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Abstract. We present a framework for characterizing spike (and spike-
train) synchrony in parallel neuronal spike trains that is based on identi-
fying spikes with what we call influence maps: real-valued functions de-
scribing an influence region around the corresponding spike times within
which possibly graded synchrony with other spikes is defined. We formal-
ize two models of synchrony in this framework: the bin-based model (the
almost exclusively applied model in the literature) and a novel, alterna-
tive model based on a continuous, graded notion of synchrony, aimed at
overcoming the drawbacks of the bin-based model. We study the task of
identifying frequent (and synchronous) neuronal patterns from parallel
spike trains in our framework, formalized as an instance of what we call
the fuzzy frequent pattern mining problem (a generalization of standard
frequent pattern mining) and briefly evaluate our synchrony models on
this task.

1 Introduction

The principles of neural coding (i.e., how information is represented in biological
neural networks) are still not well understood and continue to be the topic of
ongoing debate. Several coding schemes have been proposed in the neuroscience
literature. Among them, one of the most prominent is the so-called temporal
coordination scheme (see, e.g., [1]), first advocated by D.O. Hebb [2] and driven
by more recent physiological and anatomical evidence, according to which the
coordinated emission of spikes (i.e., electrical impulses, also called action poten-
tials), in particular synchronous spiking (see, e.g., [3–5]) by groups of neurons
plays a major role in neuronal information processing.

In order to understand the principles of coordinated neuronal activity and
neural coding it is necessary to observe the activity of multiple neurons simul-
taneously. This is nowadays possible due to improvements in multiple-electrode
recording (see, e.g., [6]), which allows to monitor the activity of hundreds of neu-
rons. Such recordings are typically represented by sequences of points in time
(i.e., point processes) and referred to as parallel spike trains.

It is not a trivial matter to determine what constitutes synchronous spiking
in parallel spike trains. Exact spike-time coincidence cannot be expected and
thus a characterization of spike synchrony in such terms is not suitable.

We present in Section 2 a very general, flexible framework for characteriz-
ing and quantifying synchrony among spikes (spike synchrony) and spike trains
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(spike-train synchrony), which is able to accommodate graded, continuous char-
acterizations of synchrony. The framework is based on the identification of spikes
with what we call influence maps: real-valued functions describing an influence
region around the corresponding spike times within which synchrony with other
spikes is defined. Together with our influence maps, a class of so-called syn-
chrony operators (to quantify spike synchrony) and a class of support operators
(to quantify spike-train synchrony) are defined, based on what we consider de-
sirable criteria in the assessment of synchrony among spikes and spike trains.

Within this framework, two concrete models for characterizing and quantify-
ing spike (and spike-train) synchrony are described in Section 3. The first model
formalizes the so-called bin-based method, which is the almost exclusively ap-
plied one in the field and based on time-bin discretization: spikes are binned in
time intervals of equal length. In this model, two or more spikes are considered
to be synchronous if they lie in the same time bin. The second model character-
izes synchrony in a graded fashion and aims at overcoming the main drawbacks
of the bin-based model by avoiding time-bin discretization and bivalence in the
amount of synchrony among spikes. Graded, non-bivalent (i.e., fuzzy, as in fuzzy
set theory—see, e.g., [7]) synchrony itself is not an entirely new concept, though.
Implicit notions of presumably non-bivalent, graded synchrony can be found in
some papers on topics related to synchronous spiking, such as [8, 9]. However,
in these approaches (at least in the two just mentioned) a formal derivation and
treatment of such a concept is a non-trivial task.

In Section 4 we consider the problem of identifying frequent neuronal pat-
terns in parallel spike trains. For the models presented in Section 3 the problem
is formalized as an instance of what we call the fuzzy frequent pattern mining
problem—a generalization of standard frequent pattern mining. The task of iden-
tifying frequent neuronal patterns is of particular relevance in itself but also in
relation to tasks concerned with identifying other sets of neurons that are charac-
terized by different synchrony requirements (such as, e.g., synchronous patterns,
called unitary events in [10], or neural assemblies, as defined in e.g. [11, 12]).

In Section 5 we provide a summary of a first evaluation of our graded, con-
tinuous synchrony model (as presented in Section 3) for the identification of
frequent neuronal patterns on artificially generated spike trains as an alterna-
tive to the commonly used bin-based model. Section 6 briefly summarizes our
discussion.

2 Synchronous Spiking

Let N be a (finite) set of neurons. We are given parallel spike trains, one for each
neuron in N , formalized as spike-time sequences of the form {ta1 , ..., taka} ⊂ (0, T ],
for a ∈ N , where ka is the number of times neuron a fires in the interval (0, T ].
We denote the set of all these sequences by S. Collections of sequences like S
constitute the raw data on which we build our framework.
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2.1 Influence Maps

The first step in setting our framework consists in our characterization of spikes.
We do so by considering an influence region around each spike time in S together
with a possibly varying influence degree along that region, which we formalize
by introducing what we call influence maps.

Definition 1. A function f : R→ [0,∞) is called an influence map if∫ ∞
−∞

f(x)dx = 1.

The class of all possible influence maps is denoted by F .
For any f ∈ F the set {x ∈ R | f(x) > 0} gives us the influence region of f

(or, more precisely, of the spike represented by the influence map f). Intuitively,
the influence region of a spike captures the times at which other spikes can be
considered to be synchronous to some (positive) degree, as is detailed below.

It is worth noting that, although an influence map is formally a probability
density function, we do not impose such an interpretation (i.e., an influence map
is not meant to represent uncertainty about the actual location of a spike).

2.2 Spike Synchrony

In order to characterize spike synchrony based on our identification of spikes with
influence maps in F , we define a class of operators, called synchrony operators,
aimed at quantifying the degree of synchrony of a collection of spikes.

We define synchrony operators on multisets (sometimes also called bags)
over F (i.e., collections of elements of F that can contain multiple copies of the
same element), which are formally defined as pairs 〈F , h〉, with h : F → N∪{0}.
Intuitively, the function h “counts” the occurrences of the elements of F in 〈F , h〉.
Throughout this paper, whenever convenient, we use set notation for multisets,
for example, {f1, f1, f2, f2, f3} instead of 〈F , h〉, with h(f1) = 2, h(f2) = 2,
h(f3) = 1 and h(f) = 0 for any f ∈ F \{f1, f2, f3}. The collection of all possible
multisets over F is denoted by M (F).

The use of multisets over F (instead of simple subsets of F) is motivated
by the fact that distinct spikes of different neurons in our recordings can be
represented by the same influence maps, for example, if their respective spike
times coincide exactly (but possibly also in other situations, see below).

In the definition of the class of synchrony operators and other classes of
operators defined later we make use of the sum operator on multisets over F ,
denoted by ], and defined for two multisets 〈F , h1〉 and 〈F , h2〉 as follows:

〈F , h1〉 ] 〈F , h2〉 = 〈F , h1 + h2〉 = 〈F , h〉,

where, for all f ∈ F , h(f) = h1(f) + h2(f).1 It is worth noting that ] is
commutative and associative and thus its definition can be extended trivially to

1 For a wider insight into basic multiset theory and, in particular, binary operations
on multisets see e.g. [13].
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more than two multisets. It is also straightforward to define the cardinality of a
multiset G = 〈F , h〉 as |G| = |〈F , h〉| =

∑
f∈F h(f).

Definition 2. The function Sync : M (F)→ [0, 1] is called a synchrony opera-
tor on F if Sync(G) ≥ Sync(G ]H) for G,H multisets in M (F).

Definition 2 aims at formalizing the requirement that the degree of synchrony
of a certain collection of spikes cannot increase if we add another spike to it.

Let us consider now a subset A = {a1, ..., ak} ⊆ N of neurons, for some
natural number k ≤ |N |, and G = {fa1 , ..., fak} ∈M (F), with fai the influence
map corresponding to a spike time of neuron ai in S, for all i ∈ {1, ..., k}. We
refer to the joint-spike event G as an A-event (i.e., an event in S for the neuronal
pattern or subset A) and denote the multiset of all such A-events generated
from S (i.e. one for each combination of spike times in S, one for each neuron
in A) by EA. Notice that EA is a multiset, since distinct combinations of spike
times in S, one for each neuron in A, may generate the same multiset G ∈M (F)
above. We denote by EA

Sync+ the subset of A-events that have a strictly positive
degree of synchrony with respect to the operator Sync.

2.3 Spike-train Synchrony

We now characterize and quantify spiking activity in spike trains and synchrony
among them. We do so by means of the family of what we call support functions.
We first define the set Hn as follows, for n ∈ N:

Hn = {G | G is a multiset in M (F) and |G| = n}.

That is, the set Hn comprises all representations of n spikes (of n neurons) by
(multisets of) influence maps. It is meant to capture all possible representations
of A-events for |A| = n and thus all possible specific synchronous spiking events.

The collection of all possible multisets over Hn is denoted by M (Hn). The
use of M (Hn) in the definition of our family of support functions is motivated
by the possibility that different A-events in EA, for some A ⊆ N , |A| = n, may
be represented by the same multiset in M (F).

Definition 3. A collection of maps Suppn : M (Hn)→ R+∪{0,∞}, for n ∈ N,
is a family of support operators on F if the following conditions hold:

– Upward monotonicity. For H,G ∈M (Hn), Suppn(H) ≤ Suppn(H]G).2

– Downward monotonicity. For H = {H1, ...,Hk} ∈ M (Hn) and H′ =
{H1 ]{f1}, ...,Hk ]{fk}} ∈M (Hn+1), with fi ∈ F for all i ∈ {1, ..., k} and
k ∈ N, we have that Suppn(H) ≥ Suppn+1(H′).

Let G ∈M (Hn) be a multiset of influence maps. We call Suppn(G) the support
or amount of synchrony (if n > 1) of G with respect to the operator Suppn.

2 The ordering ≤ is defined on the extended positive reals R+∪{0,∞} as conventional.



5

Intuitively, a support operator Suppn is meant to aggregate the synchrony of
all individual A-events (with A ⊆ N , |A| = n) over the (parallel) spike trains of
the neurons in A.

Upward monotonicity encodes the intuitive idea that the spiking activity or,
for n > 1, the amount of synchrony of a certain collection of multisets in F (e.g.
a collection of A-events in EA, for some A ⊆ N , |A| = n) should be no less than
the spiking activity or amount of synchrony of smaller collections contained in it.

Similarly, downward monotonicity is intended to capture the idea that syn-
chronous spiking in a certain set of spike trains (the amount of synchrony of such
a set) should be no less than the amount of synchrony of any of its proper sub-
sets. This generalizes the monotonicity property in Definition 2 to the amount
of synchrony among spike trains.

3 Synchrony Models

The most common method in tasks related to the identification of synchronous
spiking in parallel spike trains—one may even say the almost exclusively applied
method—is bin-based (i.e., it employs time discretization): spikes are binned in
time intervals of equal length (time bins) that partition the recording-time inter-
val (0, T ]. In this approach, two or more spikes are considered to be synchronous
if they lie in the same time bin3 and thus what characterizes synchrony is the
length and boundaries of time bins (although it is only the length of time bins
that gives us the intended characterization of spike synchrony in this approach).

The bin-based characterization of synchrony can be easily formalized in our
framework. For a time-bin length d ∈ (0, T ], each a ∈ N and time ta in S we
can define, for example, the following influence map in F :

fta(x) =

{
1
d if x ∈

(
d
⌊
ta

d

⌋
, d
⌊
ta

d

⌋
+ d
]

0 otherwise,

where
⌊
ta

d

⌋
denotes the integer part of t

a

d . For G ∈M (F) a multiset of influence
maps, we define our synchrony operator as follows:

Sync(G) =

{
1 if ∃x ∈ R : minft∈G ft(x) > 0
0 otherwise.

Synchronous spiking in the spike trains of neurons in A ⊆ N can be quantified
by Supp|A|(E

A), which we simply define here as follows:

Supp|A|(E
A) =

∑
G∈EA

Sync(G).

The bin-based characterization of synchrony has two main drawbacks:

3 Clipping is usually applied, that is, at most one spike per neuron is considered in
each time bin. We follow this common practice here.
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– Boundary problem. A collection of spikes separated by a time distance
smaller than the bin length may be split into different bins and thus be
regarded as non-synchronous.

– Bivalence problem. A collection of spikes can be either (fully) synchronous
or non-synchronous. Small variations in the time distance between two spikes
(possibly moving one of them over a time bin boundary) may cause a jump
from (full) synchrony to non-synchrony and vice versa.

A graded, continuous characterization of synchrony, able to overcome these draw-
backs, is certainly desirable. We present here a model within our framework that
responds to this motivation.

The first step in setting our model is to decide the form of the influence
regions around spike times within which positive synchrony degrees are defined.
At least in the absence of any specific knowledge about noise or jitter in our
recordings, symmetry of influence regions and influence maps around the points
given by the corresponding spike times seems to be a reasonable choice. Likewise,
in the absence of any evidence to the contrary, influence regions of the same
length may be considered for all spikes of all neurons. We follow this view and
consider for our model influence regions of a certain length, say r ∈ R+, that are
symmetric around the corresponding spike times (i.e., for t a spike time in S, we
consider the influence region [t− r

2 , t+ r
2 ]).

We now characterize our influence maps. For our model we choose (possibly)
the simplest subclass of F , given by the maps of the following form, for t a spike
time in S and [t− r

2 , t+ r
2 ] the corresponding influence region:

ft(x) =

{ 1
r if x ∈ [t− r

2 , t+ r
2 ],

0 otherwise.

For every r ∈ R+ we will denote the corresponding subclass of functions by Fr.
We define our synchrony operator Sync as follows, for G a multiset in M (Fr):

Sync(G) =

∫ ∞
−∞

min
f∈G

f(x)dx. (1)

We thus characterize synchrony among spikes by means of the minimum operator
(a natural choice in the context: all influence maps must be positive for a point in
time in order for this point in time to contribute to the synchrony) and measure
their degree of synchrony by means of integration (that is, we aggregate over all
points in time that contribute to the synchrony).

We move now to the definition of the family of support operators Suppn
for characterizing and quantifying spiking activity of neurons and synchronous
spiking of groups of neurons in our model. Let us start by assuming that the
spike train of any single neuron in N is represented by a collection of influence
maps in Fr with non-overlapping influence regions. (For reasonably small r this
can be expected, due to the sparseness of spike times in real neuronal recordings
and to the refractory period of neurons, that is, a certain period of time needs
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to elapse between the emission of two spikes—see, e.g., [14]). Under such an
assumption the näıve characterization of Suppn as

Suppn(H) =
∑
G∈H

Sync(G), (2)

for H ∈M (Hn) and n ∈ N, and the corresponding quantification of synchrony
for A ⊆ N given by Supp|A|(E

A) would constitute a reasonable choice. However,
if the aforementioned assumption does not hold (i.e., if it is not the case that
the influence regions of maps representing spikes emitted by the same neuron
do not overlap) the above family of operators Suppn is not a family of support
operators as set in Definition 3. An alternative characterization of Suppn in
agreement with Definition 3 is thus needed for our model and we opt for

Suppn(H) =

∫ ∞
−∞

max
G∈H

(min
f∈G

f(x)) dx, (3)

for H ∈ M (Hn) and n ∈ N. In words, we merge every collection of functions
G ∈ H (e.g., every A-event in EA for the neuronal pattern A ⊆ N) into the
new function minf∈G f(x), which characterizes synchrony in G, and integrate
the maximum of all such functions over the real line. This removes the prob-
lems resulting from overlapping influence maps: overlapping influence maps can
lead to overlaps of the functions minf∈G f(x) that represent different A-events
and thus certain time regions may be “counted” multiple times if we simply
sum the synchrony of A-events. Taking the maximum eliminates this potential
multiplicity and thus ensures downward monotonicity of our family of support
operators.

Note that we can equivalently express Supp|A|(E
A), for A ⊆ N , as

Supp|A|(E
A) =

∫ ∞
−∞

min
a∈A

(max
f∈Ga

f(x)) dx, (4)

with Ga = {fa1 , ..., faka} ∈ M (F) the multiset representing the spike train in S
corresponding to neuron a ∈ A within our model.

Note that, given our choice of Fr as the class of influence maps, Equation (4)
can be computed easily. This motivated us to prefer Equation (3) over alternative
definitions of Suppn that are (arguably) better from a conceptual point of view.
For example, one may consider to choose at most one A-event in EA for each
spike time in S in the computation of Suppn (e.g. those events which would
maximize the support given to the corresponding collection of spike trains), so
that no spike contributes to more than one synchronous event.4

4 Fuzzy Frequent Pattern Mining

We now move to the task of identifying frequent neuronal patterns, by which we
mean sets of neurons in N whose corresponding spike trains in S have an amount

4 Some of these alternative characterizations are being considered in current research.
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of synchrony or support greater than or equal to a certain user-defined frequency
threshold. We start by presenting a generalization of the standard frequent pat-
tern mining problem based on what we call fuzzy transactions, which we refer to
as the fuzzy frequent pattern mining problem—which however differs from other
known fuzzy generalizations in the literature that receive the same name, such
as e.g. that introduced in [15], based on the consideration of transactions with
potentially missing items, or in [16], where fuzzy membership (to a transaction)
is assigned to items.

In order to describe and formalize our problem we follow here [17] for stan-
dard frequent pattern mining terminology and notation.

Let I = {a1, ..., an} be an item base, for n ∈ N. A fuzzy transaction T (over I)
is a pair 〈id, η〉, where id is a unique transaction identifier and η : P(I)→ [0, 1]
is a function that assigns degrees of membership to all subsets of I (i.e., the pair
〈P(I), η〉 is a fuzzy set, with η its definitory membership function—see, e.g., [7]).

A transaction T = 〈id, η〉 is said to support a set J ⊆ I to the degree ζ if
η(J) = ζ. For D a fuzzy transaction database, the cover of J in D consists of
the set of transactions in D that support J to a degree strictly greater than 0.
The support of J in D is given by a function of the membership degrees assigned
to J by the transactions in the cover of J that is anti-monotone on the partially
ordered set P(I) with respect to set inclusion.

A subset J ⊆ I is called frequent in D if its support in D is no less than some
user-specified minimum support σmin. Our problem thus consists in finding the
collection of all frequent subsets in I, which we denote by F (D, σmin).

Note that standard frequent pattern mining can be formalized in terms of
fuzzy transactions by means of membership functions that assign value 1 to all
subsets of, say, J—for some J ⊆ I—and value 0 to all other subsets of I (which
actually allows us to dispense with η altogether and simply specify the set J).
The corresponding support would, in this case, be given by

∑
〈id,η〉 η(J).

4.1 Frequent Neuronal Patterns

In our context, the set of neurons N plays the role of I, the item base. In
general, fuzzy transactions are formally obtained as follows: each point in time
t ∈ (0, T ] gives rise to a transaction 〈t, ηt〉 (and thus we work with a continuous,
i.e., uncountable database), where ηt is given by a function on the values taken
at t by the influence maps representing spikes in S.

In particular, in relation to our model based on a continuous characterization
of synchrony given in Section 3, we have

ηt(A) = min
a∈A

(max
f∈Ga

f(t)) and Supp|A|(E
A) =

∫ ∞
−∞

ηt(A)dt,

for A and Ga as in Equation (4).
Frequent neuronal patterns in N will be those subsets A ⊆ N whose cor-

responding spike trains (in S) show an amount of synchrony greater than or
equal to a certain support threshold σmin (i.e., those subsets A ⊆ N with
Supp|A|(E

A) ≥ σmin).
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4.2 Algorithms for Fuzzy Frequent Pattern Mining

In general, the main difference compared to standard frequent pattern mining
algorithms (see, e.g., [17]) consists in how the support for sets A ⊆ N is calcu-
lated. For the bin-based model of synchrony, the assessment of the support for
sets A ⊆ N is as in standard frequent pattern mining. Our alternative graded
model of synchrony, based on the identification of spikes with influence maps in
the class Fr, favours algorithms suitable for a vertical layout of the database,
similar in spirit to the well-known Eclat algorithm. In particular, the collection
of sequences {fa1 , ..., fak} ⊂ Fr corresponding to the spike times for neuron a,
for each a ∈ N , would constitute our primary database. In fact, due to the shape
of influence maps in Fr, the sequence of the corresponding influence regions suf-
fices. Thus Supp|A|(E

A)—or, equivalently, Supp|A|(E
A
Sync+)—can be computed

as follows: in a first step we form the union of all influence regions corresponding
to neuron a ∈ A, for all a ∈ A (this corresponds to taking the maximum of
the influence maps over (0, T ] and finding the intervals in which it is not 0).
In a second step, we intersect these unions in order to obtain the time inter-
vals with ηt(A) > 0 (this corresponds to taking the minimum of the maxima
of the influence maps and finding the region in which the result is not 0). Fi-
nally Supp|A|(E

A
Sync+) is computed by summing the lengths of the time intervals

obtained and dividing by r.

5 Evaluation and Results

We provide some results5 concerning a first evaluation of the two models pre-
sented in Section 3 on the identification of synchronous patterns from S-like
samples: in our settings, frequent patterns A ⊆ N (with respect to some thresh-
old σmin) whose support in S is significantly greater than that expected by
chance under the assumption of independence in the spiking activity of neurons
in A (found by means of a statistical significance test on the set of frequent
neuronal patterns in N).6 Synchronous patterns are the object of the unitary
events analysis methodology, based on time-bin discretization (see [10]).

The results provided here aim at emphasizing some of the drawbacks of
the bin-based model of synchrony for tasks such as the aforementioned, thus
motivating alternative characterizations of synchrony within our framework, like
the one introduced earlier in Section 3. For our evaluation we employed an Eclat-
based routine in keeping with the indications given in Section 4.2—for the graded
model of synchrony.

We generated two types of S-like samples: samples of independent spike trains
and of correlated spike trains.

5 A full account of our evaluation methodology and results—mostly out of the scope
of this paper—will be reported elsewhere, in the form of a journal publication.

6 The statistical significance test is often redundant for this task. In practice, it is pos-
sible to determine a minimum support threshold and minimum pattern cardinality
beyond which statistical significance of any neuronal pattern is granted. Research in
this direction is being carried out at present.
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Independent Spike Trains. Spike trains generated as Poisson point pro-
cesses with properties similar to those of some experimental data. Two types
of processes with typical average rates were considered: stationary and non-
stationary (based on a phasic-tonic rate responses—see, e.g., [18]).

A small number of neurons was considered (|N | = 10) and the time duration
was set to 1000 milliseconds (i.e., T = 1000) for all generated spike trains. Two
data sets, each with 1000 trials for each neuron, were generated: one data set
with independent stationary Poisson processes and the other with non-stationary
Poisson processes.

Correlated Spike Trains. In order to generate data sets with varying
amounts of synchrony among spike trains we essentially adopted the basic fea-
tures of the SIP (Single Interaction Process) model—described in [19]—along
with some modifications aimed at generating non-exact spike coincidences.

We generated two data sets like the ones above to represent the background
activity of neurons in N . The size of spike coincidences was set to 10 (i.e., |N |). In
order to determine the time and number of such coincidences a random choice of
n ∈ {3, 4, 5, 6, 7} points in the interval [0, T ] was considered for each trial. Each
spike time generated this way was added to the background spiking activity of
neurons in N by taking into account some random time deviation in order to
produce non-exact spike coincidences, modeled by means of a uniform random
variable on the interval [−12 ,

1
2 ].

The assessment of significant synchrony was done by manipulation of our
original trials (i.e., generation of surrugate data). The method employed is trial
shuffling, a well-established method for destroying spike synchrony across in-
stances of possibly non-stationary point processes (see, e.g., [20]). From the sur-
rogate trials obtained this way we assess the critical amounts of synchrony cor-
responding to each neuronal pattern A ⊆ N beyond which, given a significance
level of 0.01, we declare synchrony to be significant.

The two models presented in Section 3 were tested for influence-region and
time-bin lengths r, d ∈ {1, 2, 3, 4}. Values for the minimum support σmin were
taken from the set {0, 1, 2}.

Our tests made some of the problems of the bin-based model evident. In
particular, results on correlated spike trains show the negative effects of the
boundary problem in the characterization of synchrony based on time-bin dis-
cretization. Even though (except for d = 4 in neuronal patterns of cardinality
three) the critical amounts of synchrony estimated from surrogate data for ev-
ery neuronal pattern A ⊆ N of cardinality at least three were all smaller than
three (recall that the number of injected coincidences in trials is at least three),
the number of undetected joint-spike coincidences was in general high, even for
reasonably large time bins (for d = 3 and even d = 4).

With respect to the two models, amounts of synchrony strictly greater than
0 in neuronal patterns beyond a certain cardinality are rare and thus, effectively,
the significance level goes often far below 1% (since the critical amount of syn-
chrony may be 0 and the condition for significance in our testing procedure was
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chosen to be an amount of synchrony strictly greater than the critical one). In
the bin-based model this problem is also observed in relation to other amounts of
synchrony. For example, the critical amount of synchrony (with respect to d = 1)
corresponding to 4-neuron patterns is 1, being an amount of synchrony greater
than or equal to 2 for these patterns very rare. Therefore, since we require an
amount of synchrony strictly greater than the corresponding critical amount for
a neuronal pattern to be considered synchronous, we will have as a result a very
small number of synchronous patterns of this cardinality in these trials. Overall,
discretization of the sample space in the bin-based approach greatly undermines
our testing procedure.

6 Conclusion and Future Work

We have presented a general, flexible framework for the characterization and
quantification of spike and spike-train synchrony—based on some general, desir-
able criteria such notions should meet—able to accommodate (possibly) graded
notions of synchrony, like the one presented in Section 3 as an alternative to the
bin-based characterization, aimed at overcoming some of its main drawbacks.

Motivated by the task of identifying frequent (and synchronous) neuronal
patterns from parallel spike trains, we formalized the so-called fuzzy frequent
pattern mining problem—a generalization of standard frequent pattern mining.

Alternative synchrony models are currently being tested on the basis of
methodological and/or conceptual improvements. In particular, as pointed out
earlier, quantification of spike-train synchrony based on the choice of at most
one joint-spike event per spike in the computation of the amount of synchrony
(i.e., Suppn) is being considered.
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