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Abstract. In this paper we introduce SaM, a split and merge algorithm for fre-
quent item set mining. Its core advantages are its extremely simple data structure
and processing scheme, which not only make it very easy to implement, but also
fairly easy to execute on external storage, thus rendering it a highly useful method
if the data to mine cannot be loaded into main memory. Furthermore, we present
extensions of this algorithm, which allow for approximate or “fuzzy” frequent
item set mining in the sense that missing items can be inserted into transactions
with a user-specified penalty. Finally, we present experiments comparing our new
method with classical frequent item set mining algorithms (like Apriori, Eclat and
FP-growth) and with the approximate frequent item set mining version of RElim
(an algorithm we proposed in an earlier paper and improved in the meantime).

1 Introduction

It may not even be an exaggeration to say that the tasks of frequent item set min-
ing and association rule induction started the popular research area of data mining.
At least, however, these tasks have a strong and long-standing tradition in data mining
and knowledge discovery in databases and account for a huge number of publications in
data mining conferences and journals. The enormous research efforts devoted to these
tasks have led to a variety of sophisticated and efficient algorithms to find frequent item
sets. Among the best-known are Apriori [1, 2], Eclat [17] and FP-growth [11].

Nevertheless, there is still room for improvement: while Eclat, which is the simplest
of the mentioned algorithms, can be fairly slow on some data sets (compared to other
algorithms), FP-growth, which is usually the fastest algorithm, employs a sophisticated
data structure and requires to load the transaction data to mine into main memory. Hence
a simpler processing scheme, which still maintains efficiency, is desirable. Other lines
of improvement include filtering the found frequent item sets and association rules (see,
e.g., [22, 23]), identifying temporal changes in discovered patterns (see, e.g., [4, 5]), and
discovering fault-tolerant or approximate frequent item sets (see, e.g., [9, 14, 21]).

In this paper we introduce SaM, a split and merge algorithm for frequent item
set mining. Its core advantages are its extremely simple data structure and processing
scheme, which not only make it very easy to implement, but also fairly easy to execute



on external storage, thus rendering it a highly useful method if the data to mine can-
not be loaded into main memory. Furthermore, we present extensions of this algorithm,
which allow for approximate or “fuzzy” frequent item set mining in the sense that miss-
ing items can be inserted into transactions with a user-specified penalty. We developed
this algorithm as a simplification of the already very simple RElim algorithm [8].

The rest of this paper is structured as follows: Section 2 briefly reviews the basics of
frequent item set mining, and especially the basic divide-and-conquer scheme underly-
ing many frequent item set mining algorithms. In Section 3 we present our SaM (Split
and Merge) algorithm for exact frequent item set mining and in Section 4 compare it
experimentally to classic frequent item set mining algorithms like Apriori, Eclat, and
FP-growth, but also our own RElim algorithm [8]. Section 5 reviews approximate or
“fuzzy” frequent item set mining in the sense that missing items can be inserted into
transactions with a user-specified penalty. In Sections 6 and 7 we present two extensions
of our SaM algorithm that allow to perform such approximate frequent item set mining
with unlimited and limited item insertions, respectively. In Section 8 we compare these
extensions experimentally to the corresponding extensions of the RElim algorithm [21].
Finally, in Section 9, we draw conclusions from our discussion.

2 Frequent Item Set Mining

Frequent item set mining is a data analysis method that was originally developed for
market basket analysis, which aims at finding regularities in the shopping behavior of
the customers of supermarkets, mail-order companies and online shops. In particular,
it tries to identify sets of products that are frequently bought together. Once identified,
such sets of associated products may be used to optimize the organization of the offered
products on the shelves of a supermarket or the pages of a mail-order catalog or web
shop, or may give hints which products may conveniently be bundled.

Formally, the task of frequent item set mining can be described as follows: we are
given a setB of items, called the item base, and a database T of transactions. Each item
represents a product, and the item base represents the set of all products offered by a
store. The term item set refers to any subset of the item base B. Each transaction is an
item set and represents a set of products that has been bought by an actual customer.
Since two or even more customers may have bought the exact same set of products, the
total of all transactions must be represented as a vector, a bag or a multiset, since in
a simple set each transaction could occur at most once.3 Note that the item base B is
usually not given explicitly, but only implicitly as the union of all transactions.

The support sT (I) of an item set I ⊆ B is the number of transactions in the
database T it is contained in. Given a user-specified minimum support smin ∈ IN, an
item set I is called frequent in T iff sT (I) ≥ smin. The goal of frequent item set mining
is to identify all item sets I ⊆ B that are frequent in a given transaction database T .
Note that the task of frequent item set mining may also be defined with a relative mini-
mum support, which is the fraction of transactions in T that must contain an item set I
in order to make I frequent. However, this alternative definition is obviously equivalent.

3 Alternatively, each transaction may be enhanced by a unique transaction identifier, and these
enhanced transactions may then be combined in a simple set.



A standard approach to find all frequent item sets w.r.t. a given database T and
support threshold smin, which is adopted by basically all frequent item set mining algo-
rithms (except those of the Apriori family), is a depth-first search in the subset lattice of
the item base B. Viewed properly, this approach can be interpreted as a simple divide-
and-conquer scheme. For some chosen item i, the problem to find all frequent item sets
is split into two subproblems: (1) find all frequent item sets containing the item i and
(2) find all frequent item sets not containing the item i. Each subproblem is then further
divided based on another item j: find all frequent item sets containing (1.1) both items i
and j, (1.2) item i, but not j, (2.1) item j, but not i, (2.2) neither item i nor j etc.

All subproblems that occur in this divide-and-conquer recursion can be defined by a
conditional transaction database and a prefix. The prefix is a set of items that has to be
added to all frequent item sets that are discovered in the conditional database. Formally,
all subproblems are tuples S = (C,P ), whereC is a conditional database and P ⊆ B is
a prefix. The initial problem, with which the recursion is started, is S = (T, ∅), where
T is the given transaction database to mine and the prefix is empty. A subproblem
S0 = (C0, P0) is processed as follows: Choose an item i ∈ B0, where B0 is the set
of items occurring in C0. This choice is arbitrary, but usually follows some predefined
order of the items. If sC0(i) ≥ smin, then report the item set P0 ∪ {i} as frequent with
the support sC0(i), and form the subproblem S1 = (C1, P1) with P1 = P0 ∪ {i}.
The conditional database C1 comprises all transactions in C0 that contain the item i,
but with the item i removed. This also implies that transactions that contain no other
item than i are entirely removed: no empty transactions are ever kept. IfC1 is not empty,
process S1 recursively. In any case (that is, regardless of whether sC0(i) ≥ smin or not),
form the subproblem S2 = (C2, P2), where P2 = P0 and the conditional database C2

comprises all transactions in C0 (including those that do not contain the item i), but
again with the item i removed. If C2 is not empty, process S2 recursively.

Eclat, FP-growth, RElim and several other frequent item set mining algorithms all
follow this basic recursive processing scheme. They differ mainly in how they rep-
resent the conditional transaction databases. There are basically two fundamental ap-
proaches, namely horizontal and vertical representations. In a horizontal representation,
the database is stored as a list (or array) of transactions, each of which is a list (or array)
of the items contained in it. In a vertical representation, a database is represented by first
referring with a list (or array) to the different items. For each item a list of transaction
identifiers is stored, which indicate the transactions that contain the item.

However, this distinction is not pure, since there are many algorithms that use a
combination of the two forms of representing a database. For example, while Eclat
uses a purely vertical representation, FP-growth combines in its FP-tree structure a
vertical representation (links between branches) and a (compressed) horizontal repre-
sentation (prefix tree of transactions). RElim uses basically a horizontal representation,
but groups transactions w.r.t. their leading item, which is, at least partially, a vertical
representation. The SaM algorithm presented in the next section is, to the best of our
knowledge, the first frequent item set mining algorithm that is based on the general
processing scheme outlined above and uses a purely horizontal representation.4

4 Note that Apriori, which also uses a purely horizontal representation, relies on a different
processing scheme, since it traverses the subset lattice level-wise rather than depth-first.
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Fig. 1. The example database: original form (1), item frequencies (2), transactions with sorted
items (3), lexicographically sorted transactions (4), and the used data structure (5).

The basic processing scheme can easily be improved with so-called perfect exten-
sion pruning, which relies on the following simple idea: given an item set I , an item
i /∈ I is called a perfect extension of I , iff I and I ∪ {i} have the same support, that is,
if i is contained in all transactions containing I . Perfect extensions have the following
properties: (1) if the item i is a perfect extension of an item set I , then it is also a perfect
extension of any item set J ⊇ I as long as i /∈ J and (2) if I is a frequent item set and
K is the set of all perfect extensions of I , then all sets I ∪ J with J ∈ 2K (where 2K

denotes the power set of K) are also frequent and have the same support as I .
These properties can be exploited by collecting in the recursion not only prefix

items, but also, in a third element of a subproblem description, perfect extension items.
Once identified, perfect extension items are no longer processed in the recursion, but are
only used to generate all supersets of the prefix that have the same support. Depending
on the data set, this can lead to a considerable acceleration. It should be clear that this
optimization can, in principle, be applied in all frequent item set mining algorithms.

3 A Simple Split and Merge Algorithm

The SaM (Split and Merge) algorithm presented in this paper can be seen as a sim-
plification of the already fairly simple RElim (recursive elimination) algorithm, which
we proposed in [8] and extended to approximate or “fuzzy” frequent item set mining in
[21]. While RElim represents a (conditional) database by storing one transaction list for
each item, the split and merge algorithm presented here uses only a single transaction
list, stored as an array. This array is processed with a simple split and merge scheme,
which computes a conditional database, processes this conditional database recursively,
and eliminates the split item from the original (conditional) database.

SaM preprocesses a given transaction database in a way that is very similar to the
preprocessing used by many other frequent item set mining algorithms. The steps are
illustrated in Figure 1 for a simple example transaction database. Step 1 shows the
transaction database in its original form. In step 2 the frequencies of individual items
are determined from this input in order to be able to discard infrequent items immedi-
ately. If we assume a minimum support of three transactions for our example, there are



1 e a c d

1 e c b d

1 e b d

2 a b d

1 a d

1 c b d

2 c b

1 b d

1 a c d

1 c b d

1 b d

e

e

e
split

prefix e

2 a b d

1 a d

1 c b d

2 c b

1 b d

1 a c d

1 c b d

1 b d

1 a c d

2 a b d

1 a d

2 c b d

2 c b

2 b d

merge

prefix e

e removed

Fig. 2. The basic operations of the SaM algorithm: split (left) and merge (right).

no infrequent items, so all items are kept. In step 3 the (frequent) items in each transac-
tion are sorted according to their frequency in the transaction database, since it is well
known that processing the items in the order of increasing frequency usually leads to
the shortest execution times. In step 4 the transactions are sorted lexicographically into
descending order, with item comparisons again being decided by the item frequencies,
although here the item with the higher frequency precedes the item with the lower fre-
quency. In step 5 the data structure on which SaM operates is built by combining equal
transactions and setting up an array, in which each element consists of two fields: an
occurrence counter and a pointer to the sorted transaction. This data structure is then
processed recursively to find the frequent item sets.

The basic operations of the recursive processing, which follows the general depth-
first/divide-and-conquer scheme reviewed in Section 2, are illustrated in Figure 2. In the
split step (see the left part of Figure 2) the given array is split w.r.t. the leading item of
the first transaction (item e in our example): all array elements referring to transactions
starting with this item are transferred to a new array. In this process the pointer (in)to
the transaction is advanced by one item, so that the common leading item is “removed”
from all transactions. Obviously, this new array represents the conditional database of
the first subproblem (see Section 2), which is then processed recursively to find all
frequent items sets containing the split item (provided this item is frequent).

The conditional database for frequent item sets not containing this item (needed for
the second subproblem, see Section 2) is obtained with a simple merge step (see the
right part of Figure 2). The created new array and the rest of the original array (which
refers to all transactions starting with a different item) are combined with a procedure
that is almost identical to one phase of the well-known mergesort algorithm. Since both
arrays are obviously lexicographically sorted, one merging traversal suffices to create a
lexicographically sorted merged array. The only difference to a mergesort phase is that
equal transactions (or transaction suffixes) are combined. That is, there is always just
one instance of each transaction (suffix), while its number of occurrences is kept in the
occurrence counter. In our example this results in the merged array having two elements
less than the input arrays together: the transaction (suffixes) cbd and bd, which occur in
both arrays, are combined and their occurrence counters are increased to 2.

Note that in both the split and the merge step only the array elements (that is, the
occurrence counter and the (advanced) transaction pointer) are copied to a new array.



function SaM (a: array of transactions, (∗ conditional database to process ∗)
p: set of items, (∗ prefix of the conditional database a ∗)
smin: int) : int (∗ minimum support of an item set ∗)

var i: item; (∗ buffer for the split item ∗)
s: int; (∗ support of the current split item ∗)
n: int; (∗ number of found frequent item sets ∗)
b, c, d: array of transactions; (∗ conditional and merged database ∗)

begin (∗— split and merge recursion — ∗)
n := 0; (∗ initialize the number of found item sets ∗)
while a is not empty do (∗ while conditional database is not empty ∗)

b := empty; s := 0; (∗ initialize split result and item support ∗)
i := a[0].items[0]; (∗ get leading item of the first transaction ∗)
while a is not empty and a[0].items[0] = i do (∗ and split database w.r.t. this item ∗)

s := s + a[0].wgt; (∗ sum the occurrences (compute support) ∗)
remove i from a[0].items; (∗ remove the split item from the transaction ∗)
if a[0].items is not empty (∗ if the transaction has not become empty ∗)
then remove a[0] from a and append it to b;
else remove a[0] from a; end; (∗ move it to the conditional database, ∗)

end; (∗ otherwise simply remove it ∗)
c := b; d := empty; (∗ note split result, init. the output array ∗)
while a and b are both not empty do (∗ merge split result and rest of database ∗)

if a[0].items > b[0].items (∗ copy lex. smaller transaction from a ∗)
then remove a[0] from a and append it to d;
else if a[0].items < b[0].items (∗ copy lex. smaller transaction from b ∗)
then remove b[0] from b and append it to d;
else b[0].wgt := b[0].wgt +a[0].wgt; (∗ sum the occurrence counters/weights ∗)

remove b[0] from b and append it to d;
remove a[0] from a; (∗ move combined transaction and ∗)

end; (∗ delete the other, equal transaction: ∗)
end; (∗ keep only one instance per transaction ∗)
while a is not empty do (∗ copy the rest of the transactions in a ∗)

remove a[0] from a and append it to d; end;
while b is not empty do (∗ copy the rest of the transactions in b ∗)

remove b[0] from b and append it to d; end;
a := d; (∗ second recursion is executed by the loop ∗)
if s ≥ smin then (∗ if the split item is frequent: ∗)

p := p ∪ {i}; (∗ extend the prefix item set and ∗)
report p with support s; (∗ report the found frequent item set ∗)
n := n + 1 + SaM(c, p, smin); (∗ process the conditional database recursively ∗)
p := p− {i}; (∗ and sum the found frequent item sets, ∗)

end; (∗ then restore the original item set prefix ∗)
end;
return n; (∗ return the number of frequent item sets ∗)

end; (∗ function SaM() ∗)

Fig. 3. Pseudo-code of the SaM algorithm. The actual C code is even shorter than this description,
despite the fact that it contains additional functionality, because certain operations needed in this
algorithm can be written very concisely in C (using pointer arithmetic to process arrays).



There is no need to copy the transactions themselves (that is, the item arrays), since
no changes are ever made to them. (In the split step the leading item is not actually
removed, but only skipped by advancing the pointer (in)to the transaction.) Hence it
suffices to have one global copy of all transactions, which is merely referred to in dif-
ferent ways from different arrays used in the processing.

Note also that the merge result may be created in the array that represented the
original (conditional) database, since its front elements have been cleared in the split
step. In addition, the array for the split database can be reused after the recursion for
the split w.r.t. the next item. As a consequence, each recursion step, which expands the
prefix of the conditional database, only needs to allocate one new array, with a size that
is limited to the size of the input array of that recursion step. This makes the algorithm
not only simple in structure, but also very efficient in terms of memory consumption.

Finally, note that the fact that only a simple array is used as the underlying data
structure, the algorithm can fairly easily be implemented to work on external storage or
a (relational) database system. There is, in principle, no need to load the transactions
into main memory and even the array may easily be stored as a simple (relational) table.
The split operation can then be implemented as an SQL select statement. The merge
operation is very similar to a join, even though it may require a more sophisticated
comparison of transactions (depending on how the transactions are actually stored).

Pseudo-code of the recursive procedure is shown in Figure 3. As can be seen, a
single page of code is sufficient to describe the whole recursion in detail. The actual
C code we developed is even shorter than this pseudo-code, despite the fact that the
C code contains additional functionality (like, for example, perfect extension pruning,
see Section 2), because certain operations needed in this algorithm can be written very
concisely in C (especially when using pointer arithmetic to process arrays).

4 Exact Frequent Item Set Mining Experiments

In order to evaluate the proposed SaM algorithm, we ran it against our own implemen-
tations of Apriori [6], Eclat [6], FP-growth [7], and RElim [8], all of which rely on
the same code to read the transaction database and to report found frequent item sets.
Of course, using our own implementations has the disadvantage that not all of these im-
plementations reach the speed of the fastest known implementations.5 However, it has
the important advantage that any differences in execution time can only be attributed
to differences in the actual processing scheme, as all other parts of the programs are
identical. Therefore we believe that the measured execution times are still reasonably
expressive and allow us to compare the different approaches in a reliable manner.

We ran experiments on five data sets, which were also used in [6–8]. As they exhibit
different characteristics, the advantages and disadvantages of the different algorithms
can be observed well. These data sets are: census (a data set derived from an extract
of the US census bureau data of 1994, which was preprocessed by discretizing nu-
meric attributes), chess (a data set listing chess end game positions for king vs. king

5 In particular, in [15] an FP-growth implementation was presented, which is highly optimized
to how modern processor access their main memory [16].
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Fig. 4. Experimental results on five different
data sets. Each diagram shows the minimum
support (as the minimum number of trans-
actions that contain an item set) on the hor-
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and rook), mushroom (a data set describing poisonous and edible mushrooms by differ-
ent attributes), BMS-Webview-1 (a web click stream from a leg-care company that no
longer exists, which has been used in the KDD cup 2000 [12]), and T10I4D100K (an
artificial data set generated with IBM’s data generator [24]). The first three data sets are
available from the UCI machine learning repository [3]. The shell script used to dis-
cretize the numeric attributes of the census data set can be found at the URL mentioned
below. The first three data sets can be characterized as “dense”, meaning that on aver-
age a rather high fraction of all items is present in a transaction (the average transaction
length divided by the number of different items is 0.1, 0.5, and 0.2, respectively, for
these data sets), while the last two are rather “sparse” (the number of different items
divided by the average transaction length is 0.01 and 0.005, respectively).

For the experiments we used an Intel Core 2 Quad Q9300 machine with 3 GB of
main memory running openSuSE Linux 11.0 (32 bit) and gcc version 4.3.1. The results
for these data sets are shown in Figure 4. Each diagram in this figure refers to one data
set and shows the decimal logarithm of the execution time in seconds (excluding the
time to load the transaction database) over the minimum support (stated as the number
of transactions that must contain an item set in order to render it frequent).



These results show a fairly clear picture: SaM performs extremely well on dense
data sets. It is the fastest algorithm for the census data set and (though only by a very
small margin) on the chess data set. On the mushroom data set it performs on par with
FP-growth and RElim, while it is faster than Eclat and Apriori. On “sparse” data sets,
however, SaM struggles. On the artificial data set T10I4D100K it performs particularly
badly and catches up with the performance of other algorithms only at the lowest sup-
port levels.6 On BMS-Webview-1 it performs somewhat better, but again reaches the
performance of other algorithms only for fairly low support values.

Given SaM’s processing scheme, the cause of this behavior is easily found: it is
clearly the merge operation. Such a merge operation is most efficient if the two lists to
merge do not differ too much in length. Because of this, the recursive procedure of the
mergesort algorithm splits its input into two lists of roughly equal length. If, to consider
an extreme case, it would always merge single elements with the (recursively sorted)
rest of the list, its time complexity would deteriorate from O(n log n) to O(n2). The
same applies to SaM: in a dense data set it is more likely that the two transaction lists
do not differ too much in length, while in a sparse data set it can rather be expected
that the list containing the split item will be rather short compared to the rest. As a
consequence, SaM performs well on dense data sets, but poorly on sparse ones.

The main reason for the merge operation is to keep the list sorted, so that (1) all
transactions with the same leading item are grouped together and (2) equal transactions
(or transaction suffixes) can be combined, thus reducing the number of objects to pro-
cess. The obvious alternative to achieve (1), namely to set up a separate list for each
item, is employed by the RElim algorithm, which, as these experiments show, performs
considerably better on sparse data sets. On T10I4D100K it even outperforms all other
algorithms by a clear margin if the list for the next item to be processed is not sorted in
order to combine duplicate entries (grey curve in Figure 4). The reason is that the sort-
ing, which in RElim only serves the purpose to eliminate possible duplicates, causes
higher costs than the gains resulting from having fewer transactions to process. On all
other data sets sorting the list (and thus removing duplicates) speeds up the processing,
thus providing another piece of evidence why SaM performs badly on T10I4100K.

These insights lead, of course, to several ideas how SaM could be improved. How-
ever, we do not explore these possibilities in this paper, but leave them for future work.

5 Approximate Frequent Item Set Mining

In many applications of frequent item set mining the considered transactions do not
contain all items that are actually present. However, all of the algorithms mentioned
so far seek to discover frequent item sets based on exact matching and thus are not
equipped to meet the needs arising in these applications.

An example is the analysis of alarm sequences in telecommunication networks.
A core task of analyzing alarm sequences is to find collections of alarms occurring
frequently together—so-called episodes. In [18] a time window was introduced that
moves along the alarm sequence to build a sequence of partially overlapping windows.

6 It should be noted, though, that SaM’s execution times on T10I4D100K are always around
5 seconds and thus not unbearable.



Each window captures a specific slice of the alarm sequence. In this way the problem of
finding frequent episodes is transformed into the problem of finding frequent item sets
in a database of transactions, where each alarm can be treated as an item, the alarms in
a time window as a transaction, and the support of an episode is the number of windows
in which the episode occurred. Unfortunately, alarms often get delayed, lost, or repeated
due to noise, transmission errors, failing links etc. If alarms do not get through or are
delayed, they can be missing from the transaction (time window) its associated items
(alarms) occur in. If we required exact containment of an item set in this case, the
support of some item sets, which could be frequent if the items did not get lost, may
be smaller than the user-specified minimum. This leads to a possible loss of potentially
interesting frequent item sets and to possibly distorted support values.

To cope with such missing information, we introduce the notion of an approximate
or “fuzzy” frequent item set. In contrast to research on fuzzy association rules (see, for
example, [19]), where a fuzzy approach is used to handle quantitative items, we use
the term “fuzzy” to refer to an item set that may not be found exactly in all supporting
transactions, but only approximately. Related work in this direction includes [9, 14],
where Apriori-like algorithms were introduced and mining with approximate matching
was performed by counting the number of different items in the two item sets to be
compared. In this paper, however, we adopt a more general scheme, based on an ap-
proximate matching approach, which exhibits a much higher flexibility. Our approach
employs two core ingredients: edit costs and transaction weights [21].

Edit costs: The distance between two item sets can conveniently be defined as the
costs of the cheapest sequence of edit operations needed to transform one item set into
the other [20]. Here we consider only insertions, since they are very easy to implement
with our algorithm7. With the help of an “insertion cost” or “insertion penalty” a flexi-
ble and general framework for modeling approximate matching between two item sets
can be established. The interpretation of such costs or penalties depends, of course, on
the application. In addition, different items can be associated with different insertion
costs. For example, in telecommunication networks different alarms can have a differ-
ent probability of getting lost: usually alarms originating in lower levels of the module
hierarchy get lost more easily than alarms originating in higher levels. Therefore the
former can be associated with lower insertion costs than the latter. The insertion of a
certain item may also be completely inhibited by assigning a very high insertion cost.

Transaction weights: Each transaction t in the original database T is associated
with a weight w(t). The initial weight of each transaction is 1. When inserting an item i
into a transaction t, its weight is “penalized” with a cost c(i) associated with the item.
Formally, this can be described by a combination function: the new weight of the trans-
action t after inserting an item i /∈ t is w{i}(t) = f(w(t), c(i)), where f is a function
that combines the weight w(t) before editing and the insertion cost c(i). There is, of
course, a wide variety of possible combination functions. For example, any t-norm may
be used. For simplicity, we use multiplication here, that is,w{i}(t) = w(t)·c(i), but this
is a more or less arbitrary choice. Note, however, that with this choice lower values of
c(i) mean higher costs as they penalize the weight more, but it has the advantage that it

7 Note that deletions are implicit in the mining process anyway (as we search for subsets of the
transactions). Only replacements are an additional case we do not consider here.



is easily extended to an insertion of multiple items: w{i1,...,im}(t) = w(t) ·
∏m

k=1 c(ik).
It should be clear that it is w∅(t) = 1 due to the initial weighting w(t) = 1.

How many insertions into a transaction are allowed may be limited by a user-
specified lower bound wmin for the transaction weight. If the weight of a transaction
falls below this threshold, it is not considered in further mining steps and thus no further
items may be inserted into it. Of course, this weight may also be set to zero (unlimited
insertions). As a consequence, the fuzzy support of an item set I w.r.t. a transaction
database T can be defined as s(fuzzy)

T (I) =
∑

t∈T τ(wI−t(t) ≥ wmin) ·wI−t(t), where
τ(φ) is a kind of “truth function”, which is 1 if φ is true and 0 otherwise.

Note that SaM is particularly well suited to handle this scheme of item insertions,
because it relies on a horizontal transaction representation, which makes it very simple
to incorporate transaction weights into the mining process. With other algorithms (with
the exception of RElim, which also uses a basically horizontal representation), more
effort is usually needed in order to extend them to approximate frequent item set mining.

For the implementation of the approximate frequent item set mining scheme out-
lined above, it is important to distinguish between unlimited item insertions (that is,
wmin = 0) and limited item insertions (that is, wmin > 0). The reason is that with
wmin = 0 a transaction always contributes to the support of any item set (because, in
principle, all items of the item set could be inserted), while with wmin > 0 a transaction
only contributes to those item sets which it can be made to contain by inserting items
without reducing the transaction weight below the threshold wmin.

As a consequence it is possible to combine equal transactions (or transaction suf-
fixes) without restriction ifwmin = 0: if we have two equal transactions (or transactions
suffixes) t1 and t2 with weights w1 and w2, respectively, we can combine t1 and t2 into
one transaction (suffix) t with weight w1 +w2 even if w1 6= w2. If another item i needs
to be inserted into t1 and t2 in order to make them contain a given item set I , the dis-
tributive law (that is, the fact that w1 · c(i) +w2 · c(i) = (w1 +w2) · c(i)) ensures that
we still compute the correct support for the item set I in this case.

If, however, we have wmin > 0 and, say, w1 > w2, then using (w1 + w2) · c(i)
as the support contributed by the combined transaction t to the support of the item
set I may be wrong, since it may be that w1 · c(i) ≥ wmin, but w2 · c(i) < wmin.
In this case the support contributed by the two transactions t1 and t2 would rather be
w1 · c(i). Effectively, transaction t2 does not contribute, since its weight would fall
below the minimum transaction weight threshold by inserting the item i. Hence, under
these circumstances, we can combine equal transactions (or transaction suffixes) only
if they have the same weight (that is, only if w1 = w2).

6 Unlimited Item Insertions

If unlimited item insertions are possible (wmin = 0), only a minor change has to be
made to the data structure: instead of an integer occurrence counter for the transactions
(or transaction suffixes), we need a real-valued transaction weight. In the processing, the
split step stays the same (see Figure 5 on the left), but now it only yields an intermediate
database, into which all transactions (or transaction suffixes) have been transferred that
actually contain the split item under consideration (item e in the example).
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Fig. 6. The extended operations: unlimited item insertions, second recursion level.

In order to build the full conditional database, we have to add those transactions
that do not contain the split item, but can be made to contain it by inserting it. This is
achieved in the merge step, in which two parallel merge operations are carried out now
(see Figure 5 on the right). The first part (shown in black) is the merge that yields (as in
the basic algorithm) the conditional database for frequent item sets not containing the
split item. The second part (shown in blue) adds those transactions that do not contain
the split item, weighted down with the insertion penalty, to the intermediate database
created in the split step. Of course, this second part of the merge operation is only
carried out, if c(i) > 0, where i is the split item, because otherwise no support would
be contributed by the transactions not containing the item i and hence it would not be
necessary to add them. In such a case the result of the split step would already yield the
conditional database for frequent item sets containing the split item.

Note that in both parts of the merge operation equal transactions (or transaction
suffixes) can be combined regardless of their weight. As a consequence we have in
Figure 5 entries like for the transaction (suffix) cbd, with a weight of 1.2, which stands
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for one occurrence with weight 1 and one occurrence with weight 0.2 (due to the penalty
factor 0.2, needed to account for the insertion of item e). As an additional illustration,
Figure 6 shows the split and merge operations for the second recursion level (which
work on the conditional database for the prefix e constructed on the first level).

7 Limited Item Insertions

If item insertions are limited by a threshold for the transaction weight (wmin > 0), we
have to represent the transaction weight explicitly and keep it separate from the num-
ber of occurrences of the transaction. Therefore the data structure must be extended to



comprise, per transaction (suffix), (1) a pointer to the item array, (2) an integer occur-
rence counter, and (3) a real-valued transaction weight. The last field will be subject to a
thresholding operation by wmin and no transactions with this field lower than wmin will
ever be kept. In addition, there may now be array elements that refer to the same trans-
action (suffix)—that is, the same list of items—and which differ only in the transaction
weight (and maybe, of course, at the same time in the occurrence counter).

The processing scheme is illustrated in Figure 7 with the same example as before.
The split step is still essentially the same and only the merge step is modified. The
difference consists, as already pointed out, in the fact that equal transactions (or trans-
action suffixes) can no longer be combined if they differ in weight. As a consequence,
there are now, in the result of the second part of the merge operation (shown in blue)
two array elements for cbd and two for bd, which carry a different weight (one has a
weight of 1, the other a weight of 0.2). As already explained in Section 5, this is neces-
sary, because two transactions with different weight may reach, due to item insertions,
the transaction weight threshold at different times and thus cannot be combined.

Of course, it rarely happens on the first level of the recursion that transactions are
discarded due to the weight threshold. This can only occur on the first level, if the
insertion penalty factor of the split item is already smaller than the transaction weight
threshold, which is equivalent to inhibit insertions of the split item altogether. Therefore,
in order to illustrate this aspect of the processing scheme, Figure 8 shows the operations
on the second recursion level, where the conditional database with prefix e (that is, for
frequent item sets containing item e) is processed. Here the second part of the merge
process actually discards transactions if we set a transaction weight limit of 0.1: all
transactions, which need two items (namely both e and a) to be inserted, are not copied.

8 Approximate Frequent Item Set Mining Experiments

Since we want to present several diagrams per data set in order to illustrate the in-
fluence of the different parameters (insertion penalty factor, number of items with a
non-vanishing penalty factor, threshold for the transaction weight), we limit our re-
port to the results on two of the five data sets used in Section 4. We chose census and
BMS-Webview-1, one dense and one sparse data set, since SaM and RElim (the two
algorithms of which we have implementations that can find approximate frequent item
sets) exhibit a significantly different behavior on dense and sparse data sets.

The results are shown in Figure 9 for the census data set and in Figure 10 for the
BMS-Webview-1 data set. In both figures the diagrams on the left show the decimal
logarithm of the number of found frequent item sets, while the diagrams on the right
show the decimal logarithm of the execution times (in seconds) for our implementations
of SaM and RElim. The different parameters we tested in our experiments are: insertion
penalty factors of 1

8 = 0.125, 1
16 = 0.0625, and 1

32 = 0.03125, non-vanishing insertion
penalty factors for 10, 20, and 40 items, and transaction weight thresholds that allowed
for 1, 2 or an unlimited number of item insertions.8

8 Since we used the same insertion penalty factor c(i) for all items having c(i) > 0, the transac-
tion weight threshold effectively limits the number of insertions regardless of which items are
inserted. Hence this description is more expressive than stating the actual values wmin used.



20 40 60 80 100 120 140 160 180 200

6

7

40 items
10 items
no ins.

0.125, 1 ins.

20 40 60 80 100 120 140 160 180 200

6

7

40 items
20 items
10 items
no ins.

0.125, 2 ins.

20 40 60 80 100 120 140 160 180 200

6

7

40 items
20 items
10 items
no ins.

0.125, * ins.

20 40 60 80 100 120 140 160 180 200

6

7

0.125
0.0625
0.03125
no ins.

40 items, * ins.

20 40 60 80 100 120 140 160 180 200

6

7

* ins.
2 ins.
1 ins.
no ins.

0.125, 40 items

20 40 60 80 100 120 140 160 180 200

0

1
relim

40 items
10 items
sam

0.125, 1 ins.

20 40 60 80 100 120 140 160 180 200

0

1

2

relim

40 items
20 items
10 items
sam

0.125, 2 ins.

20 40 60 80 100 120 140 160 180 200

0

1

2

relim

40 items
20 items
10 items
sam

0.125, * ins.

20 40 60 80 100 120 140 160 180 200

0

1

2

relim

0.125
0.0625
0.03125
sam

40 items, * ins.

20 40 60 80 100 120 140 160 180 200

0

1

2

relim

* ins.
2 ins.
1 ins.
sam

0.125, 40 items

Fig. 9. Experimental results on census data; left: frequent item sets, right: execution times.
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As can be seen from the diagrams on the left of each figure, the two data sets react
very differently to the possibility of inserting items into transactions. While the number
of found frequent item sets rises steeply with all parameters for the census data set,
it rises only very moderately for the BMS-Webview-1 data set, with the factor even
leveling off for lower support values. As it seems, this effect is due, to a large degree, to
the sparseness of the BMS-Webview-1 data set (this needs closer examination, though).

As could be expected from the results of the basic algorithms on the five data sets
used in Section 4, SaM fares better on the dense data set (census), beating RElim by
basically the same margin (factor) in all parameter settings, while SaM is clearly out-
performed by RElim on the sparse data set (BMS-Webview-1), even though the two
algorithms were on par without item insertion. On both data sets, the number of inser-
tions that are allowed has, not surprisingly, the strongest influence: with two insertions
about an order of magnitude larger times result than with only one insertion. However,
the possibility to combine equal transactions with different weights still seems to keep
the execution times for unlimited insertions within limits.

The number of items with a non-vanishing penalty factor and the value of the
penalty factor itself seem to have a similar influence: doubling the number of items
leads to roughly the same effect as keeping the number the same and doubling the
penalty factor. This is plausible, since there should not be much difference in having the
possibility to insert twice the number items or preserving twice the transaction weight
per item insertion. Note, however, that doubling the penalty factor from 1

32 to 1
16 has

only a comparatively small effect on the BMS-Webview-1 data set compared to dou-
bling from 1

16 to 1
8 . On the census data set the effects are a bit more in line.

Overall it should be noted that the execution times, though considerably increased
over those obtained without item insertions, still remain within acceptable limits. Even
with 40 items having an insertion penalty factor of 1

8 and unlimited insertions, few
execution times exceed 180 seconds (log(180) ≈ 2.25). In addition, we can observe the
interesting effect on the BMS-Webview-1 data set that at the highest parameter settings
the execution times become almost independent of the minimum support threshold.

9 Conclusions

In this paper we presented a very simple split and merge algorithm for frequent item
set mining, which, due to the fact that it uses a purely horizontal transaction represen-
tation, lends itself well to an extension to approximate or “fuzzy” frequent item set
mining. In addition, it is a highly recommendable method if the data to mine cannot be
loaded into main memory and thus the data has to be processed on external storage or
in a (relational) database system. As our experimental results show, our SaM algorithm
performs excellently on dense data sets, but shows certain weaknesses on sparse data
sets. This applies not only for exact mining, but also for approximate frequent item set
mining. However, our experiments provide some evidence (to be substantiated on other
data sets) that approximate frequent item set mining is much more useful for dense data
sets as more additional frequent item sets can be found on these. Hence SaM performs
better in the (likely) more relevant case. Most importantly, however, one should note
that with both SaM and RElim the execution times remain bearable.



Software

An implementation of our SaM algorithm in C can be found at:

http://www.borgelt.net/sam.html

while an implementation of our RElim algorithm in C is available at:

http://www.borgelt.net/relim.html
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