
Fast Fuzzy Clustering of Web Page Collections

Christian Borgelt and Andreas Nürnberger

Dept. of Knowledge Processing and Language Engineering
Otto-von-Guericke-University of Magdeburg

Universitätsplatz 2, D-39106 Magdeburg, Germany
{borgelt,nuernb}@iws.cs.uni-magdeburg.de

Abstract. We study an extension of learning vector quantization that
draws on ideas from fuzzy clustering, enabling us to find fuzzy clusters of
ellipsoidal shape with a competitive learning scheme. This approach may
be seen as a kind of online fuzzy clustering, which can have advantages
w.r.t. the execution time of the clustering algorithm. We demonstrate the
usefulness of our approach by applying it to web page collections, which
are, in general, difficult to cluster due to the high number of dimensions
and the special distribution characteristics of the data.

1 Introduction

It is not difficult to see that classical c-means clustering [6, 4] and standard
learning vector quantization applied to clustering [14, 15] are very similar: a
point that one method converges to is a stable point of the other, in particular,
if learning vector quantization is applied in batch mode. Since classical c-means
clustering has been generalized to fuzzy clustering [1, 2, 11], the idea suggests
itself to transfer some ideas that have been developed in fuzzy clustering to
competitive learning, with the aim of achieving a higher flexibility.

In this paper we consider how shape and size parameters can be introduced
into a fuzzified competitive learning scheme, so that we arrive at competitive
learning clustering algorithms that may be seen as online versions of the more
sophisticated fuzzy clustering approaches, like the Gustafson-Kessel algorithm
[10] or the fuzzy maximum likelihood estimation (FMLE) algorithm [8]. The
basic idea of this transfer is that the update of a reference vector in competitive
learning can be seen as an exponential decay of information gained from data
points processed in earlier steps—a scheme that may just as well be applied to
a covariance matrix describing the size and shape of a cluster.

Such online clustering has at least two advantages for the application domain
we are concerned with here, that is, for clustering collections of documents. The
first is that, due to the fact that the cluster parameters are updated more often,
while the greater part of the overhead comes from the computations of the
distances between the data points and the cluster centers, it can be faster than
standard fuzzy clustering. Secondly, this approach to clustering makes it easier
to handle documents that become available in a true online fashion, because
updates need only few documents, not the whole collection.

This paper is organized as follows: in Section 2 we briefly review some basics
of fuzzy clustering. In Section 3 we transfer fuzzy clustering ideas to learning
vector quantization and develop online update rules for the size and shape pa-
rameters of a reference vector, captured in a covariance matrix. In Section 4
we review pre-processing methods for documents and in particular the vector
space model. In Section 5 we present experimental results of clustering web page
collections and finally, in Section 6, we draw conclusions from our discussion.

2 Fuzzy Clustering

While most classical clustering algorithms assign each datum to exactly one
cluster, thus forming a crisp partition of the given data, fuzzy clustering allows
for degrees of membership, to which a datum belongs to different clusters [1, 2, 11].
Most fuzzy clustering algorithms are objective function based: they determine
an optimal (fuzzy) partition of a given data set X = {xj | j = 1, . . . , n} into
c clusters by minimizing an objective function

J(X,U,C) =
c∑

i=1

n∑
j=1

uw
ijd

2
ij

subject to the constraints
n∑

j=1

uij > 0, for all i ∈ {1, . . . , c}, and (1)

c∑
i=1

uij = 1, for all j ∈ {1, . . . , n}, (2)

where uij ∈ [0, 1] is the membership degree of datum xj to cluster i and dij is the
distance between datum xj and cluster i. The c× n matrix U = (uij) is called
the fuzzy partition matrix and C describes the set of clusters by stating location
parameters (i.e. the cluster center) and maybe size and shape parameters for each
cluster. The parameter w, w > 1, is called the fuzzifier or weighting exponent.
It determines the “fuzziness” of the classification: with higher values for w the
boundaries between the clusters become softer, with lower values they get harder.
Usually w = 2 is chosen. Hard clustering results in the limit for w → 1. However,
a hard assignment may also be determined from a fuzzy result by assigning each
data point to the cluster to which it has the highest degree of membership.

Constraint (1) guarantees that no cluster is empty and constraint (2) ensures
that each datum has the same total influence by requiring that the membership
degrees of a datum must add up to 1. Because of the second constraint this
approach is usually called probabilistic fuzzy clustering, since with it the mem-
bership degrees for a datum formally resemble the probabilities of its being a
member of the corresponding clusters. The partitioning property of a proba-
bilistic clustering algorithm, which “distributes” the weight of a datum to the
different clusters, is due to this constraint.

Unfortunately, the objective function J cannot be minimized directly. There-
fore an iterative algorithm is used, which alternately optimizes the membership
degrees and the cluster parameters [1, 2, 11]. That is, first the membership de-
grees are optimized for fixed cluster parameters, then the cluster parameters are
optimized for fixed membership degrees. The main advantage of this scheme is
that in each of the two steps the optimum can be computed directly. By iterating
the two steps the joint optimum is approached (although, of course, it cannot
be guaranteed that the global optimum will be reached—the algorithm may get
stuck in a local minimum of the objective function J).

The update formulae are derived by simply setting the derivative of the
objective function J w.r.t. the parameters to optimize equal to zero (necessary
condition for a minimum). Independent of the chosen distance measure we thus
obtain the following update formula for the membership degrees [11]:

uij =
d
− 2

w−1
ij∑c

k=1 d
− 2

w−1
kj

, (3)

that is, the membership degrees represent the relative inverse squared distances
of a data point to the different cluster centers, which is a very intuitive result.

The update formulae for the cluster parameters, however, depend on what
parameters are used to describe a cluster (location, shape, size) and on the
chosen distance measure. Therefore a general update formula cannot be given.
Here we briefly review the three most common cases: The best-known fuzzy
clustering algorithm is the fuzzy c-means algorithm, which is a straightforward
generalization of the classical crisp c-means algorithm. It uses only cluster centers
for the cluster prototypes and relies on the Euclidean distance, i.e.,

d2
ij = d2(xj ,µi) = (xj − µi)>(xj − µi),

where µi is the center of the i-th cluster. Consequently it is restricted to finding
spherical clusters of equal size. The resulting update rule is

µi =

∑n
j=1 uw

ijxj∑n
j=1 uw

ij

, (4)

that is, the new cluster center is the weighted mean of the data points assigned
to it, which is again a very intuitive result.

The Gustafson-Kessel algorithm [10] uses the Mahalanobis distance, i.e.,

d2
ij = d2(xj ,µi) = (xj − µi)>Σ−1

i (xj − µi),

where µi is the cluster center and Σi is a cluster-specific covariance matrix with
determinant 1 that describes the shape of the cluster, thus allowing for ellipsoidal
clusters of equal size. This distance function leads to same update rule (4) for
the clusters centers. The covariance matrices are updated according to

Σi =
Σ∗

i
m
√
|Σ∗

i |
where Σ∗

i =

∑n
j=1 uw

ij(xj − µi)(xj − µi)>∑n
j=1 uw

ij

(5)

and m is the number of dimensions of the data space. Σ∗
i is called the fuzzy

covariance matrix, which is simply normalized to determinant 1 to meet the
abovementioned constraint. Compared to standard statistical estimation proce-
dures, this is also a very intuitive result. It should be noted that the restriction
to cluster of equal size may be relaxed by simply allowing general covariance
matrices. However, depending on the characteristics of the data, this additional
degree of freedom can deteriorate the robustness of the algorithm.

Finally, the fuzzy maximum likelihood estimation (FMLE) algorithm [8] is
based on the assumption that the data was sampled from a mixture of c multi-
variate normal distributions as in the statistical approach of mixture models [7,
3]. It uses a (squared) distance that is inversely proportional to the probability
that a datum was generated by the normal distribution associated with a cluster,
i.e.,

d2
ij =

(
θi√

(2π)m|Σi|
exp

(
−1

2
(xj − µi)>Σ−1

i (xj − µi)
))−1

,

where θi is the prior probability of the cluster, µi is the cluster center, Σi a
cluster-specific covariance matrix, which in this case is not required to be nor-
malized to determinant 1, and m the number of dimensions of the data space.
For the FMLE algorithm the update rules are not derived from the objective
function due to technical obstacles, but by comparing it to the well-known ex-
pectation maximization (EM) algorithm [5] for a mixture of normal distributions
[7, 3], which, by analogy, leads to the same update rules for the cluster center
and the cluster-specific covariance matrix [11]. The prior probability is, in direct
analogy to statistical estimation, computed as

θi =
1
n

n∑
j=1

uw
ij . (6)

Since the high number of free parameters of the FMLE algorithm renders it
unstable on certain data sets, it is usually recommended [11] to initialize it with
a few steps of the very robust fuzzy c-means algorithm. The same holds, though
to a somewhat lesser degree, for the Gustafson-Kessel algorithm.

It is worth noting that of both the Gustafson-Kessel as well as the FMLE al-
gorithm there exist so-called axes-parallel versions, which restrict the covariance
matrices Σi to diagonal matrices and thus allow only axes-parallel ellipsoids [12].
These variants have certain advantages w.r.t. robustness and execution time.

3 Learning Vector Quantization

Learning vector quantization [14, 15], in its classical form, is a competitive learn-
ing algorithm that has been developed in the area of artificial neural networks
and that can be applied to classified as well as unclassified data. Here we con-
fine ourselves to unclassified data, where the algorithm consists in iteratively
updating a set of c so-called reference vectors µi, i = 1, . . . , c, each of which

is represented by a neuron. For each data point xj , j = 1, . . . , n, the closest
reference vector (the so-called “winner neuron”) is determined and then this
reference vector (and only this vector) is updated according to

µ
(new)
i = µ

(old)
i + η1

(
xj − µ

(old)
i

)
, (7)

where η1 is a learning rate. This learning rate usually decreases with time in
order to avoid oscillations and to enforce the convergence of the algorithm.

Membership degrees can be introduced into this basic algorithm in two dif-
ferent ways. In the first place, one may employ an activation function for the
neurons, for which a radial function like the

Cauchy function f(r) =
1

1 + r2
or the Gaussian function f(r) = e−

1
2 r2

may be chosen, where r is the (radial) distance from the reference vector. In this
case all reference vectors are updated for each data point, with the update being
weighted with the value of the activation function. However, this scheme, which is
closely related to possibilistic fuzzy clustering [16], usually leads to unsatisfactory
results, since there is no dependence between the clusters, so that they tend to
end up at the center of gravity of all data points. This corresponds to the fact
that in possibilistic fuzzy clustering the objective function is truly minimized
only if all cluster centers are identical [23]. Useful results are obtained only if
the method gets stuck in a local minimum, which is an undesirable situation.

An alternative is to rely on a normalization scheme as in probabilistic fuzzy
clustering, that is, to compute the weight for the update of a reference vector as
the relative inverse (squared) distance from this vector (cf. the computation of
the membership degrees in fuzzy clustering, see formula (3)), or as the relative
activation of a neuron. This is the approach we employ here, that is, we use

µ
(new)
i = µ

(old)
i + η1uij

(
xj − µ

(old)
i

)
(8)

with uij defined as in equation (3). Furthermore we associate with each neuron
not only a reference vector µi, but also a covariance matrix Σi, which describes
the shape and (if we do not require it to be normalized to determinant 1) the
size of the represented cluster.

In order to find an update rule for this covariance matrix, we observe that
the above equation (7) may also be written as

µ
(new)
i = (1− η1) µ

(old)
i + η1 xj ,

which shows that the update can be seen as an exponential decay of information
gained from data points processed earlier. Transferring this idea to the covariance
matrices Σi and drawing on equation (5) leads directly to

Σ(new)
i = (1− η2)Σ

(old)
i + η2 (xj − µi)(xj − µi)>, (9)

where η2 is a learning rate, which, in general, differs from the learning rate η1

for the reference vectors. In the fuzzy case this update may be weighted, as the
update of the reference vectors, by the relative inverse (squared) distance of the
data point from the reference vector or by the relative neuron activation.

It should be noted that versions of this algorithm that require the covariance
matrix to be normalized to determinant 1 or restrict the covariance matrix to
a diagonal matrix may be considered, too. Such constraints can improve the
robustness or the execution time of the algorithm. Furthermore it should be
noted that the updates may be executed in batch mode, aggregating the changes
resulting from the data points and actually updating the reference vectors and
covariance matrices only at the end of an epoch.

Finally, it should be noted that the additional elements of the FMLE algo-
rithm may also be transferred to a competitive learning scheme, by using the
reciprocal of the special distance function as the activation function of the neu-
rons. The additional parameter θi, that is, the weight or prior probability of a
cluster, is then updated according to

θ
(new)
i = (1− η3) θ

(old)
i + η3 uij ,

where η3 is another learning rate (different from η1 and η2) and uij is defined as in
equation (3). However, in the application described below, we confine ourselves to
the simpler approach discussed above, which in addition to membership degrees
introduces only covariance matrices.

4 Clustering Document Collections

To be able to cluster text document collections with the methods discussed
above, we have to map the text files to numerical feature vectors. Therefore, we
first applied standard preprocessing methods, i.e. stopword filtering and stem-
ming (using the Porter Stemmer [18]), encoded each document using the vector
space model [19] and finally selected a subset of terms as features for the clus-
tering process as briefly described in the following.

4.1 The Vector Space Model

The vector space model represents text documents as vectors in an m-dimen-
sional space, i.e., each document j is described by a numerical feature vector
xj = (xj1, . . . , xjm). Each element of the vector represents a word of the docu-
ment collection, i.e., the size of the vector is defined by the number of words of
the complete document collection.

For a given document j the so-called weight xjk defines the importance of the
word k in this document with respect to the given document collection C. Large
weights are assigned to terms that are frequent in relevant documents but rare in
the whole document collection [20]. Thus a weight xjk for a term k in document j
is computed as the term frequency tfjk times the inverse document frequency
idfk, which describes the term specificity within the document collection.

In [21] a weighting scheme was proposed that has meanwhile proven its usabil-
ity in practice. Besides term frequency and inverse document frequency (defined
as idfk = log(n/nk)), a length normalization factor is used to ensure that all
documents have equal chances of being retrieved independent of their lengths:

xjk =
tfjk log n

nk√∑m
l=1

(
tfjl log n

nl

)2 , (10)

where n is the size of the document collection C, nk the number of documents
in C that contain term k, and m the number of terms that are considered.

Based on a weighting scheme a document j is described by an m-dimensional
vector xj = (xj1, . . . , xjm) of term weights and the similarity S of two documents
(or the similarity of a document and a query vector) can be computed based on
the inner product of the vectors (by which — if we assume normalized vectors
— the cosine between the two document vectors is computed), i.e.

S(xj ,xk) =
m∑

l=1

xjl · xkl. (11)

For a more detailed discussion of the vector space model and weighting schemes
see, for instance, [9, 20, 19].

Note that for normalized vectors the scalar product is not much different in
behavior from the Euclidean distance, since for two vectors x and y it is

cos ϕ =
xy

|x| · |y|
= 1− 1

2
d2

(
x

|x|
,

y

|y|

)
.

Although the scalar product is faster to compute, it enforces spherical clusters.
Therefore we rely on the Mahalanobis distance in our approach.

4.2 Index Term Selection

To reduce the number of words in the vector description we applied a simple
method for keyword selection by extracting keywords based on their entropy. In
the approach discussed in [13], for each word k in the vocabulary the entropy as
defined by [17] was computed:

Wk = 1 +
1

log2 n

n∑
j=1

pjk log2 pjk with pjk =
tfjk∑n
l=1 tf lk

, (12)

where tfjk is the frequency of word k in document j, and n is the number of
documents in the collection. Here the entropy gives a measure how well a word is
suited to separate documents by keyword search. For instance, words that occur
in many documents will have low entropy. The entropy can be seen as a measure
of the importance of a word in the given domain context. As index words a
number of words that have a high entropy relative to their overall frequency

Dataset Character Dataset Category Associated Theme

A Commercial Banks Banking & Finance
B Building Societies Banking & Finance
C Insurance Agencies Banking & Finance
D Java Programming Languages
E C / C++ Programming Languages
F Visual Basic Programming Languages
G Astronomy Science
H Biology Science
I Soccer Sport
J Motor Racing Sport
K Sport Sport

Table 1. Categories and Themes of the used benchmark data set.

have been chosen, i.e. from words occurring equally often those with the higher
entropy can be preferred. Empirically this procedure has been found to yield a
set of relevant words that are suited to serve as index terms [13].

In order to obtain a fixed number of index terms that appropriately cover
the documents, a greedy strategy was applied: From the first document in the
set of documents select the term with the highest relative entropy as an index
term. Then mark this document and all other documents containing this term.
From the first of the remaining unmarked documents select again the term with
the highest relative entropy as an index term. Then mark again this document
and all other documents containing this term. Repeat this process until all doc-
uments are marked, then unmark all of them and start again. The process can
be terminated when the desired number of index terms have been selected.

5 Experiments

For our experimental studies we chose the collection of web page documents used
in [22].1 The data set consists of 11,000 web pages classified into 11 equally-
sized categories each containing 1,000 web documents. To each category one
of four distinct themes, namely Banking and Finance, Programming Languages,
Science, and Sport as shown in Table 1 was assigned. The authors of [22] reported
baseline classification rates using c-means clustering and different preprocessing
strategies (alternatively stopword filtering and/or stemming, different number
of index terms).

In the following we present results we obtained with our algorithm using
the preprocessing strategies described above. After stemming and stop word
filtering we obtained 163,860 words. This set was further reduced by removing
terms that are shorter than 4 characters and that occur less then 15 or more
than 11, 000/12 ≈ 917 times in the whole collection. Thus we made sure that no
1 This collection is available for download from
http://www.pedal.rdg.ac.uk/banksearchdataset/index.htm.

words that perfectly separate one class from another are used in the describing
vectors. From the remaining 10626 words we selected 400 words by applying the
greedy index-term selection approach described in Section 4.2. For our clustering
experiments we selected finally subsets of the 20, 50, 100, 150, ..., 350, 400 most
frequent words in the subset to be clustered. Based on these words we determined
vector space descriptions for each document (see Section 4.1, Equation (10)) that
we used in our clustering experiments. All vectors were normalized to unit length.

To assess the clustering performance we computed the performance on the
same data sets used in [22], i.e., we clustered the union of the dissimilar data
sets A and I, and the semantically more similar data sets B and C. The mean
classification performance reported in [22] using hard c-means are 67.51% for
data sets A and I and 75.44% for data sets B and C, in both cases stemming
and stopword filtering methods were applied. In a third experiment we used all
classes and tried to find clusters describing the four main themes, i.e. banking,
programming languages, science, and sport.

For our experiments we used c-means, fuzzy clustering and learning vector
quantization methods with and without cluster centers normalized to unit length,
with and without variances (i.e., spherical clusters and axes-parallel ellipsoids—
diagonal covariance matrices—of equal size), and with the inverse squared dis-
tance or the Gaussian function for the activation. The learning vector quanti-
zation algorithm updated the cluster parameters once for every 100 documents.
The results for some parameterizations of the algorithms are shown in Figures 1
to 3. All results are the mean values of ten runs, which differed in the initial
cluster positions and the order in which documents were processed. The dotted
lines show the default accuracy (obtained if all documents are assigned to the
majority class). The diamonds show the average classification accuracy in per-
cent (left axis) with bars indicating the standard deviation. The grey dots and
lines show the average execution times in seconds (right axis).2

The top row of each figure shows the results for spherical clusters with clus-
ter centers normalized to unit length (i.e., the centers resulting from the update
formulae given above were divided by their lengths). In this case we used a Gaus-
sian membership/activation function and a fixed cluster radius of 1

3 . (Note that
with an inverse squared distance membership/activation, due to the normaliza-
tion to sum 1, the radius has no effect, leading to considerably worse results
for fuzzy clustering and learning vector quantization. Therefore we omit these
results here.) As can be seen, all algorithms work reasonably well, with fuzzy
clustering and learning vector quantization having a slight edge in accuracy over
hard c-means clustering, which is particularly clear for the four cluster case (see
Figure 3). It may be a little surprising that learning vector quantization not
only outperforms fuzzy clustering w.r.t. the execution time, but can even com-
pete with hard c-means clustering in this respect. Note that the execution times

2 All experiments were carried out with a program written in C and compiled with
gcc 3.3.3 on a Pentium 4C 2.6GHz system with 1GB of main memory running
S.u.S.E. Linux 9.1. The program and its sources can be downloaded free of charge
at http://fuzzy.cs.uni-magdeburg.de/~borgelt/cluster.html.

c-means fuzzy c-means vector quantization
100

80

60

40

20

00 100 200 300 400

2

1

0

100

80

60

40

20

00 100 200 300 400

2

1

0

100

80

60

40

20

00 100 200 300 400

2

1

0

100

80

60

40

20

00 100 200 300 400

2

1

0

100

80

60

40

20

00 100 200 300 400

2

1

0

100

80

60

40

20

00 100 200 300 400

2

1

0

Fig. 1. Accuracy on commercial banks versus soccer (top row: normalized centers, fixed
uniform variances; bottom row: free centers, adaptable variances).

c-means fuzzy c-means vector quantization
100

80

60

40

20

00 100 200 300 400

2

1

0

100

80

60

40

20

00 100 200 300 400

2

1

0

100

80

60

40

20

00 100 200 300 400

2

1

0

100

80

60

40

20

00 100 200 300 400

2

1

0

100

80

60

40

20

00 100 200 300 400

2

1

0

100

80

60

40

20

00 100 200 300 400

2

1

0

Fig. 2. Accuracy on building companies versus insurance agencies (top row: normalized
centers, fixed uniform variances; bottom row: free centers, adaptable variances).

c-means fuzzy c-means vector quantization
100

80

60

40

20

00 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

00 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

00 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

00 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

00 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

00 100 200 300 400

20

16

12

8

4

0

Fig. 3. Accuracy on major themes (four clusters; top row: normalized centers, fixed
uniform variances; bottom row: free centers, adaptable variances).

level off for 350 and 400 words in Figures 1 and 2, because only 316 and 300
words appear in these document subsets, respectively.

The bottom row of each figure shows the results for free cluster centers
(i.e., they are not normalized to unit length), axis-parallel ellipsoids (diagonal
covariance matrices), and with the inverse squared distance for the member-
ship/activation. Obviously, the performance of hard c-means is slightly worse in
this case, while fuzzy c-means and learning vector quantization yield good result.
In particular, the result achieved with learning vector quantization in the four
class case (see Figure 3), which is very good and highly stable, is remarkable.
This, however, comes at some cost w.r.t. the execution time of the algorithm.

It is interesting to note that in other experiments (which we cannot present
here due to reasons of space) it turned out that using ellipsoidal clusters usually
slightly deteriorates performance if the cluster centers are normalized, but im-
proves performance for free cluster centers (i.e. no normalization to unit length).

6 Conclusions

In this paper we transferred some ideas from fuzzy clustering, in particular the
use of a covariance matrix to describe the shape and the size of a cluster, to
learning vector quantization. We developed a fuzzy competitive learning scheme
for these new reference vector parameters and applied our algorithm to the
difficult task of clustering document collections.

Our experiments showed that this approach can be used successfully for
clustering collections of documents, with learning vector quantization leading to
shorter execution times. In addition, learning vector quantization appears to be
slightly more robust than fuzzy clustering, which is known to be considerably
more robust than crisp clustering. Finally, it enables a truly “online” clustering,
since only a fraction of the documents is needed for each update.

References

1. J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York, NY, USA 1981

2. J.C. Bezdek, J. Keller, R. Krishnapuram, and N. Pal. Fuzzy Models and Algorithms
for Pattern Recognition and Image Processing. Kluwer, Dordrecht, Netherlands
1999

3. J. Bilmes. A Gentle Tutorial on the EM Algorithm and Its Application to Param-
eter Estimation for Gaussian Mixture and Hidden Markov Models. University of
Berkeley, Tech. Rep. ICSI-TR-97-021, 1997

4. H.H. Bock. Automatische Klassifikation. Vandenhoeck & Ruprecht, Göttingen,
Germany 1974

5. A.P. Dempster, N. Laird, and D. Rubin. Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society (Series B)
39:1–38. Blackwell, Oxford, United Kingdom 1977

6. R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. J. Wiley &
Sons, New York, NY, USA 1973

7. B.S. Everitt and D.J. Hand. Finite Mixture Distributions. Chapman & Hall,
London, UK 1981

8. I. Gath and A.B. Geva. Unsupervised Optimal Fuzzy Clustering. IEEE Trans.
Pattern Analysis & Machine Intelligence 11:773–781. IEEE Press, Piscataway, NJ,
USA, 1989

9. W.R. Greiff. A Theory of Term Weighting Based on Exploratory Data Analysis.
Proc. 21st Ann. Int. ACM SIGIR Conf. on Research and Development in Infor-
mation Retrieval (Sydney, Australia), 17–19. ACM Press, New York, NY, USA
1998

10. E.E. Gustafson and W.C. Kessel. Fuzzy Clustering with a Fuzzy Covariance Ma-
trix. Proc. 18th IEEE Conference on Decision and Control (IEEE CDC, San Diego,
CA), 761–766, IEEE Press, Piscataway, NJ, USA 1979

11. F. Höppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy Cluster Analysis. J. Wi-
ley & Sons, Chichester, England 1999

12. F. Klawonn and R. Kruse. Constructing a Fuzzy Controller from Data. Fuzzy Sets
and Systems 85:177-193. North-Holland, Amsterdam, Netherlands 1997

13. A. Klose, A. Nürnberger, R. Kruse, G.K. Hartmann, and M. Richards. Interac-
tive Text Retrieval Based on Document Similarities. Physics and Chemistry of
the Earth, Part A: Solid Earth and Geodesy 25:649–654. Elsevier, Amsterdam,
Netherlands 2000

14. T. Kohonen. Learning Vector Quantization for Pattern Recognition. Technical
Report TKK-F-A601. Helsinki University of Technology, Finland 1986

15. T. Kohonen. Self-Organizing Maps. Springer-Verlag, Heidelberg, Germany 1995
(3rd ext. edition 2001)

16. R. Krishnapuram and J. Keller. A Possibilistic Approach to Clustering, IEEE
Transactions on Fuzzy Systems, 1:98-110. IEEE Press, Piscataway, NJ, USA 1993

17. K.E. Lochbaum and L.A. Streeter. Combining and Comparing the Effectiveness
of Latent Semantic Indexing and the Ordinary Vector Space Model for Informa-
tion Retrieval. Information Processing and Management 25:665–676. Elsevier,
Amsterdam, Netherlands 1989

18. M. Porter. An Algorithm for Suffix Stripping. Program: Electronic Library &
Information Systems 14(3):130–137. Emerald, Bradford, United Kingdom 1980

19. G. Salton, A. Wong, and C.S. Yang. A Vector Space Model for Automatic Indexing.
Communications of the ACM 18:613–620 ACM Press, New York, NY, USA 1975

20. G. Salton and C. Buckley. Term Weighting Approaches in Automatic Text Re-
trieval. Information Processing & Management 24:513–523. Elsevier, Amsterdam,
Netherlands 1988

21. G. Salton, J. Allan, and C. Buckley. Automatic Structuring and Retrieval of Large
Text Files. Communications of the ACM 37:97–108. ACM Press, New York, NY,
USA 1994

22. M.P. Sinka, and D.W. Corne. A large benchmark dataset for web document clus-
tering. A. Abraham, J. Ruiz-del-Solar, and M. Köppen (eds.), Soft Computing
Systems: Design, Management and Applications, 881–890. IOS Press, Amsterdam,
The Netherlands 2002

23. H. Timm, C. Borgelt, and R. Kruse. A Modification to Improve Possibilistic Cluster
Analysis. Proc. IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE 2002, Honolulu,
Hawaii). IEEE Press, Piscataway, NJ, USA 2002

