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Abstract—While in standard fuzzy clustering one optimizes a In order to rule out the trivial (but useless) solution

set of prototypes, one for each cluster, we study fuzzy clusting Vi,j;u;; = 0 and to ensure that no cluster is empty, one
without prototypes. We define an objective function, which introduces the constraints

only depends on the distances between data points and the

membership degrees of the data points to the clusters, and . . ° . . 2

derive an iterative membership update rule. The propertiesof Visl<j<mn: Zuij =1, Vil<i<c: Zuij > 0.

the resulting algorithm are then examined, especially w.t. to an i=1 J=1

additional parameter of the objective function (compared b the : : : ot :

one proposed in [7]) that can be seen as a more flexible altertige bD;ngrderc])tnf?ffez}zzlL(ilsutztregll:logio?)llgzgtgz]; tﬁree dtiZIe;nfés::]ngaL:Sre

to the fuzzifier. Corresponding experimental results are r@orted | - _ -
that demonstrate the merits of our approach. The most common fuzzy clustering algorithm is a straight-

Keywords—fuzzy clustering, prototype-less clustering, fuzzifier forward generalization of classical-means clustering [1],
[15], [21] to fuzzy membership degrees: the fuzzymeans
. INTRODUCTION algorithm [2], [3], [16] is based on point prototypes andsise
the Euclidean distance. More sophisticated variants dhice
Fuzzy clustering algorithms [9], [2], [3], [4], [16] are Mer cluster-specific covariance matrices (to describe eligzdo
popular methods for finding groups in data, especially ihapes), sizes, and weights (see, for example, [13], [6D)], [
domains where groups are imperfectly separated and thus ghe optimization scheme, derived by exploiting the nec-
crisp assignment of data points to clusters is inappropriagssary condition that all partial derivatives of the obijext
These algorithms are usually prototype-based: they try fignction w.r.t. the parameters (membership degrees arlpst:
optimize a set of prototypes, one for each cluster, whiclsisbn rameters) must vanish at a minimum, is usually alternatng,
of a cluster’s location, size, and shape parameters. THeofoathat membership degrees and cluster prototypes are optimiz
fuzzy clustering is then defined by an objective functioniclth separately, while the other group of parameters is fixed.
involves the data points, the prototypes, and the memlgershi |n this paper, however, we investigate an approach that
degrees of the data pOintS to the ClUSterS, and is Usua“¢ tOdbeS not emp|0y prototypes to describe the clusters, b use

minimized. The most common objective function is only a partition matrix. It has the advantage that the data
¢ n points need not be embedded in a metric space, but that it
J(X,C,U) = Zzuw d2. suffices to know a distance matrix. Following the standard
’ ’ 13 130 . . . . :
=1 =1 paths for fuzzy clustering, we derive the basic algorithm in

Section II. In Section Il we present experimental resutts f
whereX = {Z; | 1 < j < n} is the given data set, consistingthe standard version of the algorithm (that is, without the
of n vectors (data points), an@ = {c; | 1 < i < ¢} additional parameter introduced here) and compare them in
is the set of cluster prototypesl;; denotes the distancesection IV to experiments in which the additional parameter
between datun; and thei-th cluster (where this distancejs ysed. It turns out that the additional parameter is a more
may depend not only on a cluster center, but also on clustggxible alternative to the fuzzifier and thus can be seen as
specific parameters describing the cluster’s size and §fi@pe peing related to the approach presented in [19].

[12], [6]). ui; € [0,1] is the degree of membership to which

data pointz; belongs to thei-th cluster. Thec x n matrix Il. THE BASIC ALGORITHM

and is called th€fuzzy) partition matrix Finally w is the so- far away from each other should not have high degrees of
calledfuzzifier which controls the crispness of the assignmenmembership to the same cluster, while for data points theat ar
the higher its value, the softer are the cluster boundaries. close together, high degrees of membership to the sameclust



are not only acceptable, but actually desirable. The schexse is incorporated into the objective function with the help of
some relation to the reformulation approach [14], whiclit,i§ Lagrange multipliers, yielding the Lagrange function

used to eliminate the update of the prototype parametdrerat ¢ m -1

than the update of the membership degrees, leads to a simila _ 2

but more complex objective function, and to fuzkzynearest Lx.0.4) = ZZZ uijuiy, + a(ufj + ujg,))djy
neighbors algorithms [18], from which one may also derive
a candidate update rule for prototype-less fuzzy cluggerin
However, as discussed in [7], the latter does not lead taulisef
results, as it tends to equalize the membership degrees.

i=1 j=1k=1
Z/\k <1—Zuik> .
k=1 i=1

This Lagrange function is then minimized instead of the
A. Objective Function objective function, thus implicitly respecting the cordtt.

ne exploits that a necessary condition for a minimum is
hat the partial derivatives w.r.t. the parameters (hetg the
membership degrees) vanish. That is, at a minimum of the

+

A natural way to code the intuitive fuzzy clustering go
outlined above is the parameterized objective function

c . n j-l Lagrange function we havéa, 1 <a<c:Vb,1<b<n:

J(X,U) = ZZZ (uijugy + a(uf + uj ))ko or n

101 Jnl knl T ; (wuly  uly, + cwuly  dyy, — Ay

= ZZ ( wj gy + o )djk, kb
1=1 j=1 k=1
w 1
L . . . = d = .
which is to be minimized subject to the usual constraints Z ak T @) = 0

(Note that the index conditioh # b can be dropped, because
Vb : dpy, = 0 and thus the corresponding term always vanishes.)
This condition leads t&i, 1 <i<c¢:Vj,1<j<n:
Here d;;, is the distance between the data poinjsand x;, .
andu;; andu,, are the degrees of membership to which the Y A v

Y Zk 1( )d_]k

C C
Vj;lgjgn:Zuijzl, Vi;lgigc:Zuij>O.

i=1 j=1

data pointsr; andz;, respectively, belong to theth cluster.

Thefuzzifierw controls again the crispness of the assignment:

the higher its value, the softer is the clustering result. Summing these equations over the clusters (in order to be
Regardless of the value of the second parameténe value able to exploit the corresponding constraint on the mentigers

of this objective function is clearly the higher, the morstdint degrees: they must add up to 1), we obtain

data points are assigned to the same cluster. On the othéy han 1

assigning data points that are close to each other to the same ;| _ Zul _ Z < Aj )

cluster is relatively harmless (that is, does not incre&se t ! Yopeq (Ul +a)d

function value much). Hence minimizing this function can b

expected to yield an appropriate fuzzy partition matrix.

w
uik—i—oz

=1

Eonsequently, the;, 1 <j<mn, are

Choosinga = 0 yields a fairly standard objective function, . " 2\l
which was explored in detail in [7], in particular w.r.t. Elc by Z wz v 4 a)d
neighborhood schemes. However, the goal of this paper is to Py 1 i

|nvest|gate the mfluence of a non- vamshrmg(thls parameter

experiments in Section IV), negative values are parud:julardegrees yieldyi,1 <i<c:Vj,1<j<n:
interesting. They lead to a behavior similar to the approach

n w T—w
in [19], which introduced an alternative to the fuzzifier et (Zk:l(uik + O‘)dgk)
prototype-based setting: The more negativés, the harder Wi = . N L\
are the data point assignments. A look at the second form of > i1 (Zk:l(uﬁc + Oé)djk)

the objective function already makes this plausible, sitihee
term containingy penalizes, for negative values, an equal
distribution to the different clusters, especially for @aiints
that are far away from (most) other data points. -
y ( ) P (ZZ 1 ( ?k‘*‘OC)d?k)

which for the special case = 2 (which is the most common
choice for prototype-based fuzzy clustering) simplifies to

B. Update Procedure Uij =

(& n 2 2
Not surprisingly, the update rule for the membership degree 2 (ZkZI(ulk * a)djk)
is derived along the same lines known from prototype-bas8thce this (non-linear) equation system is technicallyhhig
fuzzy clustering, for example, fuzzymeans. The constraintdifficult to solve (due to the somewhat complicated interde-
that the membership degrees of each data point must sum feehdence of the membership degrees), we draw on the same



trick that is exploited in prototype-based fuzzy clustgrin
alternating optimization. That is, we use the above eqoatfo

an update rule that is applied iteratively in order to apphoa
a (possibly only local) optimum.

In principle, this may even be done in two ways: an
online fashion, in which the updated membership degrees
immediately replace the old membership degrees and thus are
used directly for updating other membership degrees, and in
a batch fashion, where a full new set of membership degrees
is computed in one step from the old membership degrees.
However, several experiments revealed that a batch upslate i
not feasible in practice, regardless of the initializati@ee
below): a batch update process is highly unstable and often e »
ends with a fairly random crisp assignment of the data points

As a consequence we confine ourselves in this paper to an
online update, which cycles through the data points. Thar is Fig. 1. Iris data clustered with fuzzymeans ¢ = 2).
each step all membership degrees of one data point are recom-
puted (which is necessary due to the normalization invoimed
the computation of the membership degrees: sum 1). In order
to avoid effects that could result from a special order of the
data points, the update order is changed after every epuah, t
is, the data points are shuffled after each traversal.

C. Initialization

An iterative update needs a starting point. Here we need an
initial (fuzzy) assignment of the data points to the cluster
We tried two different schemes: in the first, all membership
degrees are initialized to random values from the unit iratier
and then normalized for each data point (that is, they are
divided by the sum of the membership degrees for the data
point in order to achieve that this sum is 1 afterwards).
Secondly, one may initialize all data points to the sameevalu
% (c is the number of clusters) and then seed the clusters l}){ 5
randomly choosing a data point for each of them, which is =
assigned crisply to it. Of course, in this case it is advisdbl
make sure that the data points used as seeds are updated last
in the first epoch, so that the seeding does not get lost. ~ assigned unambiguously. (The degree of membership to a
Although these two schemes appear to be considerablyster is the higher, the darker the grey.) These clusters
different, we did not observe much of a difference betwe&®rrespond reasonably well to the classes: if the clugerin
them in our experiments: the results were basically the saniesult is used as a classifier, 26 data points are misclabsifie

Iris data clustered with prototype-less algorithm=€ 2, o = 0).

Hence we confine ourselves to the former method here. The prototype-less algorithm, however, identifies only one
of these classes (Iris Setosa, lower left), while the rest of
l1l. BEHAVIOR FORa = 0 the data points have almost equal membership degrees to the

For a basic evaluation of the algorithm we used two clasgiemaining two clusters (see Figure 2). One may see this as a
benchmarks, namely the Iris data [11] (150 data pointsh witailure, but actually the division of the data points belwmpto
all four descriptive attributes (petal length and width aegal Iris Virginica and Iris Versicolor (upper right) into twouters
length and width), and the Wine data [5] (178 data pointdy rather arbitrary (if the class is not known to the algarith
using only the descriptive attributes 7, 10, and 13, whichs it is the case here). It can rather be argued that there are
are the most informative w.r.t. the class structure. Thesclaactually only two clearly separated clusters and then thalre
attribute was, of course, not used as an input. For both dafathe prototype-less algorithm would simply indicate tta
sets all used attributes were normalized to mean 0 and sthndzumber of clusters was chosen inappropriately.
deviation 1 in order to rule out scaling effects. On the other hand, the prototype-less algorithm can be made
We consider first the results for the Iris data. For compae yield a division into three clusters if the fuzzifier is texd.
isons, the result of the standard fuzzyneans algorithm with As an example, Figure 3 shows the result for= % Even
¢ = 3 andw = 2 is shown in Figure 1. It yields a clear divisionthough the division of the Iris Virginica and Iris Versicoldata
into three cluster, even though some data points cannot fants is still less crisp than for the standard fuzzypneans



Fig. 4. Iris data with prototype-less algorithm (only peigth and width). Fig. 6. Iris data with prototype-less algorithm = 2, a = 0).

algorithms (since the grey does not get as dark in the up@dgorithm may have trouble to find a similar structure with
right, thus still providing information that these clusteare the default setting. And indeed, with a fuzzifier = 2 the
not well separated), the cluster structure is almost theesammembership degrees are completely equalized. Howevet, as i
It is also worth noting that the result becomes closer was the case for the Iris data, lowering the classifier amends
the fuzzy c-means result if only the two most informativethe problem: withw = £ the result shown in Figure 6 is
attributes (petal width and length) are used (see Figure @ptained, which is fairly similar to the fuzzymeans result.
Nevertheless the cluster division stays less crisp thafufmy Nevertheless the assignment is still less crisp as in theyfuz
c-means, thus maintaining that the clusters are badly segarac-means result, reflecting the overlapping classes. In daler
Similar observations can be made on the Wine data. Figuré&#ly reach the crispness of the fuzzymeans result, an even
shows, for comparison purposes, the result that is obtainlewer fuzzifier would be needed. Generally, we found in our
with the standard fuzzy-means algorithm« = 2) with ~experiments that the prototype-less algorithm seems taineq
attribute 7 on the horizontal and attribute 10 on the velrtica lower fuzzifier than prototype-based fuzzy clusteringrieo
axis. It shows a fairly clear division into three clusterdo yield comparable results. In this sense, prototypeflessy
which—like for the Iris data—correspond fairly well witheh clustering is “fuzzier” than its prototype-based coungatp
classes of this data set: if the clustering result is used as a
classifier only 15 of the 178 data points are misclassified.
However, from Figure 5 one guess (and a 3-dimensionalln order to illustrate the results that can be obtained if
view on the data set confirms this) that the clusters are rtbe parameterv is not set to 0, Figures 7 and 8 show the
well separated. Hence one may already suspect, judging froesult for slightly negativex (« = —0.02 and a = —0.05,
the result obtained on the Iris data, that the prototype-le®spectively) for the Iris data. Note that these resultsbaté

IV. INFLUENCE OF THEPARAMETER «



Fig. 7. Iris data with prototype-less algorithmy = 2, o = —0.02). Fig. 9. Wine data with prototype-less algorithmy & 2, « = —0.02).

Fig. 8. Iris data with prototype-less algorithmy = 2, o = —0.05). Fig. 10. Wine data with prototype-less algorithma & 2, o = —0.05).

obtained with the standard fuzzifiee = 2. (This has the a = —0.05, respectively. The former almost coincides with the
advantage that the computations can be carried out muelsult obtained withw = g anda = 0 (Figure 6), while the
faster than the one of Figure 3, since fractional exponerédter is again (as for the Iris data) even crisper than tlzeyfu
cause considerable computational costs.) While the résult c-means result (Figure 5). Note also that the cluster boueslar
a = —0.02 (Figure 7) lies between the prototype-less resudire slightly different from the fuzzy-means result, which is
for w = g and the fuzzyc-means result w.r.t. the crispnesgarticularly clear for the two clusters on the left.
of the assignments, the result far = —0.05 (Figure 7) is These results demonstrate that the effect of the parameter
even crisper than the fuzzy clustering result. Actually thig similar to the one that can be achieved with the approach of
membership degrees of data points that clearly belong to qae@] for the prototype-based case, namely that the paramete
of the classes become 1 for the correct class, while all othercan be used as a (more efficient) alternative to the fuzzifier
classes are assigned a membership degree of zero. Only aftleeding only a simple addition and not the computation of
boundaries of the clusters the membership degrees becdraetional powers). The lower the value o@f(or the higher its
fuzzy, thus nicely modeling the overlapping cluster stuoet absolute value, since negative values produce the effibet),
Note also that the boundaries of the clusters (light greyisper the assignment of the data points.
areas) are slightly shifted compared to the fuzzgneans In addition, our experiments indicate that this approach
result: they are minimally farther to the upper right. Hoeev (almost) eliminates the drawback of fuzzy clustering (as
the class structure is still recognized: if the clusteriegult is discussed in [19]) that all data points have a non-vanishing
used as a classifier, 26 data points are misclassified. membership to all clusters: with a sufficiently low (suffi-
Similar observations can be made on the Wine data, foently large negative value), data points that lie in theldaie
which Figures 9 and 10 show the results tor= —0.02 and of the formed clusters become (almost) crisply assigned.



V. CONCLUSIONS [9]

In this paper we presented a fuzzy clustering approach,
which does not optimize a set of prototypes, but works soleﬁ/o]
with a fuzzy partition matrix. A core advantage of such a
prototype-less scheme is that it only needs a distancextdtri [11]
the data objects, rather than the positions of the datapiira
metric space. Neither is a procedure for computing protsypj12]
needed. (It shares these advantages with (fuzzy) hiecaichi
agglomerative clustering [10], [17], [23], [8].) There#oit can
also be used in domains in which the distances are non-metric
and thus has a wide potential application area.

The disadvantages of this approach are, of course, themigﬁg]
computational complexity, which i€ (cn?) for each update
step (since alh? pairwise distances have to be evaluated for
each of the: clusters), and that it produces softer assignme
of the data points if the same fuzzifier is used as for pro®typ
based fuzzy clustering. However, we eliminated the latté®]
disadvantage by extending the objective function in the w
suggested in Section II-A, namely by adding a paramater
that penalizes an assignment of a data point to severaectust[18]
With this additional parameter similar effects can be agtte
as by changing the fuzzifier, thus making it a more efficiento)
alternative that does not require fractional exponents.

Future work includes to test the algorithm on pure distance
data (that is, no embedding of data objects into a metricespao]
only a distance matrix is given) and to compare it to hierarch
cal agglomerative clustering approaches. Furthermoreai M21
be worthwhile to investigate other neighborhood schemas th
those discussed in [7], since they may provide a simple aRd!
effective way to lower the computational costs.

[23]
Software

An implementation of the algorithms described in this papé?“]
which was also used for the experiments, is available at
http://www.borgelt.net/ptless.html.
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