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ABSTRACT
The FP-growth algorithm is currently one of the fastest ap-
proaches to frequent item set mining. In this paper I de-
scribe a C implementation of this algorithm, which contains
two variants of the core operation of computing a projec-
tion of an FP-tree (the fundamental data structure of the
FP-growth algorithm). In addition, projected FP-trees are
(optionally) pruned by removing items that have become in-
frequent due to the projection (an approach that has been
called FP-Bonsai). I report experimental results comparing
this implementation of the FP-growth algorithm with three
other frequent item set mining algorithms I implemented
(Apriori, Eclat, and Relim).

1. INTRODUCTION
One of the currently fastest and most popular algorithms for
frequent item set mining is the FP-growth algorithm [8]. It is
based on a prefix tree representation of the given database
of transactions (called an FP-tree), which can save consid-
erable amounts of memory for storing the transactions. The
basic idea of the FP-growth algorithm can be described as a
recursive elimination scheme: in a preprocessing step delete
all items from the transactions that are not frequent indi-
vidually, i.e., do not appear in a user-specified minimum
number of transactions. Then select all transactions that
contain the least frequent item (least frequent among those
that are frequent) and delete this item from them. Recurse
to process the obtained reduced (also known as projected)
database, remembering that the item sets found in the recur-
sion share the deleted item as a prefix. On return, remove
the processed item also from the database of all transactions
and start over, i.e., process the second frequent item etc. In
these processing steps the prefix tree, which is enhanced by
links between the branches, is exploited to quickly find the
transactions containing a given item and also to remove this
item from the transactions after it has been processed.

In this paper I describe an efficient C implementation of the
FP-growth algorithm. In Section 2 I briefly review how the

transaction database is preprocessed in a way that is com-
mon to basically all frequent item set mining algorithms.
Section 3 explains how the initial FP-tree is built from the
(preprocessed) transaction database, yielding the starting
point of the algorithm. The main step is described in Sec-
tion 4, namely how an FP-tree is projected in order to obtain
an FP-tree of the (sub-)database containing the transactions
with a specific item (though with this item removed). The
projection step is the most costly in the algorithm and thus
it is important to find an efficient way of executing it. Sec-
tion 5 considers how a projected FP-tree may be further
pruned using a technique that has been called FP-Bonsai
[4]. Such pruning can sometimes shrink the FP-tree con-
siderably and thus lead to much faster projections. Finally,
in Section 6 I report experiments with my implementation,
comparing it with my implementations [5, 6] of the Apriori
[1, 2] and Eclat [10] algorithms.

2. PREPROCESSING
Similar to several other algorithms for frequent item set min-
ing, like, for example, Apriori or Eclat, FP-growth prepro-
cesses the transaction database as follows: in an initial scan
the frequencies of the items (support of single element item
sets) are determined. All infrequent items—that is, all items
that appear in fewer transactions than a user-specified min-
imum number—are discarded from the transactions, since,
obviously, they can never be part of a frequent item set.

In addition, the items in each transaction are sorted, so
that they are in descending order w.r.t. their frequency in
the database. Although the algorithm does not depend on
this specific order, experiments showed that it leads to much
shorter execution times than a random order. An ascending
order leads to a particularly slow operation in my exper-
iments, performing even worse than a random order. (In
this respect FP-growth behaves in exactly the opposite way
as Apriori, which in my implementation usually runs fastest
if items are sorted ascendingly, but in the same way as Eclat,
which also profits from items being sorted descendingly.)

This preprocessing is demonstrated in Table 1, which shows
an example transaction database on the left. The frequen-
cies of the items in this database, sorted descendingly, are
shown in the middle of this table. If we are given a user spec-
ified minimal support of 3 transactions, items f and g can
be discarded. After doing so and sorting the items in each
transaction descendingly w.r.t. their frequencies we obtain
the reduced database shown in Table 1 on the right.



a d f
a c d e
b d
b c d
b c
a b d
b d e
b c e g
c d f
a b d

d 8
b 7
c 5
a 4
e 3

f 2
g 1

d a
d c a e
d b
d b c
b c
d b a
d b e
b c e
d c
d b a

Table 1: Transaction database (left), item frequen-
cies (middle), and reduced transaction database
with items in transactions sorted descendingly w.r.t.
their frequency (right).

d: 8 d: 8

b: 7 b: 5 b: 2

c: 5 c: 1 c: 2 c: 2

a: 4 a: 2 a: 1 a: 1

e: 3 e: 1 e: 1 e: 1

Figure 1: FP-tree for the (reduced) transaction
database shown in Table 1.

3. BUILDING THE INITIAL FP-TREE
After all individually infrequent items have been deleted
from the transaction database, it is turned into an FP-tree.
An FP-tree is basically a prefix tree for the transactions.
That is, each path represents a set of transactions that share
the same prefix, each node corresponds to one item. In ad-
dition, all nodes referring to the same item are linked to-
gether in a list, so that all transactions containing a specific
item can easily be found and counted by traversing this list.
The list can be accessed through a head element, which also
states the total number of occurrences of the item in the
database. As an example, Figure 1 shows the FP-tree for
the (reduced) database shown in Table 1 on the right. The
head elements of the item lists are shown to the left of the
vertical grey bar, the prefix tree to the right of it.

In my implementation the initial FP-tree is built from a
main memory representation of the (preprocessed) transac-
tion database as a simple list of integer arrays. This list
is sorted lexicographically (thus respecting the order of the
items in the transactions, which reflects their frequency).
The sorted list can easily be turned into an FP-tree with a
straightforward recursive procedure: at recursion depth k,
the k-th item in each transaction is used to split the database
into sections, one for each item. For each section a node of
the FP-tree is created and labeled with the item correspond-
ing to the section. Each section is then processed recursively,
split into subsections, a new layer of nodes (one per subsec-
tion) is created etc. Note that in doing so one has to take
care that transactions that are only as long as the current
recursion depth are handled appropriately, that is, are re-
moved from the section before going into recursion.

Of course, this is not the only way in which the initial FP-
tree can be built. At first sight it may seem to be more
natural to build it by inserting transaction after transaction
into an initially empty FP-tree, creating the necessary nodes
for each new transaction. Indeed, such an approach even
has the advantage that the transaction database need not
be loaded in a simple form (for instance, as a list of integer
arrays) into main memory. Since only one transaction is
processed at a time, only the FP-tree representation and
one new transaction is in main memory. This usually saves
space, because an FP-tree is often a much more compact
representation of a transaction database.

Nevertheless I decided against such a representation for the
following reasons: in order to build a prefix tree by sequen-
tially adding transactions, one needs pointers from parent
nodes to child nodes, so that one can descend in the tree
according to the items present in the transaction. However,
this is highly disadvantageous. As we will see later on, the
further processing of an FP-tree, especially the main oper-
ation of projecting it, does not need such parent-to-child
pointers in my implementation, but rather child-to-parent
pointers. Since each node in an FP-tree (with the exception
of the roots) has exactly one parent, this, in principle, makes
it possible to work with nodes of constant size. If, however,
we have to accomodate an array of child pointers per node,
the nodes either have variable size or are unnecessarily large
(because we have pointers that are not needed), rendering
the memory management much less efficient.

It has to be conceded, though, that instead of using an array
of child pointers, one may also link all children into a list.
This, however, has the severe disadvantage that when in-
serting transactions into the FP-tree, one such list has to be
searched (linearly!) for each item of the transaction in order
to find the child to go to—a possibly fairly costly operation.

In contrast to this, first loading the transaction database
as a simple list of integer arrays, sorting it, and building
the FP-tree with a recursive function (as outlined above),
makes it possible to do without parent-to-child pointers en-
tirely. Since the FP-tree is built top down, the parent is
already known when the children are created. Thus it can
be passed down in the recursion, where the parent pointers
of the children are set directly. As a consequence, the nodes
of the FP-tree can be kept very small. In my implementa-
tion, an FP-tree node contains only fields for (1) an item
identifier, (2) a counter, (3) a pointer to the parent node,
(4) a pointer to the successor node (referring to the same
item) and (5) an auxiliary pointer that is used when pro-
jecting the FP-tree (see below). That is, an FP-tree node
needs only 20 bytes (on a 32 bit machine).

However, if we used the standard memory management, al-
locating a block of memory for each node, there would be
an additional overhead of 4 to 12 bytes (depending on the
memory system implementation) for each node for book-
keeping purposes (for instance, for storing the size of the
memory block). In addition, allocating and deallocating a
large number of such small memory blocks is usually not
very efficient. Therefore I use a specialized memory man-
agement in my implementation, which makes it possible to
efficiently handle large numbers of equally sized small mem-



ory objects. The idea is to allocate larger arrays (with sev-
eral thousand elements) of these objects and to organize the
elements into a “free” list (i.e., a list of available memory
blocks of equal size). With such a system allocating and
deallocating FP-tree nodes gets very efficient: the former
retrieves (and removes) the first element of the free list, the
latter adds the node to deallocate at the beginning of the
free list. As experiments showed, introducing this special-
ized memory management led to a considerable speed-up.

4. PROJECTING AN FP-TREE
The core operation of the FP-growth algorithm is to com-
pute an FP-tree of a projected database, that is, a database
of the transactions containing a specific item, with this item
removed. This projected database is processed recursively,
remembering that the frequent item sets found in the recur-
sion share the removed item as a prefix.

My implementation of the FP-growth algorithm contains
two different projection methods, both of which proceed by
copying certain nodes of the FP-tree that are identified by
the deepest level of the FP-tree, thus producing a kind of
“shadow” of it. The copied nodes are then linked and de-
tached from the original FP-tree, yielding an FP-tree of the
projected database. Afterwards the deepest level of the orig-
inal FP-tree, which corresponds to the item on which the
projection was based, is removed, and the next higher level
is processed in the same way. The two projections methods
differ mainly in the order in which they traverse and copy
the nodes of the FP-tree (branchwise vs. levelwise).

The first method is illustrated in Figure 2 for the example
FP-tree shown in Figure 1. The red arrows show the flow
of the processing and the blue “shadow” FP-tree is the cre-
ated projection. In an outer loop, the lowest level of the
FP-tree, that is, the list of nodes corresponding to the pro-
jection item, is traversed. For each node of this list, the
parent pointers are followed to traverse all ancestors up to
the root. Each encountered ancestor is copied and linked
from its original (this is what the auxiliary pointer in each
node, which was mentioned above, is needed for). During
the copying, the parent pointers of the copies are set, the
copies are also organized into level lists, and a sum of the
counter values in each node is computed in head elements
for these lists (these head elements are omitted in Figure 2).

Note that the counters in the copied nodes are determined
only from the counters in the nodes on the deepest level,
which are propagated upwards, so that each node receives
the sum of its children. Note also that due to this we cannot
stop following the chain of ancestors at a node that has
already been copied, even though it is clear that in this
case all ancestors higher up in the FP-tree must already
have been copied. The reason is that one has to update the
number of transactions in the copies, adding the counter
value from the current branch to all copies of the ancestors
on the path to the root. This is what the second projection
method tries to improve upon.

In a second traversal of the same branches, carried out in
exactly the same manner, the copies are detached from their
originals (the auxiliary pointers are set to null), which yields
the independent projected FP-tree shown in Figure 3. This

d: 8 d: 8

b: 7 b: 5 b: 2
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Figure 2: Computing a projection of the database
w.r.t. the item e by traversing the lowest level and
following all paths to the root.

d: 2

b: 2

c: 2

a: 1 a: 1

c: 1 c: 1

b: 1 b: 1

d: 2

Figure 3: Resulting pro-
jected FP-tree after it
has been detached from
the original FP-tree.

FP-tree is then processed recursively with the prefix e. Note,
however, that in this FP-tree all items are infrequent (and
thus all item sets containing item e and one other item are
infrequent). Hence in this example, no recursive process-
ing would take place. This is, of course, due to the chosen
example database and the support threshold.

The second projection method also traverses, in an outer
loop, the deepest level of the FP-tree. However, it does not
follow the chain of parent pointers up the root, but only
copies the parent of each node, not its higher ancestors. In
doing so, it also copies the parent pointers of the original FP-
nodes, thus making it possible to find the ancestors in later
steps. These later steps consist in traversing the levels of the
(partially constructed) “shadow” FP-tree (not the levels of
the original one!) from bottom to top. On each level the
parents of the copied nodes (which are nodes in the original
tree) are determined and copied, and the parent pointers of
the copies are set. That is, instead of branch by branch, the
FP-tree is rather constructed level by level (even though in
each step nodes on several levels may be created). The ad-
vantage of this method over the one described above is that
for branches that share a path close to the root, this common
path has to be traversed only once with this method (as the
counters for all branches are summed before they are passed
to the next higher level). However, the experiments reported
below show that the first method is superior in practice. As
it seems, the additional effort needed for temporarily setting
another parent etc. more than outweighs the advantage of
the better combination of the counter values.

5. PRUNING A PROJECTED FP-TREE
After we obtained an FP-tree of a projected database, we
may carry out an additional pruning step in order to sim-
plify the tree, thus speeding up projections. I got this idea
from [4], which introduces pruning techniques in a slightly
different context than pure frequent item set mining (suf-
fice it to say that there are additional constraints). One of
these techniques, however, can nevertheless be used here,
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Figure 4: α-pruning of a (projected) FP-tree.
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Figure 5: Results on BMS-Webview-1

namely the so-called α-pruning. The idea of this pruning is
illustrated with a very simple example in Figure 4. Suppose
that the FP-tree shown on the left resulted from a projection
and that the minimum support is either 2 or 3. Then item b
is infrequent and is not needed in projections. However, it
gives rise to a branching in the tree. Hence, by removing it,
the tree can be simplified and actually turned into a simple
list, as it is shown on the right in Figure 4.

This pruning is achieved by traversing the levels of the FP-
tree from top to bottom. The processing starts at the level
following the first level that has a non-vanishing support
less than the minimum support. (Items having vanishing
support can be ignored, because they have no nodes in the
FP-tree.) This level and the following ones are traversed
and for each node the first ancestor with an item having
sufficient support is determined. The parent pointer is then
updated to this ancestor, bypassing the nodes corresponding
to infrequent items. If by such an operation neighboring
nodes receive the same parent, they are merged. They are
also merged, if their parents were different originally, but
have been merged in a preceding step. As an illustration
consider the example Figure 4: after item b is removed,
the two nodes for item c can be merged. This has to be
recognized in order to merge the two nodes for item d also.

6. EXPERIMENTAL RESULTS
I ran experiments on the same five data sets that I already
used in [5, 6], namely BMS-Webview-1 [9], T10I4D100K [11],
census, chess, and mushroom [3]. However, I used a different
machine and an updated operating system, namely a Pen-
tium 4C 2.6GHz system with 1 GB of main memory running
S.u.S.E. Linux 9.3 and gcc version 3.3.5). The results were
compared to experiments with my implementations of Apri-
ori, Eclat, and Relim. All experiments were rerun to ensure
that the results are comparable.
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Figure 6: Results on T10I4D100K
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Figure 7: Results on census
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Figure 8: Results on chess
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Figure 9: Results on mushroom



Figures 5 to 9 show, each for one of the five data sets, the
decimal logarithm of the execution time over different (ab-
solute) minimum support values. The solid black line refers
to the implementation of the FP-growth algorithm described
here, the dotted black line to the version that uses the al-
ternative projection method. The grey lines represent the
corresponding results for Apriori (solid line), Eclat (dashed
line), and Relim (dotted line).1

Among these implementations, all of which are highly opti-
mized, FP-growth clearly performs best. With the exception
of the artificial dataset T10I4D100K, on which it is bet by
a considerable margin by Relim, and for higher support val-
ues on BMS-Webview-1, where Relim also performs slightly
better (presumably, because it does not need to construct a
prefix tree), FP-growth is the clear winner. Only on chess,
Eclat can come sufficiently close to be called competitive.

The second projection methods for FP-trees (dotted black
line) generally fares worse, although there is not much dif-
ference between the two methods on chess and mushroom.
This is a somewhat surprising result, because there are good
reasons to believe that the second projection method may be
able to yield better results than the first. I plan to examine
this issue in more detail in the future.

7. CONCLUSIONS
In this paper I described an implementation of the FP-
growth algorithm, which contains two methods for efficiently
projecting an FP-tree—the core operation of the FP-growth
algorithm. As the experimental results show, this implemen-
tation clearly outperforms Apriori and Eclat, even in highly
optimized versions. However, the performance of the two
projection methods, especially, why the second is sometimes
much slower than the first, needs further investigation.

8. PROGRAM
The implementation of the FP-growth algorithm described
in this paper (Windowstm and Linuxtm executables as well
as the source code, distributed under the LGPL) can be
downloaded free of charge at

http://fuzzy.cs.uni-magdeburg.de/˜borgelt/software.html

At this URL my implementations of Apriori, Eclat, and Re-
lim are also available as well as a graphical user interface
(written in Java) for finding association rules with Apriori.
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