6],
[7], [10], shortest-path supervision [8], [9], silhouette supervision (differentiable rendering) [4],
[5], [11], and finally Levenshtein distance supervision. While the first three setups are based on
existing benchmarks in the field, we introduce the fourth experiment to show the application of this
idea to a new algorithmic task in the field of differentiable dynamic programming. In the latter,
the Levenshtein distance between two concatenated character sequences from the EMNIST data
set [12] is supervised while the individual letters remain unsupervised. We show that the proposed
system is able to outperform current state-of-the-art methods on sorting supervision, while it performs
comparable on shortest path supervision and silhouette supervision.

2 Related Work

We cover the field of training networks with algorithmic supervision. While some of these works
cover single algorithmic concepts, e.g., sorting [6], [7], [13] or rendering [4], [5], [14], others have
covered wider areas such as dynamic programming [15], [16] or gradient estimation for general
optimizers [8], [9], [17], [18]. Paulus et al. [19] employ the Gumbel-Softmax [20] distribution to
estimate gradients for concepts such as subset selection. Xie et al. [21] and Blondel et al. [13] employ
differentiable sorting methods for top-k classification. Cuturi et al. [22] and Blondel et al. [23] present
approaches for differentiable dynamic time warping. In machine translation, Bahdanau et al. [24]
investigate soft alignments, while Collobert et al. [25] present a fully differentiable beam sorting
algorithm. In speech recognition, Bahdanau et al. [26] propose differentiable surrogate task losses for
sequence prediction tasks. Shen et al. [27] propose a differentiable neural parsing networks using
the stick breaking process. Dasgupta et al. [28] model box parameters with Gumbel distributions to
obtain soft differentiable box embeddings.

In the following, we focus on those works that provide relaxations for tasks considered in this work.
We close the overview with a review of some early works on smooth program interpretation.
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Sorting Supervision The task of training neural networks with sorting supervision has been first
proposed by Grover et al. [6]. In this case, a set four-digit numbers based on concatenated MNIST
digits [29] is given, and the task is to find an order-preserving mapping from the images to scalars.
Here, a CNN should predict a scalar for each of n four-digit numbers such that their order is preserved
among the predicted scalars. For training, only sorting supervision in the form of the ground truth
order of input images is given, while their absolute values remain unsupervised. Grover et al. [6]
address this task by relaxing the permutation matrices to double stochastic matrices. Cuturi et al. [7]
pick up this on benchmark and propose a differentiable proxy by approximating the sorting problem
with a regularizing optimal transport algorithm.

Silhouette Supervision A line of work in computer vision is differentiable renderers for 3D-
unsupervised 3D-reconstruction. Here, recent approaches have proposed differentiable renderers for
3D mesh reconstruction with only 2D silhouette supervision [4], [5] on 13 classes of the ShapeNet
data set [30]. Kato et al. [5] propose a renderer where surrogate gradients of rasterization are
approximated to perform 3D mesh reconstruction via silhouette supervision as well as 3D style
transfer. Liu et al. [4] propose a differentiable renderer without surrogate gradients by using a
differentiable aggregating process and apply it to 3D mesh reconstruction as well as pose / shape
optimization.

Shortest-Path Supervision Two works, proposed by Vlastelica et al. [8] and Berthet et al. [9]
presented methods for estimating gradients for off-the-shelf optimizers. In this context, Vlastelica
et al. [8] proposed an experiment of shortest-path supervision, where an image of a terrain is given
with different costs for each type of terrain, and the task is to predict the shortest path from the
top-left to the opposite corner. Integrating a shortest-path algorithm into a neural architecture lets
the neural network produce a cost embedding of the terrain which the shortest-path algorithm uses
for predicting the shortest path. Vlastelica et al. [8] tackle this task by finding a linearization of the
Dijkstra algorithm [31], which they can differentiate. Berthet et al. [9] take up this problem and
produce gradient estimates for the Dijkstra algorithm by stochastically perturbing the inputs to the
shortest-path optimization problem.

Smooth Interpretation In another line of work, in the field of computer-aided verification, Chaud-
huri et al. [32], [33] propose a program smoothing method based on randomly perturbing the inputs
of a program by a Gaussian distribution. Here, an initial Gaussian perturbation is propagated through
program transformations, and a final distribution over perturbed outputs is approximated via a mixture
of Gaussians. The smooth function is then optimized using the gradient-free Nelder-Mead optimiza-
tion method. The main differences to our method are that we perturb all relevant variables (and not
the inputs) with logistic distributions and use this for gradient based optimization.

3 Method

To continuously relax algorithms and, thus, make them differentiable, we relax all values with respect
to which we want to differentiate into logistic distributions. We choose the logistic distribution as
it provides two distinctive properties that make it especially suited for the task at hand: (1) logistic
distributions have heavier tails than normal distribution, which allows for larger probability mass and
thus larger gradients when two compared values are further away from each other. (2) the cumulative
density function (CDF) of the logistic distribution is the logistic sigmoid function, which can be
computed analytically, and its gradient is easily computable. This contrasts the CDF of the normal
distribution, which has no closed form and is commonly approximated via a polynomial [34].

Specifically, we relax any value x, for which we want to compute gradients, by perturbing it into a
logistic random variable x̃ ∼ Logistic(x, 1/β), where β is the inverse temperature parameter such
that for β →∞ : x̃ = x. Based on this, we can relax a discrete conditional statement, e.g., based on
the condition x < c with constant c ∈ R, as follows:[

y if x̃ < c else z
]
≡
∫ c

−∞
flog(t;x, 1/β) · y dt +

∫ ∞
c

flog(t;x, 1/β) · z dt (1)

= Flog(c;x, 1/β) · y + (1− Flog(c;x, 1/β)) · z (2)
= σ(c− x) · y + (1− σ(c− x)) · z (3)
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where σ is the logistic (sigmoid) function σ(x) = 1/(1 + e−xβ). In this example, as x increases, the
result smoothly transitions from y to z. Thus, the derivative of the result wrt. x is defined as

∂

∂x

[
y if x̃ < c else z

]
=

∂

∂x
(y · σ(c− x) + z · (1− σ(c− x))) (4)

= (z − y) · σ(c− x) · (1− σ(c− x)) (5)

Hence, the gradient descent method can influence the condition (x̃ < c) to hold if the if case reduces
the loss, or influence the condition to fail if the else case reduces the loss function.

In this example, y and z may not only be scalar values but also results of algorithms or parts of an
algorithm themselves. This introduces a recursive formalism of relaxed program flow, where parts of
an algorithm are combined via a convex combination:[

f(s) if a < b else g(s)
]
≡ σ(b− a) · f(s) + (1− σ(b− a)) · g(s) (6)

where f and g denote functions, algorithms, or sequences of statements that operate on the set of
all variables s via call-by-value and return the set of all variables s. The result of this may either
overwrite the set of all variables (s := [...]) or be used in a nested conditional statement.

After introducing if-else statements above, we extend the idea to loops, which extends the formal-
ism of relaxed program flow to Turing-completeness. In fixed loops, i.e., loops with a predefined
number of iterations, since there is only a single computation path, no relaxation is necessary, and,
thus, fixed loops can be handled by unrolling.

The more complex case is conditional unbounded loops, i.e., While loops, which are executed as
long as a condition holds. For that, let (si)i∈N be the sequence of all variables after applying i times
the content of a loop. That is, s0 = s for an initial set of all variables s, and si = f(si−1), where
f is the content of a loop, i.e., a function, an algorithm, or sequence of statements. Let a, b denote
accessing variables of s, i.e., s[a], s[b], respectively. By recursively applying the rule for if-else
statements, we obtain the following rule for unbounded loops:[

while a < b do s := f(s)
]
≡

∞∑
i=0

∏i
j=0 (σ(bj − aj))︸ ︷︷ ︸

(a)

· (1− σ(bi+1 − ai+1))︸ ︷︷ ︸
(b)

· si (7)

Here, (a) is the probability that the ith iteration is reached and (b) is the probability that there are
no more than i iterations. Together, (a) and (b) is the probability that there are exactly i iterations
weighing the state of all variables after applying i times f , which is si. Computationally, we evaluate
the infinite series until the probability of execution (a) becomes numerically negligible or a predefined
maximum number of iterations has been reached. Again, the result may either overwrite the set of all
variables (s := [...]) or be used in a nested conditional statement.

Complexity and Merging of Paths To compute the exact expectation value of an algorithm under
logistic perturbation of its variables, all computation paths would have to be evaluated separately
to account for dependencies. However, this would result in an exponential complexity. Therefore,
we compute the exact expectation value for nested conditional blocks, but for sequential conditional
blocks we merge the computation paths at the end of each block. This allows for a linear complexity
in the number of sequential conditional blocks and an exponential complexity only in the largest
depth of nested conditional blocks. Note that the number of sequential conditional blocks is usually
much larger than the depth of conditional blocks, e.g., hundreds or thousands of sequential blocks and
a maximum depth of just 2− 5 in our experiments. An example for a dependency is the expression[
a := (f(x) if i < 0 else g(x)); b := (0 if a < 0 else a2)

]
, which contains a dependence

between the two sequential conditional blocks, which introduces the error in our approximation. In
general, our formalism also supports modeling dependencies between sequential conditional blocks,
however practically, it might become intractable for entire algorithms. Also, it is possible to consider
relevant dependencies explicitly if an algorithm relies on specific dependencies.

Perturbations of Variables vs. Perturbations of Inputs Note that modeling the perturbation of
variables is different from modeling the perturbation of the inputs. A condition, where the difference
becomes clear, is, e.g., (x̃ < x). When modeling input perturbations, the condition would have a
strong implicit conditional dependency and evaluate to a 0% probability. However, in this work,
we do not model perturbations of the inputs, but instead model perturbations of variables each time
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Figure 2: Left: Hard decision boundary (cyan) and probability under logistic perturbation (magenta).
Right: Hard equality (cyan), relaxed equality (magenta), and relaxed inequality (light magenta).

they are accessed such that accessing a variable twice is independently identically distributed (iid).
Therefore, (x̃ < x) evaluates to a 50% probability. To minimize the approximation error of the
relaxation, only those variables should be relaxed for which a gradient is required.

3.1 Relaxed Comparators

So far, we have only considered the comparator <. > follows by swapping the arguments:

P
[
a < b

]
≡ σ(b− a) P

[
a > b

]
≡ σ(a− b) (8)

Relaxed Equality For the equality operator =, we consider two distributions ã ∼ Logistic(a, 1/β)

and b̃ ∼ Logistic(b, 1/β), which we want to check for similarity / equality. Given value a, we
compute the likelihood that a is a sample from b̃ rather than ã. If a is equally likely to be drawn from
ã and b̃, ã and b̃ are equal. If a is unlikely to be drawn from b̃, ã and b̃ are unequal. To compute
whether it is equally likely for a to be drawn from ã and b̃, we take the ratio between the probability
that a is from b̃ (flog(a; b, 1/β)) and the probability that a is from ã (flog(a; a, 1/β)):

P
[
a = b

]
≡ flog(a; b, 1/β)

flog(a; a, 1/β)
=

flog(b; a, 1/β)

flog(b; b, 1/β)
= sech2

(
b− a
2/β

)
(9)

These relaxed comparators are displayed in Fig. 2. To compute probabilities of conjunction (i.e., and)
or of disjunction (i.e., or), we use the product or probabilistic sum, respectively. This corresponds to
an intersection / union of independent events. An alternative derivation for Eq. 9 is the normalized
conjunction of ¬(a < b) and ¬(a > b).

Relaxed Maximum To compare more than two elements and relax the argmax function, we use
the multinomial logistic distribution, which is also known as the softmax distribution.

P(i = argmax
j
Xj) =

eXiβ∑
j e
Xjβ

(10)

To relax the max operation, we use the product of argmax / softmax and the respective vector.

Comparing Categorical Variables To compare a categorical probability distribution X ∈ [0, 1]n

with a categorical probability distribution Y , we consider two scenarios: If Y ∈ {0, 1}n, i.e., Y
is one-hot, we can use the inner product of X and Y to obtain their joint probability. However, if
Y /∈ {0, 1}n, i.e., Y is not one-hot, even if X = Y the inner product can not be 1, but a probability
of 1 would be desirable if X = Y . Therefore, we (L2) normalize X and Y before taking the inner
product, which corresponds to the cosine similarity. An example for the application of comparing
categorical probability distributions is shown in the Levenshtein distance experiments in Section 4.4.

3.2 Relaxed Indexing

As vectors, arrays, and tensors are essential for algorithms and machine learning, we also formalize
relaxed indexing. For this, we introduce real-valued indexing and categorical indexing.

Real-Valued Indexing In a relaxed algorithm, indices may be drawn from the set of real numbers
as they may be a convex combination of computations or a real-valued input. This poses a challenge
since it requires interpolating between multiple values. The direct approach would be grid sampling
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Figure 3: Real-valued indexing: the gray-
value represents the extent to which each
value is used for indexing. Left: 1D integer-
valued hard indexing compared to real-valued
indexing. Right: 2D real-valued indexing.

with bilinear or bicubic interpolation to interpolate
values. For example, Neural Turing Machines use lin-
ear interpolation for real-valued indexing [35]. How-
ever, in bilinear or bicubic interpolation, relationships
exceeding the direct (or next) neighbors in the array
are not modeled, and they also do not model logistic
perturbations. Therefore, we index an n-dimensional
tensor A with values i ∈ Rn via logistic perturbation
by applying a convolution with a logistic filter g and
obtain the result as (g ∗ A)(i). The convolution of a
tensor A with a logistic filter g (not to be confused
with discrete-discrete convolution in neural networks)
yields a function that is evaluated at point i ∈ Rn.
We choose the logistic filter over bilinear and bicubic filters because we model logistic perturbation,
and additionally because bilinear and bicubic filters only have compact support whereas the logistic
filter provides infinite support. This allows modeling relationships beyond the next neighbors and is
more flexible as the inverse temperature β can be tuned for the respective application. For stability, we
normalize the coefficients used to interpolate the respective indexed values such that they sum up to
one: instead of computing (g ∗A)(i) =

∑
j g(j− i)Aj , we compute

∑
j g(j− i)Aj/(

∑
j g(j− i))

where j are all valid indices for the tensor A. To prevent optimization algorithms from exploiting
aliasing effects, we divide the coefficients by their sum only in the forward pass, but ignore this
during the backward pass (computation of the gradient). Real-valued indexing is displayed in Fig. 3,
which compares it to hard indexing.

Relaxed Categorical Indexing If a categorical probability distribution over indices is given, e.g.,
computed by argmax or its relaxation softmax, categorical indexing can be used. Here, the marginal
categorical distribution is used as weights for indexing a tensor.

Note that real-valued indexing assumes that the indexed array follows a semantic order such as time
series, an image, or the position in a grid. If, in contrast, the array contains categorical information
such as the nodes of graphs, values should be indexed with categorical indexing as their neighborhood
is arbitrary.

3.3 Complexity and Runtime Considerations

In terms of runtime, one has to note that runtime optimized algorithms (e.g., Dijkstra) usually do not
improve the runtime for the relaxation, because for the proposed continuous relaxations all cases in an
algorithm have to be executed. Thus, an additional condition to reduce the computational cost does not
improve runtime because both (all) cases are executed. Instead, it becomes beneficial if an algorithm
solves a problem in a rather fixed execution order. On the other hand, optimizing an algorithm with
respect to runtime leads to interpolations between the fastest execution paths. This optimization
cannot improve the gradients but rather degrades them as it is an additional approximation and
produces gradients with respect to runtime heuristics. For example, when relaxing the Dijkstra
shortest-path algorithm, there is an interpolation between different orders of visiting nodes, which is
the heuristic that makes Dijkstra fast. However, if we have to follow all paths anyway (to compute
the relaxation), it can lead to a combinatorial explosion. In addition, by interpolating between those
alternative orders, a large amount of uncertainty is introduced, and the gradients will also depend
on the orders of visiting nodes, both of which are undesirable. Further, algorithms with rather strict
execution can be executed in parallel on GPUs such that they can be faster than runtime-optimized
sequential algorithms on CPUs. Therefore, we prefer simple algorithms with a largely fixed execution
structure and without runtime optimizations from both a runtime and gradient quality perspective.

4 Experiments

We evaluate the proposed approach on various algorithmic supervision experiments, an overview of
which is depicted in Fig. 4. For each experiment, we first briefly describe the task and the respective
input data as well as the relaxed algorithm that is used. To allow an application to various tasks, we
need to find a suitable inverse temperature β for each algorithm. As a heuristic, we start with β =

√
k

where k is the number of occurrences of relaxed variables in the algorithm, which is a balance between
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Figure 4: Overview of our algorithmic supervision experiments: Sorting Supervision (left), Shortest-
Path Supervision (top), Silhouette Supervision (bottom), and Editing Distance Supervision (right).

a good approximation and sufficient relaxation for good gradient estimates. For each task, we tune
this parameter on a validation set. Pseudo-code for all algorithms as well as additional information on
the relaxation and the inverse temperature parameter can be found in the supplementary material. The
implementation of this work including a high-level PyTorch [36] library for automatic continuous
relaxation of algorithms is openly available at github.com/Felix-Petersen/algovision.

4.1 Sorting Supervision

In the sorting supervision experiment, a set of four-digit numbers based on concatenated MNIST
digits [29] is given, and the task is to find an order-preserving mapping from the images to scalars.
A CNN learns to predict a scalar for each of n four-digit numbers such that their order is preserved
among the predicted scalars. For this, only sorting supervision in form of the ground truth order of
input images is given, while their absolute values remain unsupervised. This follows the protocol of
Grover et al. [6] and Cuturi et al. [7]. An example for a concatenated MNIST image is .

Using our method, we relax the well established stable sorting algorithm Bubble sort [37], which
works by iteratively going through a list and swapping any two adjacent elements if they are not in the
correct order until there are no more swap operations in one iteration. We include a variable that keeps
track of whether the input sequence is in the correct order by setting it to true if a swap operation
occurs. Due to the relaxation, this variable is a floating-point number between 0 and 1 corresponding
to the probability that the predictions are sorted correctly (under perturbation of variables). We use
this probability as the loss function. This variable equals the probability that no swap operation was
necessary, and thus L = 1 −

∏
p∈P (1 − p) for probabilities p of each potential swap p ∈ P . By

that, the training objective becomes for the input sequence to be sorted and, thus, that the scores
predicted by the neural network correspond to the supervised partial order. In fact, the number of
swaps in bubble sort corresponds to the Kendall’s τ coefficient, which indicates to which degree a
sequence is sorted. Note that, e.g., QuickSort does not have this property as it performs swaps even if
the sequence is already sorted.

We emphasize that the task of the trained neural network is not to sort a sequence but instead to predict
a score for each element such that the ordering / ranking corresponds to the supervised ordering /
ranking. While the relaxed algorithm can sort the inputs correctly, at evaluation time, following the
setup of [6] and [7] we use an argsort method to test whether the outputs produced by the neural
network are in accordance with the ground truth partial order. We use the same network architecture
as [6] and [7]. Here, we only optimize the inverse temperature for n = 5, resulting in β = 8, and fix
this for all other n . For training, we use the Adam optimizer [38] with a learning rate of 10−4 for
between 1.5 · 105 and 1.5 · 106 iterations.

Table 1: Results for the 4-digit MNIST sorting task, averaged over
10 runs. Baselines as reported by Cuturi et al. [7]. Trained and
evaluated on sets of n elements, the displayed metrics are exact
matches (and element-wise correct ranks).

Method n = 3 n = 5 n = 7

Stoch. NeuralSort [6] 0.920 (0.946) 0.790 (0.907) 0.636 (0.873)
Det. NeuralSort [6] 0.919 (0.945) 0.777 (0.901) 0.610 (0.862)
Optimal Transport [7] 0.928 (0.950) 0.811 (0.917) 0.656 (0.882)

Relaxed Bubble Sort 0.9440.9440.944 (0.9610.9610.961) 0.8420.8420.842 (0.9300.9300.930) 0.7070.7070.707 (0.8980.8980.898)

We evaluate our method against
state-of-the-art hand-crafted re-
laxations of the sorting opera-
tion using the same network ar-
chitecture and evaluation met-
rics as Grover et al. [6] and Cu-
turi et al. [7]. As displayed
in Tab. 1, our general formula-
tion outperforms state-of-the-art
hand-crafted relaxations of the
sorting operation for sorting su-
pervision.
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Input Hidden Costs Shortest Path Ours ( = 1.5) Berthet et al.  ( = . 5) Ours ( = . 25) Berthet et al.  ( = 2)

Figure 5: (From left to right.) Example input image of the Warcraft terrain data set with the hidden
cost matrix and the resulting shortest path. Shortest paths relaxed with the proposed method for
β ∈ {1.5, 0.25}, which correspond to the perturbed paths by Berthet et al. [9] with ε ∈ {0.5, 2.0}.

4.2 Shortest-Path Supervision

For shortest-path supervision on 2D terrains, we follow the setup by Vlastelica et al. [8] and Berthet et
al. [9] and use the data set of 10 000 patches of Warcraft terrains of size 96× 96 representing terrain
grids of size 12× 12. Given an image of a terrain (e.g., Fig. 5 first), the goal is to predict the shortest
path (e.g., Fig. 5 third) according to a hidden cost matrix (e.g., Fig. 5 second). For this, 12×12 binary
matrices of the shortest-path are supervised, while the hidden cost matrix is used only to determine
the shortest path. In their works, Vlastelica et al. [8] and Berthet et al. [9] show that integrating and
differentiating a shortest-path algorithm can improve the results by allowing the neural network to
predict a cost matrix from which the shortest path can be computed via the algorithm. This performs
significantly better than a ResNet baseline where the shortest paths have to be predicted by the neural
network alone (see Tab. 2).

Table 2: Results for the Warcraft shortest-path task
using shortest-path supervision, averaged over 10
runs. Reported are exact matches (EM) as well as
the ratio between the cost of the predicted path and
the cost of the optimal shortest path.

Method EM cost ratio

ResNet Baseline [8] 40.2% 1.01530
Black-Box Loss [8] 86.6% 1.00026
Perturbed Opt. [9] 91.7%91.7%91.7% 1.00042

Relaxed Shortest-Path 88.4% 1.000141.000141.00014

For this task, we relax the Bellman-Ford algo-
rithm [39] with 8-neighborhood, node weights,
and path reconstruction, details on which are
given in the supplementary material. For the
loss between the supervised shortest paths and
the paths produced by the relaxed Bellman-Ford
algorithm, we use the `2 loss. To illustrate the
shortest paths created by our method and to com-
pare them to those created through the Perturbed
Optimizers by Berthet et al. [9], we display ex-
amples of back traced shortest paths for two
inverse temperatures in Fig. 5 (center to right).

We use the same ResNet network architecture
as Vlastelica et al. [8] and Berthet et al. [9] and also train for 50 epochs with a batch size of 70. We
use an inverse temperature of β = 25.

As shown in Tab. 2, our relaxation outperforms all baselines on the cost ratio of the predicted to the
optimal shortest path and achieves the second-best result on the shortest path exact match accuracy
after the perturbed optimizers [9].

4.3 Silhouette Supervision

Reconstructing a 3D model from a single 2D image is an important task in computer vision. Recent
works [4], [5] have employed differentiable renderers to train a 3D reconstruction network by giving
feedback on whether the silhouettes of a reconstruction match the input image. Specifically, recent
works have been benchmarked [4], [5], [11] on a data set of 13 object classes from ShapeNet [30]
that have been rendered from 24 azimuths at a resolution of 64× 64 [5]. For learning with silhouette
supervision, a single image is processed by a neural network, which returns a 3D mesh. The silhouette
of this mesh is rendered from two view-points by a differentiable renderer and the intersection-over-
union between the rendered and predicted meshes is used as a training objective to update the neural
network [4], [5]. For training, we also use the same neural network architecture as Kato et al. [5]
as well as Liu et al. [4]. Note that, while renderers can be able to render a full RGB image, in
these experiments, only the silhouette is used for supervision of the 3D geometry reconstruction.
Specifically, public implementations of [4], [5] only use silhouette supervision.
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Table 3: Single-view 3D reconstruction results using silhouette supervision. Reported is the 3D IoU.

Method Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean

With a batch size of 64
Yan et al. [11] (retrieval) 0.5564 0.4875 0.5713 0.6519 0.3512 0.3958 0.2905 0.4600 0.5133 0.5314 0.3097 0.6696 0.4078 0.4766
Yan et al. [11] (voxel) 0.5556 0.4924 0.6823 0.7123 0.4494 0.5395 0.4223 0.5868 0.5987 0.6221 0.4938 0.7504 0.5507 0.5736
Kato et al. [5] (NMR) 0.6172 0.4998 0.7143 0.7095 0.4990 0.5831 0.4126 0.6536 0.6322 0.6735 0.4829 0.7777 0.5645 0.6015
Liu et al. [4] (SoftRas) 0.6419 0.5080 0.7116 0.7697 0.5270 0.6156 0.4628 0.6654 0.6811 0.6878 0.4487 0.7895 0.5953 0.6234

With a batch size of 2
Liu et al. [4] (SoftRas) 0.57410.57410.5741 0.37460.37460.3746 0.6373 0.69390.69390.6939 0.42200.42200.4220 0.5168 0.4001 0.6068 0.60260.60260.6026 0.59220.59220.5922 0.3712 0.74640.74640.7464 0.55340.55340.5534 0.54550.54550.5455
Relaxed Sil. via Three Edges 0.5418 0.3667 0.66260.66260.6626 0.6546 0.3899 0.5229 0.4105 0.62320.62320.6232 0.5497 0.5639 0.3580 0.6609 0.5279 0.5256
Relaxed Sil. via Euclid. Dist 0.5399 0.3698 0.6503 0.6524 0.4044 0.52610.52610.5261 0.42470.42470.4247 0.6225 0.5723 0.5643 0.38290.38290.3829 0.7265 0.5180 0.5349

For this task, we relax two silhouette rendering algorithms. The algorithms rasterize a 3D mesh as
follows: For each pixel and for each triangle of the mesh, if a pixel lies inside a triangle, the value
of the pixel in the output image is set to 1. The condition of whether a pixel lies inside a triangle is
checked in two alternative fashions: (1) by three nested if conditions that check on which side of
each edge the pixel lies. (2) by checking whether the directed euclidean distance between a pixel
and a triangle is positive. Note that, by relaxing these algorithms using our framework, we obtain
differentiable renderers very close to Pix2Vex [40] for (1) and SoftRas [4] for (2). Examples of
relaxed silhouette renderings and an example image from the data set are displayed in Fig. 6.

Input Image = 200 = 50

Figure 6: An input image from the data set (left).
Silhouette of a prediction rendered with directed Eu-
clidean distance approach for two different inverse
temperatures β ∈ {200, 50}.

As the simple silhouette renderer does not
have any optimizations, such as discarding
pixels that are far away from a triangle or
triangles that are occluded by others, it is not
very efficient. Thus, due to limited resources,
we are only able to train with a maximum
batch size of 2 while previous works used a
batch size of 64. Therefore, we reproduce the
recent best performing work by Liu et al. [4]
on a batch size of only 2 to allow for a fair
comparison. For directed Euclidean distance,
we use an inverse temperature of β = 2000;
for three edges, β = 10 000.

We report the average as well as class-wise 3D IoU results in Tab. 3. Our relaxations outperform the
retrieval baseline by Yan et al. [11] even though we use a batch size of only 2. In direct comparison
to the SoftRas renderer at a batch size of 2, our relaxations achieve the best accuracy for 5 out of 13
object classes. However, on average, our methods, although they do not outperform SoftRas, show a
comparable performance with a drop of only 1%. It is notable that the directed Euclidean distance
approach performs better than the three edges approach. The three edges approach is faster by a
factor of 3 because computing the directed Euclidean distance is more expensive than three nested if
clauses (even in the relaxed case.)

4.4 Levenshtein Distance Supervision

In the Levenshtein distance supervision experiment, we supervise a classifier for handwritten EMNIST
letters [12] by supervising the editing distance between two handwritten strings of length 32 only. As
editing distance, we use the Levenshtein distance LD which is defined as LD(a, b) = LD|a|,|b|(a, b):

LDi,j(a, b) =



j i = 0

i j = 0

min


LDi−1,j(a, b) + 1

LDi,j−1(a, b) + 1

LDi−1,j−1(a, b) + 1(ai−1 6=bj−1)

else.
(11)

We relax the Levenshtein distance using its classic dynamic programming algorithm. An example
Levenshtein distance matrix and its relaxation are displayed in Fig. 7.
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Table 4: EMNIST classification results with Levenshtein distance supervision averaged over 10 runs.

Method AB BC CD DE EF IL OX ACGT OSXL

Baseline Top-1 acc. .616 .651 .768 .739 .701 .550 .893 .403 .448
F1-score .581 .629 .759 .711 .674 .490 .890 .336 .384

Relaxed LD Top-1 acc. .671.671.671 .807.807.807 .816.816.816 .833.833.833 .847.847.847 .570.570.570 .960.960.960 .437.437.437 .487.487.487
F1-score .666.666.666 .805.805.805 .815.815.815 .831.831.831 .845.845.845 .539.539.539 .960.960.960 .367.367.367 .404.404.404

C G T C

A

C

G

T

a)

0 1 2 3 4

1 1 2 3 4

2 1 2 3 3

3 2 1 2 3

4 3 2 1 2

C G T C

A

C

G

T

0.0 1.0 2.0 3.0 4.0

1.0 0.8 1.8 2.7 3.7

2.0 1.3 1.7 2.6 3.0

3.0 2.4 1.5 2.5 3.4

4.0 3.6 2.7 1.6 2.8

b)

Figure 7: Levenshtein distance matrix. Left: hard
matrix and alignment path. Right: relaxed matrix
with inverse temperature β = 1.5.

For learning, pairs of strings of images of
32 handwritten characters a, b as well as the
ground truth Levenshtein distance LD(ya,yb)
are given. We sample pairs of strings a, b from
an alphabet of 2 or 4 characters. For sampling
the second string given the first one, we uni-
formly choose between two and four insertion
and deletion operations. Thus, the average edit-
ing distance for strings, which use two different
characters, is 4.25 and for four characters is 5.
We process each letter, using a CNN, which
returns a categorical distribution over letters,
which is then fed to the algorithm. An example
for a pair of strings based on {A, C, G, T} is

and
. Our training objective is minimizing

the `2 loss between the predicted distance and the ground truth distance:

L =
∥∥∥LD((CNN(ai))i∈{1..32} , (CNN(bi))i∈{1..32}

)
− LD(ya,yb)

∥∥∥
2
. (12)

For training, we use an inverse temperature of β = 9 and Adam (η = 10−4) for 128− 512 iterations.

For evaluation, we use Hungarian matching with Top-1 accuracy as well as the F1-score. We compare
it against a baseline, which uses the `1 distance between encodings instead of the editing distance:

L =
∥∥∥∥∥∥(CNN(ai))i∈{1..32} − (CNN(bi))i∈{1..32}

∥∥∥
1
− LD(ya,yb)

∥∥∥
2
. (13)

Tab. 4 shows that our method consistently outperforms the baseline on both metrics in all cases.
The character combinations AB, BC, CD, DE, and EF are a canonical choice for random combinations.
The characters IL represent are the hardest combination of two letters as they even get frequently
confused by supervised neural networks [12] and can also be indistinguishable for humans. The
characters OX represent the easiest case as supervised classifiers can perfectly distinguish them on the
test dataset [12]. For two letter combinations, we achieve Top-1 accuracies between 57% (IL) and
96% (OX). Even for four letter combinations (ACGT and OSXL), we achieve Top-1 accuracies of up
to 48.7%. Note that, as we use strings of length 32, in the Levenshtein algorithm, more than 1 000
statements are relaxed.

5 Conclusion

We proposed an approach for continuous relaxations of algorithms that allows their integration into
end-to-end trainable neural network architectures. For that, we use convex combinations of execution
paths of algorithms that are parameterized by smooth functions. We show that our proposed general
framework can compete with SOTA continuous relaxations of specific algorithms as well as gradient
estimation methods on a variety of algorithmic supervision tasks. Moreover, we show that our
formulation successfully relaxes even complex algorithms such as a shortest-path algorithm or a
renderer. We hope to inspire the research community to build on our framework to further explore
the potential of algorithmic supervision and algorithmically enhanced neural network architectures.
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Supplementary Material for Learning with
Algorithmic Supervision via Continuous Relaxations

Felix Petersen Christian Borgelt Hilde Kuehne Oliver Deussen

In the supplementary material, we give implementation details, and present the algorithms.

A Implementation Details

A.1 Sorting Supervision

Network Architecture For comparability to Grover et al. [6] and Cuturi et al. [7], we use the same
network architecture. That is, two convolutional layers with a kernel size of 5×5, 32 and 64 channels
respectively, each followed by a ReLU and MaxPool layer; after flattening, this is followed by a fully
connected layer with a size of 64, a ReLU layer, and a fully connected output layer mapping to a
scalar.

A.2 Shortest-Path Supervision

Network Architecture For comparability to Vlastelica et al. [8] and Blondel et al. [23], we use
the same network architecture. That is, the first five layers of ResNet18 followed by an adaptive max
pooling to the size of 12× 12 and an averaging over all features.

Training As in previous works, we train for 50 epochs with batch size 70 and decay the learning
rate by 0.1 after 60% as well as after 80% of training.

A.3 Silhouette Supervision

Network Architecture For comparability to Liu et al. [4], we use the same network architecture.
That is, three convolutional layers with a kernel size of 5× 5, 64, 128, and 256 channels respectively,
each followed by a ReLU; after flattening, this is followed by 6 ReLU-activated fully connected
layers with the following output dimensions: 1024, 1024, 512, 1024, 1024, 642 × 3. The 642 × 3
elements are interpreted as three dimensional vectors that displace the vertices of a sphere with 642
vertices.

Training We train the Three Edges approach with Adam (η = 5 · 10−5) for 2.5 · 106 iterations and
train the directed Euclidean distance approach with Adam (η = 5 · 10−5) for 106 iterations. The
reason for this is that each of them took around 6 days of training on a single V100 GPU. We decay
the learning rate by 0.3 after 60% as well as after 80% of training.

A.4 Levenshtein Distance Supervision

Network Architecture The CNN consists of two convolutional layers with a kernel size of 5 and
hidden sizes of 32 and 64, each followed by a ReLU, and a max-pooling layer. The convolutional
layers are followed by two fully connected layers with a hidden size of 64 and a ReLU activation.
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B Standard Deviations for Results

Table 5: Sorting Supervision: Standard deviations for Table 1.
Method n = 3 n = 5 n = 7

Relaxed Bubble Sort 0.944± .009 0.842± .012 0.707± .008
(0.961± .006) (0.930± .005) (0.898± .003)

Table 6: Shortest-Path Supervision: Standard deviations for Table 2.
Method EM cost ratio

Black-Box Loss [8] 86.6%± 0.8% 1.00026± 0.00005
Relaxed Shortest-Path 88.4%± 0.7% 1.00014± 0.00008

Table 7: Levenshtein Distance Supervision: Standard deviations for Table 4.
Method AB BC CD DE EF IL OX ACGT OSXL

Baseline .616± .041 .651± .099 .768± .062 .739± .107 .701± .097 .550± .039 .893± .088 .403± .065 .448± .059
.581± .059 .629± .120 .759± .073 .711± .151 .674± .124 .490± .095 .890± .094 .336± .084 .384± .078

Relaxed LD .671± .103 .807± .095 .816± .060 .833± .038 .847± .091 .570± .027 .960± .079 .437± .026 .487± .076
.666± .107 .805± .097 .815± .060 .831± .039 .845± .097 .539± .042 .960± .080 .367± .051 .404± .104

C Algorithms

C.1 Sorting Supervision: Bubble Sort

On the left, a Python version reference implementation of bubble sort [37] is displayed. On the right,
the relaxed version is displayed.

def bubble_sort (A):
n = len(A) - 1
swapped = True
while swapped :

swapped = False
for i in range(n):

if A[i] > A[i+1]:

a_1 = A[i+1]
a_2 = A[i]
A[i] = a_1
A[i+1] = a_2
swapped = True
loss = 1

n = n - 1
return A

bubble_sort = Algorithm (
Lambda ( lambda A: A.shape [-1] - 1, [’n ’])
Lambda ( lambda swapped : 1.)
While(’swapped ’, Sequence (

Lambda ( lambda swapped : 0),
For(’i’, ’n’, Sequence (

If(GT( lambda A, i: IndexInplace ()(A, i),
lambda A, i: IndexInplace ()(A, i+1)) ,

if_true = Sequence (
Index(’a_1 ’, ’A’, lambda i: i+1),
Index(’a_2 ’, ’A’, ’i’),
IndexAssign (’A’, ’i’, ’a_1 ’),
IndexAssign (’A’, lambda i: i+1, ’a_2 ’),
Lambda ( lambda swapped : 1.),
Lambda ( lambda loss: 1.) )))) ,

Lambda ( lambda n: n - 1)
) ) )

C.2 Shortest-Path Supervision: Bellman-Ford

In the following, we provide pseudo-code for the Bellman-Ford algorithm with 8-neighborhood, node
weights, and path reconstruction.
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def shortest_path (cost ):
n = cost.shape [0]
D[0:n+2, 0:n+2] = INFINITY
D[1, 1] = 0
for _ in range(n*n):

arg_D = arg_minimum_neighbor (D) # 8- neighborhood
D = cost + minimum_neighbor (D)
D[1, 1] = 0

path [0:n+2, 0:n+2] = 0
position = n+1, n+1
while path [1, 1] == 0:

path[ position ] = 1
position = get_next_location (arg_D , position )

return path

For the relaxation, arg_minimum_neighbor and minimum_neighbor use softmax. Further, for
the relaxation, get_next_location returns a marginal distribution over all possible positions. An
alternative, where get_next_location returns a pair of real-valued coordinates is possible, however
the quality of the gradients is reduced.

C.3 Silhouette Supervision: 3D Mesh Renderer

In the following, we provide pseudo-code for the two simple silhouette rendering algorithms that we
use.

C.3.1 Three Edges

def silhouette_renderer (triangles , camera_extrinsics , resolution =64):
triangles = transform_and_projection (triangles , camera_extrinsics )

image [0: resolution , 0: resolution ] = 0
for p_x in range( resolution ):

for p_y in range( resolution ):
for t in triangles :

# t.e1 , t.e2 , t.e3 are the three edges of t
if directed_dist (t.e1 , p_x , p_y) <= 0:

if directed_dist (t.e2 , p_x , p_y) <= 0:
if directed_dist (t.e3 , p_x , p_y) <= 0:

image[p_x , p_y] = 1
else:

if directed_dist (t.e2 , p_x , p_y) > 0:
if directed_dist (t.e3 , p_x , p_y) > 0:

image[p_x , p_y] = 1
return image

C.3.2 Directed Euclidean Distance

def silhouette_renderer (triangles , camera_extrinsics , resolution =64):
triangles = transform_and_projection (triangles , camera_extrinsics )

image [0: resolution , 0: resolution ] = 0
for p_x in range( resolution ):

for p_y in range( resolution ):
for t in triangles :

if directed_euclidean_distance (t, p_x , p_y) <= 0:
image[p_x , p_y] = 1

return image
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For both algorithms, we parallelize the three loops as they are independent. As for runtime, the Three
Edges algorithm is around 3 times faster than the directed euclidean distance algorithm. This is
because computing the euclidean distance between a point and a triangle is an expensive operation.

C.4 Levenshtein Distance Supervision (Dynamic Programming)

Pseudo-code of our implementation of the Levenshtein distance [41] and a simplified code for our
framework is displayed below.

def levenshtein_distance (s, t):
n = len(s)
d[0:n + 1, 0:n + 1] = 0
for i in range(n):

d[i + 1, 0] = i + 1
for j in range(n):

d[0, j + 1] = j + 1
for i in range(n):

for j in range(n):
if s[i] == t[j]:

subs_cost = 0
else:

subs_cost = 1
d[i + 1, j + 1] = min( d[i, j + 1] + 1,

d[i + 1, j] + 1,
d[i, j] + subs_cost )

return d[n, n]

levenshtein_distance = Algorithm (
For(’i’, ’n’,

IndexAssign2D (’d’, lambda i: [i + 1, i*0], lambda i: i + 1) ),
For(’j’, ’n’,

IndexAssign2D (’d’, lambda j: [i*0, j + 1], lambda j: j + 1) ),
For(’j’, ’n’,

For(’i’, ’n’, Sequence (
If( CatProbEq ( lambda s, i: IndexInplace (s, i),

lambda t, j: IndexInplace (t, j) ),
if_true = Lambda ( lambda subs_cost : 0),
if_false = Lambda ( lambda subs_cost : 1),
),
IndexAssign2D (’d’,

index= lambda i, j: [i + 1, j + 1],
value= lambda d, i, j, subs_cost :

Min(d[:, i, j + 1] + 1,
d[:, i + 1, j] + 1,
d[:, i, j] + subs_cost ) )

) )
)

)
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