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Abstract

Graphical modeling is an important method to efficiently represent and analyze
uncertain information in knowledge-based systems. Its most prominent represen-
tatives are Bayesian networks and Markov networks for probabilistic reasoning,
which have been well-known for over ten years now. However, they suffer from
certain deficiencies, if imprecise information has to be taken into account. There-
fore possibilistic graphical modeling has recently emerged as a promising new area
of research. Possibilistic networks are a noteworthy alternative to probabilistic
networks whenever it is necessary to model both uncertainty and imprecision.
Imprecision, understood as set-valued data, has often to be considered in sit-
uations in which information is obtained from human observers or imprecise
measuring instruments. In this paper we provide an overview on the state of the
art of possibilistic networks w.r.t. to propagation and learning algorithms.

1 Introduction

A major requirement concerning the acquisition, representation, and analysis of infor-
mation in knowledge-based systems is to develop an appropriate formal and semantic
framework for the effective treatment of uncertain and imprecise data [32]. In this
paper we consider this requirement w.r.t. a task that frequently occurs in applications,
namely the task to identify the true state ω0 of a given world section. We assume
that possible states of the domain under consideration can be described by stating the
values of a finite set of attributes (or variables). The set of all possible (descriptions
of) states, i.e., the Cartesian product of the attribute domains, we call the frame of
discernment Ω (also called universe of discourse). The task to identify the true state
consists in combining generic knowledge about the relations between the values of the
different attributes (usually derived from background expert knowledge about the do-
main or from databases of sample cases) and evidential knowledge about the current
values of some of the attributes (obtained, for instance, from observations). The goal
is to find a description of the true state ω0 that is as specific as possible.
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As an example consider medical diagnosis. Here the true state ω0 is the current
state of health of a given patient. All possible states can be characterized by attributes
describing properties of patients (like sex or age) or symptoms (like fever or high blood
pressure) or the presentness or absence of diseases. The generic knowledge consists
in a model of the medical competence of a physician, who knows about the relations
between symptoms and diseases in the context of other properties of the patient. It may
be gathered from medical textbooks or reports. The evidential knowledge is obtained
from medical examination and answers given by the patient, which, for example, reveal
that she is 42 years old and has 39o fever. The goal is to derive a full description of
her state of health in order to determine which disease or diseases are present.

Imprecision, understood as set-valued data, enters our considerations due to two
reasons. In the first place, generic knowledge about dependences between attributes
can be relational rather than functional, so that knowing exact values for the observed
attributes does not allow us to infer exact values for the other attributes, but only sets
of possible values. Secondly, the available information about the observed attributes
can itself be imprecise. That is, it may not enable us to fix a specific value, but only a
set of alternatives. In such situations we only know for sure that the current state ω0 lies
within a set of alternative states, but we may have no preferences that could help us to
single out the true state ω0 from this set. For example, in medical diagnosis a physician
may consider a set of diseases, all of which can explain the observed symptoms and
one of which must be the correct diagnosis, without preferring any of them.

Uncertainty arises from the fact that often the functional or relational dependences
between the involved attributes are unreliable or, in general, indeterministic. This
situation, of course, could also be modeled as imprecision. However, often additional
information is available that allows us to state preferences between the possible alter-
natives. If, for example, the symptom fever is observed, then various disorders may be
the cause of this symptom. But in the absence of other information a physician will
prefer a severe cold as a diagnosis, since it is a fairly common disorder. The preferences
assigned to the alternatives can be quantified, for example, by degrees of confidence.
They are modeled in an adequate calculus, e.g., using probability theory or possibil-
ity theory or any other non-standard uncertainty calculus. Alternatively they can be
handled in a purely qualitative way by fixing a reasonable preference relation.

In the following discussion, for simplicity, we restrict ourselves to attributes with
finite domains. We assume that the generic knowledge models prior information about
the uncertainty of the truth of propositions ω = ω0 for all alternatives ω ∈ Ω. Such
knowledge can often be formalized as a distribution function on Ω, for example, as a
probability distribution, a mass distribution, or a possibility distribution, depending on
the uncertainty calculus that best reflects the structure and the contents of the given
knowledge. Evidential knowledge about ω0 is taken into account by conditioning the
available generic knowledge, that is, by conditioning a given prior distribution on Ω.
This process is usually based on instantiations of particular variables. In our medical
example, for instance, the variable fever can be instantiated by measuring the body
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temperature of the patient. Such instantiations give rise to an inference process that
computes the posterior marginal distributions for the uninstantiated variables.

Since in applications the number of attributes to be considered is usually fairly
large and the size of the frame of discernment Ω grows exponentially with the number
of attributes, the reasoning process described above tends to be intractable in the
domain as a whole. To make reasoning feasible, knowledge representation methods
take advantage of independences between the attributes under consideration. Such
independences allow us to decompose the generic knowledge represented by the prior
distribution on Ω into distributions on lower-dimensional subspaces. An important
method to represent the resulting decomposition is graphical modeling. It also provides
useful theoretical and practical concepts for efficient reasoning under uncertainty [54,
6, 35, 48]. Applications of graphical models can be found in a large variety of areas
including diagnostics, expert systems, planning, data analysis, and control. For an
overview, see [8].

In this paper, we focus on graphical modeling with possibility theory as the un-
derlying uncertainty calculus. In section 2 we review the basics of graphical modeling
and in section 3 we outline evidence propagation in graphical models. Theoretical
underpinnings of possibilistic graphical models including the fundamental concepts of
possibilistic conditional independence, conditional independence graphs, decomposition,
and factorization are presented in section 4. In section 5, we discuss a specific data
mining problem, namely how to induce possibilistic graphical models from databases of
sample cases. Finally, section 6 we draw conclusions from our discussion.

2 Graphical Models

A graphical model consists of a qualitative and a quantitative component. The qual-
itative (or structural) component is a graph (hence the name graphical model), for
example, a directed acyclic graph (DAG), an undirected graph (UG) or a chain graph
(CG). Each node of this graph represents an attribute and each edge a direct depen-
dence between two attributes. The structure of the graph encodes in a specific way
the conditional independences between the attributes. Therefore it is often called a
conditional independence graph.

The quantitative component of a graphical model is a family of distribution func-
tions on subspaces of Ω. For which subspaces distribution functions have to be specified
is determined by the structure of the conditional independence graph. If it is a directed
acyclic graph, there is one (conditional) distribution function for each attribute and
each possible instantiation of its parents (i.e., its predecessors in the graph), for ex-
ample, a conditional probability distribution. In this case each distribution function
represents the uncertainty about the value of an attribute given a specific instantiation
of its parents. If the conditional independence graph is an undirected graph, there is
one (marginal) distribution function, for instance, for each maximal clique of the graph,
where a clique is a fully connected subgraph, and it is maximal, if it is not contained in
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21 attributes: 11 – offspring ph.gr. 1
1 – dam correct? 12 – offspring ph.gr. 2
2 – sire correct? 13 – offspring genotype
3 – stated dam ph.gr. 1 14 – factor 40
4 – stated dam ph.gr. 2 15 – factor 41
5 – stated sire ph.gr. 1 16 – factor 42
6 – stated sire ph.gr. 2 17 – factor 43
7 – true dam ph.gr. 1 18 – lysis 40
8 – true dam ph.gr. 2 19 – lysis 41
9 – true sire ph.gr. 1 20 – lysis 42

10 – true sire ph.gr. 2 21 – lysis 43

The grey nodes correspond to observable attributes.

Figure 1: Conditional independence graph of a graphical model for genotype determi-
nation and parentage verification of Danish Jersey cattle in the F-blood group system.

another clique. In this case each distribution function represents the uncertainty about
the values of the projections of ω0 onto the subspace corresponding to the maximal
clique (i.e., the Cartesian product of the domains of the attributes contained in the
maximal clique).

As an example we consider an application of a graphical model for blood group
determination of Danish Jersey cattle in the F-blood group system, whose primary
purpose is parentage verification for pedigree registration [37]. The underlying domain
is described by 21 attributes, eight of which are observable. The size of the domains of
these attributes ranges from two to eight possible values. The total frame of discern-
ment has 26 · 310 · 6 · 84 = 92 876 046 336 possible states. Therefore a decomposition of
the expert knowledge about this domain is clearly necessary to make reasoning feasi-
ble. Figure 1 lists the attributes and shows the conditional independence graph of this
graphical model, which was designed by human domain experts (the graphical model is
a Bayesian network and thus the conditional independence graph is a directed acyclic
graph). The grey nodes correspond to the observable attributes.

The conditional independence graph reflects, as already said above, the conditional
independences between the attributes of the underlying domain. In the case of a di-
rected acyclic graph they can be read from the graph using a graph theoretic criterion
called d-separation [35, 24]. What is to be understood by conditional independence
depends on the uncertainty calculus the graphical model is based on. In the example
at hand, which is a probabilistic graphical model, it means conditional stochastic in-
dependence of the random variables that are represented by the nodes of the graph.
The joint probability distribution of these random variables is supposed to satisfy all
independence relations represented by the conditional independence graph. Therefore,
the joint probability distribution can be decomposed into a product of conditional
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sire phenogroup 1 stated sire phenogroup 1
correct true sire F1 V1 V2

yes F1 1 0 0
yes V1 0 1 0
yes V2 0 0 1
no F1 0.58 0.10 0.32
no V1 0.58 0.10 0.32
no V2 0.58 0.10 0.32

Table 1: Conditional probabil-
ity distributions for a subgraph
of the conditional independence
graph shown in figure 1.

probability distributions (this is also called factorization). This product can easily be
read from the conditional independence graph: There is exactly one factor for each
attribute, which refers to the conditional probability distribution of the values of this
attributes given an instantiation of the parents of this attribute [35, 54].

In the Danish Jersey cattle example, a decomposition of the joint probability dis-
tribution according to the conditional independence graph shown in figure 1 leads to a
considerable simplification. Instead of having to determine the probability of each of
the 92 876 046 336 elements of the 21-dimensional frame of discernment Ω, only 306
conditional probabilities in subspaces of at most three dimensions need to be speci-
fied. An example of a conditional probability table is shown in table 1, which is for
the phenogroup 1 of the stated sire of a given calf conditioned on the phenogroup of
the true sire of the calf and whether the sire was correctly identified. The numbers
in this table are derived from statistical data and the experience of domain experts.
The family of all 21 conditional probability tables forms the quantitative part of the
graphical model for the Danish Jersey cattle example.

3 Evidence Propagation

After a graphical model has been constructed, it can be used to do reasoning. In the
Danish Jersey cattle example, for instance, the phenogroups of the stated dam and
the stated sire can be determined and the lysis values of the calf can be measured.
From this information the probable genotype of the calf can be inferred and it is thus
possible to assess whether the stated parents of the calf are the true parents.

However, reasoning in a graphical model is not always completely straightforward.
Considerations of efficiency make it often advisable to transform a graphical model into
a form that is better suited for propagating the evidential knowledge and computing the
resulting marginal distributions for the unobserved attributes. We briefly sketch here
a popular efficient reasoning method known as clique tree propagation (CTP) [33, 8],
which involves transforming the conditional independence graph into a clique tree.

This transformation is carried out as follows: If the conditional independence graph
is a directed acyclic graph, it is first turned into an undirected graph by constructing
its associated moral graph [33]. A moral graph is constructed from a directed acyclic
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Figure 2: Triangulated moral graph (left) and clique tree (right) for the graphical
model shown in Figure 1. The dotted lines are the edges added when parents were
“married”.

graph by “marrying” the parent nodes of all nodes (hence the name “moral graph”).
This is done by simply adding undirected edges between the parents. The directions
of all other edges are discarded. In general the moral graph satisfies a only subset
of the independence relations of the underlying directed acyclic graph, so that this
transformation may result in a loss of independence information. The moral graph for
the Danish Jersey Cattle example is shown on the left in figure 2. The edges that were
added when parents were “married” are indicated by dotted lines.

In a second step, the undirected graph is triangulated. (If the conditional inde-
pendence graph is an undirected graph right from the start, this is the first step to
be carried out.) An undirected graph is called triangulated, if all cycles containing at
least four nodes have a chord, where a chord is an edge that connects two non-adjacent
nodes of the cycle. To achieve triangulation, it may be necessary to add edges, which
may result in a (further) loss of independence information. In the Danish Jersey cattle
example, however, the moral graph shown on the left in figure 2 is triangulated right
away, so no new edges need to be introduced.

Finally, the triangulated graph is turned into a clique tree by finding the maximal
cliques, where a clique (see above) is a fully connected subgraph, and it is maximal,
if it is not contained in another clique. In the clique tree there is one node for each
maximal clique of the triangulated graph and its edges connect nodes that represent
cliques having attributes in common. It should be noted that in general the clique tree
is not unique, because often different sets of edges can be chosen. The clique tree for
the Danish Jersey cattle example is shown on the right in figure 2. Detailed information
on triangulation, clique tree construction and other related graph-theoretical problems
can be found in [8].
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The quantitative part of a graphical model, of course, has to be transformed, too.
From the quantitative information of the original graphical model one has to compute
a marginal distribution for each of the subspaces represented by the nodes of the
clique tree. For the Danish Jersey cattle example, we have to compute a marginal
distribution for the subspace formed by the attributes 1, 3, 7, one for the subspace
formed by the attributes 1, 4, 8, and so on. That an appropriate factorization of the
probability distribution can be found is ensured by the Hammersley-Clifford theorem
[29]. It establishes a correspondence between the Markov properties (local, pairwise
and global) of a strictly positive probability distribution P on Ω that are represented
by a conditional independence graph and the factorization of P into a product of
functions that depend only on the variables in the maximal cliques of the conditional
independence graph.

Having constructed a clique tree, which is merely a preliminary operation to make
evidence propagation more efficient, we can finally turn to evidence propagation itself.
Evidence propagation in clique trees is basically an iterative extension and projection
process. When evidence about the value of an attribute becomes available, it is first
extended to a clique tree node the attribute is contained in. This is done by con-
ditioning the associated marginal distribution. We call this an extension, since by
this conditioning process we go from restrictions on the values of a single attribute
to restrictions on tuples of attribute values. Hence the information is extended from
a single attribute to a subspace formed by several attributes. Then the conditioned
distribution is projected to all intersections of the clique tree node with other nodes.
Via these projections the information can be transferred to other nodes, where the
process repeats: First it is extended to the subspace represented by the node, then it
is projected to the intersections connecting it to other nodes. The process stops when
all nodes have been updated.

The propagation scheme outlined above and the subsequent computation of pos-
terior marginal distributions for the unobserved attributes can easily be implemented
by locally communicating node- and edge-processors. These processor also serve the
task to let pieces of information “pass” each other without interaction. Such bypassing
is necessary, if the propagation operations in the underlying uncertainty calculus are
not idempotent, that is, if incorporating the same information twice can invalidate the
results. This is the case, for example, in probabilistic reasoning. This problem is also
the reason why the clique graph is usually required to be a tree: If there were loops,
information could travel on two or more different paths to the same destination and
thus be incorporated twice. Some other calculi, for instance, possibility theory, do
not suffer from this inconvenience, so that the node- and edge-processor can be made
simpler and loops do no harm (although they can make reasoning less efficient).

A well-known interactive software tool for probabilistic reasoning in clique trees is
HUGIN [1]. A similar approach was implemented in POSSINFER [22] for the possi-
bilistic setting. That the propagation is efficient is obvious: If all available evidence
is entered at the same time, distributing the information in the network requires only
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two traversals of the clique tree.
Of course, clique tree propagation is not the only possible propagation scheme. Oth-

ers include bucket elimination [11, 57] and iterative proportional fitting [54]. Commonly
used propagation algorithms differ from each other w.r.t. the network structures they
support, but in most cases they are applicable independent of the given uncertainty
calculus, provided, of course, the elementary operations like extension (conditioning)
and projection have been adapted to this calculus [33, 35, 44]. A fairly general ap-
proach to reasoning under uncertainty in so-called valuation-based networks has been
proposed in [46, 48, 47]. It can be applied, for example, to upper and lower probabili-
ties [52], Dempster-Shafer theory of evidence [12, 13, 42, 43, 49], and possibility theory
[56, 15, 16], and has been implemented in the software tool PULCINELLA [41].

4 Possibilistic Networks

Our review of graphical models in the preceding sections was strongly oriented at the
well-known theory of probabilistic networks. In this section we turn to possibilistic
networks, which are a much younger but very promising type of graphical models that
can deal with uncertainty and imprecision. Their theory can be developed in close
analogy to the probabilistic case. Technically, a possibilistic network is a graphical
model whose quantitative component is a family of possibility distributions. Hence we
start our discussion by briefly recalling possibility theory and its interpretations.

Axiomatically, a possibility distribution π is a mapping from a reference set Ω to
the unit interval. In contrast to a probability distribution, which is also defined to be
such a mapping, a possibility distribution need not be normalized to one. That is, the
sum (or the integral) of the degrees of possibility assigned by π to the elements of Ω
need not be one. In the context of graphical models, we use a possibility distribution
to specify imperfectly the current state ω0 of the domain under consideration. From
an intuitive point of view, π(ω) quantifies the possibility that the proposition ω = ω0

is true: π(ω) = 0 means that ω = ω0 is impossible, whereas π(ω) = 1 means that
it is possible without restriction. Any intermediary possibility degree π(ω) ∈ (0, 1)
indicates that ω = ω0 is possible only with restrictions. That is, there is evidence
supporting this proposition as well as evidence contradicting it.

Of course, the above intuitive description is much too vague to fix a particular
interpretation of degrees of possibility. Thus, similar to the probabilistic case where
logical, empirical, and subjective interpretations of probability can be distinguished,
there is a large variety of suggestions for semantics of a degree of possibility. Among
them are the view of possibility distributions as epistemic interpretations of fuzzy sets
[56], the axiomatic approach to possibility theory based on possibility measures [15,
16], and the approach that bases possibility theory on likelihoods [14]. In connection
to Dempster-Shafer theory, possibility distributions are seen as contour functions of
consonant belief functions [42], and in the framework of set-valued statistics, they are
interpreted as falling shadows [53]. Furthermore, there are interpretations of possibility
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theory that owe nothing to probability theory. We mention here the interpretation of
possibility as similarity, which is related to metric spaces [39, 38, 40], and possibility as
preference, which is justified mathematically by comparable possibility relations [17].

If one introduces possibility distributions as information-compressed representations
of databases of (possibly imprecise) sample cases, as we will do in the next section,
it is convenient to interpret them as (non-normalized) one-point coverages of random
sets [34, 27]. This interpretation leads to very promising semantics [19, 20]. For
instance, with this approach it is quite simple to establish Zadeh’s extension principle
[55] as the appropriate way of extending operations on sets to operations on possibility
distributions. It turns out that the extension principle is the only way of operating on
possibility distributions that is consistent with this semantic background [18].

More precisely, let Ω be the set of all possible states of the world, ω0 ∈ Ω the current
(but unknown) state of the world, (C, 2C , P ), C = {c1, . . . , ck}, a finite probability
space, and γ : C → 2Ω a set-valued mapping. C is seen as a set of contexts that
have to be distinguished for a imprecise (set-valued) specification of ω0. The contexts
are supposed to describe different physical and observation-related frame conditions.
P ({c}) is the (subjective) probability of the (occurrence or selection of the) context c.

A set γ(c) is assumed to be the most specific correct set-valued specification of ω0,
which is implied by the frame conditions that characterize the context c. By “most
specific set-valued specification” we mean that ω0 ∈ γ(c) is guaranteed to be true for
γ(c), but is not guaranteed for any proper subset of γ(c). The resulting random set
Γ = (γ, P ) is an imperfect (i.e. imprecise and uncertain) specification of ω0. Let πΓ

denote the one-point coverage of Γ (the possibility distribution induced by Γ), which is
defined as

πΓ : Ω → [0, 1], πΓ(ω) 7→ P ({c ∈ C | ω ∈ γ(c)}) .

In a complete modeling, the contexts in C must be specified in detail, so that the
relationships between all contexts cj and their corresponding specifications γ(cj) are
made explicit. But if the contexts are unknown or ignored, then πΓ(ω) is the total
mass of all contexts c that provide a specification γ(c) in which ω0 is contained, and
this quantifies the possibility of truth of the statement “ω = ω0” [19, 21].

As emphasized above, graphical models take advantage of conditional independence
relations in order to reduce reasoning to operations on distributions on low-dimensional
subspaces. Therefore a theoretical investigation of possibilistic graphical models has
to start with the definition of an appropriate concept of conditional possibilistic in-
dependence. Such a definition allows us to introduce conditional independence graphs
and to search for appropriate decomposition and factorization techniques. However,
in contrast to the notion of probabilistic conditional independence, which has been
well-known for a long time, there is still some discussion going on about an analogous
concept for the possibilistic setting. The main reason for this is the fact that with pos-
sibility theory one can model two different kinds of imperfect knowledge: uncertainty
and imprecision. Hence there are at least two alternative ways of approaching the task
to define conditional possibilistic independence. In addition, different semantics for
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possibility distributions may call for different concepts of conditional independence.
For an overview, see [7].

Nevertheless, all suggestions for a concept of possibilistic conditional independence
agree to the following general description: Let X, Y , and Z be three disjoint sets of
attributes, X and Y non-empty. X is called independent of Y given Z w.r.t. a possi-
bility distribution π on Ω, if for all instantiations of the attributes in Z, no information
about the values of the attributes in Y changes the possibility degrees of the tuples over
attributes in X. In other words: If the Z-values of ω0 are known, but arbitrary, then
from additional information about the Y -values of ω0 no restrictions on the X-values
of ω0 can be derived. In terms of projecting and conditioning possibility distributions
we can rephrase this concept as follows: Suppose that a possibility distribution π is
used to specify imperfectly the state ω0. If crisp knowledge about the Z-values of ω0 is
given, this distribution is conditioned w.r.t. the instantiations of the attributes in Z. If
X and Y are independent given Z, then projecting the resulting conditional possibility
distribution π directly to the attributes in X leads to the same distribution as first
conditioning it first w.r.t. an arbitrary instantiation of the attributes in Y and only
afterwards projecting it to the attributes in X.

How conditioning and projection have to be defined depends on the chosen se-
mantics of possibility distributions: If we view possibility theory as a special case of
Dempster-Shafer theory by interpreting a possibility distribution as a representation
of a consonant belief function or of a nested random set, then the concept of condi-
tional independence can be derived from so-called Dempster conditioning [42]. If we
see possibility distributions as (non-normalized) one-point coverages of random sets,
we have to choose the conditioning and the projection operation in conformity with the
extension principle. The resulting concept of conditional independence is conditional
possibilistic non-interactivity [28]. For details, see [7]. It should be pointed out that
both types of conditional independence mentioned above satisfy the semi-graphoid ax-
ioms which have been established as basic requirements for any reasonable concept of
conditional independence in graphical models [35]. Possibilistic conditional indepen-
dence derived from Dempster conditioning even satisfies the graphoid axioms [36], just
as probabilistic conditional independence does.

If we confine ourselves to conditional possibilistic non-interactivity in accordance
with the interpretation of possibility distributions we preferred above, it is straightfor-
ward to define conditional possibilistic independence graphs: An undirected graph is
called a conditional independence graph of a possibility distribution π, if for any three
disjoint sets X, Y , and Z of nodes, X and Y non-empty, X is independent of Y given
Z, if X and Y are separated by Z, i.e., if all paths from a node in X to a node in Y
contain a node in Z. This definition assumes that the so-called global Markov property
holds for π [54]. In contrast to probability distributions, where the equivalence of the
global, local, and pairwise Markov property can be proven, in the possibilistic setting
we have to rely on the global Markov property as the strongest of the three [18].

A proof of a possibilistic counterpart of the Hammersley-Clifford theorem [29] (see
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lysis 40 lysis 41 lysis 42 lysis 43 genotype offspring
{0, 1, 2} 6 0 6 V 2/V 2

0 5 4 5 {V 1/V 2, V 2/V 2}
2 6 0 6 *
5 5 0 0 F1/F1

Table 2: A small database with four sample cases

above) is given in [18]: A possibility distribution π on Ω has a decomposition into
complete irreducible components, if it is decomposed w.r.t. a triangulated conditional
independence graph G of π. The factorization of π w.r.t. this decomposition uses
the minimum instead of the product, which is used in the probabilistic case, and
the maximum instead of the sum. That is, π can be represented as the minimum
of its maximum projections to the maximal cliques of G. It follows that evidence is
propagated in possibilistic networks with a minimum/maximum scheme instead of the
product/sum scheme of the probabilistic case.

5 Learning Possibilistic Networks from Data

A graphical model is a powerful tool to do reasoning—as soon as it is constructed. Its
construction by human experts, however, can be tedious and time consuming. There-
fore recent research in probabilistic as well as in possibilistic graphical models focused
on learning them from a database of sample cases. In accordance with the two compo-
nents of graphical models, one distinguishes between quantitative network induction,
which serves to estimate the distribution functions of the factorization represented by
a graphical model, and qualitative or structural network induction, which serves to find
a conditional independence graph that captures (most) of the independences of the
distribution function that is induced by the database. In possibilistic learning a special
concern is to exploit the information contained in imprecise, i.e., set-valued, sample
cases, which pose problems for probabilistic approaches.

We start our discussion by showing how a database of imprecise sample cases in-
duces a possibility distribution in the interpretation outlined in the preceding section.
To this end we reconsider the Danish Jersey cattle example by looking at a small sec-
tion of a database for this example as shown in figure 2. For simplicity, this database
is reduced to five attributes. Each tuple describes one sample case, i.e., one calf. The
first three tuples are imprecise, the fourth tuple is precise. The first tuple, for in-
stance, represents the three precise tuples (0, 6, 0, 6, V 2/V 2), (1, 6, 0, 6, V 2/V 2), and
(2, 6, 0, 6, V 2/V 2). This means that three states have to be regarded as possible alter-
natives. Analogously, the second tuple represents two alternatives which result from
the imprecision in the attribute genotype offspring. The third tuple is imprecise, be-
cause it contains an unknown value, indicated by a star ‘*’, which can be interpreted
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as representing the whole domain of the corresponding attribute.
To induce a possibility distribution from this database, we interpret each tuple as

corresponding to one context (see the preceding section). Assuming that the four sam-
ple cases are equally representative, it is reasonable to fix their probability of occurrence
to 1/4. Note, however, that this is not enough for the probabilistic case, since it does not
allow us to assign probabilities to the elementary events, i.e., the precise tuples in the
domain underlying table 2. In the probabilistic setting, we may apply the insufficient
reason principle, which states that alternatives in set-valued sample cases are equally
likely, if no preferences are known. Assuming uniform distributions on set-valued sam-
ple cases leads to a refined database of 3 + 2 + 6 + 1 = 12 precise tuples, in which, for
instance, (2, 6, 0, 6, V 2/V 2) has a probability of 1/3 ∗ 1/4 + 0 + 1/6 ∗ 1/4 + 0 = 3/24.
This approach, however, unjustifiably introduces information about the relative proba-
bility of the possible values. In a possibilistic interpretation of the database, we obtain
for the same tuple a degree of possibility of 1/4 + 0 + 1/4 + 0 = 1/2, since this tuple
is considered to be possible in the first and in the third sample, but it is excluded
in the other two. That is, no information is introduced that is not contained in the
database. If we compute the possibility degrees for all tuples of the joint domain of the
five attributes used in table 2, we arrive at an information-compressed interpretation
of the database in the form of a possibility distribution.

Quantitative Network Induction. Whereas quantitative network induction for
both probabilistic and possibilistic networks is a rather trivial task, if all sample cases
are precise (standard statistical techniques can be used in this case, see [50] for an
overview), sample cases with missing values and especially with imprecise (set-valued)
information pose a problem. This is true even for a possibilistic approach, which is
better suited to handle set-valued information, since the imprecise tuples can “overlap”,
thus preventing us from using simple techniques to compute maximum projections
directly from the database. Fortunately, however, the database to learn from can be
transformed by computing its closure under tuple intersection. From the transformed
database all projections can be computed as efficiently as in the probabilistic case [5].

Qualitative Network Induction. The task to find a decomposition of the possi-
bility distribution induced by a database of sample cases that best approximates this
distribution w.r.t. a chosen class of conditional independence graphs is NP-hard for
non-trivial classes of graphical models. This is true even if we confine ourselves to
n-ary relations, which can be regarded as special cases of n-dimensional possibility
distributions. For this reason, in analogy to learning probabilistic graphical models
[9, 10, 51, 26], heuristics are unavoidable. These heuristics usually take the form of a
search method and an evaluation measure. The evaluation measure estimates the qual-
ity of a given decomposition (a given conditional independence graph) and the search
method determines which decompositions (which conditional independence graphs) are
inspected. Often the search is guided by the value of the evaluation measure, since it
is usually the goal to maximize (or to minimize) its value.

[22] develops a rigid foundation of a learning algorithm for possibilistic networks.
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It starts from a comparison of the nonspecificity of a given multivariate possibility
distribution to the distribution represented by a possibilistic network, thus measuring
the loss of specificity, if the multivariate possibility distribution is represented by the
network. The measure of nonspecificity can be derived from Hartley information [25],
in contrast to some evaluation measures for learning probabilistic networks, which are
based on Shannon information [45]. In order to arrive at an efficient algorithm, an
approximation for this loss of specificity is derived, which can be computed locally
on the maximal cliques of the network. As the search method a generalization of
the optimum weight spanning tree algorithm is used. Several other heuristic local
evaluation measures for learning possibilistic networks, which can be used with different
search methods, are discussed in [3, 4]. Implementations based on these theoretical
results have successfully been applied to the Danish Jersey cattle example. For details,
see [18, 4].

6 Conclusions

In this paper we reviewed the state of the art of possibilistic graphical models w.r.t.
evidence propagation and learning and indicated similarities and differences to proba-
bilistic graphical models. To summarize, probabilistic approaches serve for the exact
modeling of uncertain, but precise data, since imprecise data cannot be represented
by a single probability distribution. Possibilistic approaches serve for the approximate
(information-compressed) modeling of uncertain and/or imprecise data. Therefore,
probabilistic and possibilistic graphical models are useful in quite different domains
of knowledge representation, which makes them cooperative rather than competitive.
A topic of future work is to study in which way probabilistic and possibilistic data,
obtained from expert knowledge and/or databases of sample cases, can be combined
and then be represented as the quantitative part of a unified type of graphical model.
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