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Universitätsplatz 2, 39106 Magdeburg, Germany

Email: xwang@iws.cs.uni-magdeburg.de

Abstract—This paper presents SaM, a split and merge algorithm
for frequent item set mining. Its distinguishing qualities are an excep-
tionally simple algorithm and data structure, which not only render
it easy to implement, but also convenient to execute on external stor-
age. Furthermore, it can easily be extended to allow for “fuzzy” fre-
quent item set mining in the sense that missing items can be inserted
into transactions with a user-specified penalty. In order to demon-
strate its performance, we report experiments comparing it with the
“fuzzy” frequent item set mining version of RElim (an algorithm we
suggested in an earlier paper [15] and improved in the meantime).

Keywords— data mining, frequent item set mining, fuzzy fre-
quent item set, fault tolerant data mining

1 Introduction
Although frequent item set mining and association rule induc-
tion has been a focus of research in data mining for a long
time now, leading to well-known algorithms like Apriori [1],
Eclat [11] and FP-growth [7], there is still room for improve-
ment. Recent research lines include filtering the found fre-
quent item sets and association rules [16, 17], identifying tem-
poral changes in discovered patterns [3, 4], and mining fault-
tolerant or “fuzzy” frequent item sets [6, 10, 15].

In this paper we follow the last of these lines by presenting
SaM, a split and merge algorithm for frequent item set mining,
which can easily be extended to allow for “fuzzy” mining in
the sense that missing items can be inserted into transactions
with a user-specified penalty. Other distinguishing qualities
of our method are its exceptionally simple processing scheme
and data structure, which not only render it very easy to im-
plement, but also convenient to execute on external storage.

2 Frequent Item Set Mining
Frequent item set mining is the following task: we are given
a set B of items, called the item base, and a database T of
transactions. An item may, for example, represent a product,
and the item base may then represent the set of all products
offered by a supermarket. The term item set refers to any sub-
set of the item base B. Each transaction is an item set and
may represent, in the supermarket setting, a set of products
that has been bought by a customer. Since several customers
may have bought the exact same set of products, the total of all
transactions must be represented as a vector or a multiset (or,
alternatively, each transaction must be enhanced by a transac-
tion identifier (tid)). Note that the item base B is usually not
given explicitly, but only implicitly as the union of all transac-
tions. The support sT (I) of an item set I ⊆ B is the number
of transactions in the database T it is contained in. Given a
user-specified minimum support smin ∈ IN, an item set I is

called frequent (in T ) iff sT (I) ≥ smin. The goal of frequent
item set mining is to find all item sets I ⊆ B that are frequent
in the database T and thus, in the supermarket setting, to iden-
tify all sets of products that are frequently bought together.

A standard approach to find all frequent item sets w.r.t. a
given database T and a support threshold smin, is a depth-first
search in the subset lattice of the item base B. This approach
can be seen as a simple divide-and-conquer scheme. For a
chosen item i, the problem to find all frequent item sets is split
into two subproblems: (1) find all frequent item sets contain-
ing i and (2) find all frequent item sets not containing i. Each
subproblem is then further divided based on another item j:
find all frequent item sets containing (1.1) both i and j, (1.2)
i, but not j, (2.1) j, but not i, (2.2) neither i nor j etc.

All subproblems occurring in this recursion can be defined
by a conditional transaction database and a prefix. The prefix
is a set of items that has to be added to all frequent item sets
that are discovered in the conditional database. Formally, all
subproblems are tuples S = (C,P ), where C is a conditional
database and P ⊆ B is a prefix. The initial problem, with
which the recursion is started, is S = (T, ∅), where T is the
given transaction database and the prefix is empty.

A subproblem S0 = (C0, P0) is processed as follows:
choose an item i ∈ B0, where B0 is the set of items occur-
ring in C0. This choice is arbitrary, but usually follows some
predefined order of the items. If sC0(i) ≥ smin, then report
the item set P0 ∪ {i} as frequent with the support sC0(i), and
form the subproblem S1 = (C1, P1) with P1 = P0 ∪ {i}.
The conditional database C1 comprises all transactions in C0

that contain i, but with this item removed. This implies that all
transactions are removed that do not contain any no other item
than i. If C1 is not empty, process S1 recursively. In any case
(that is, regardless of whether sC0(i) ≥ smin or not), form the
subproblem S2 = (C2, P2) with P2 = P0. The conditional
database C2 comprises all transactions in C0 (including those
that do not contain i), but again with the item i removed. If C2

is not empty, process S2 recursively.
This recursive scheme is adopted by Eclat, FP-growth, RE-

lim and several other frequent item set mining algorithms.
They differ in how conditional transaction databases are rep-
resented: in a horizontal representation, a database is stored
as a list (or array) of transactions, each of which lists the items
contained in it. In a vertical representation, the items are first
referred to with a list (or array) and for each item the transac-
tions containing it are listed. However, this distinction is not
pure, since there are combinations of the two forms of repre-
senting a database. Our SaM algorithm is, as far as we know,
the first algorithm that is based on the general scheme outlined
above and uses a purely horizontal representation.
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Figure 1: An example database: original form (1), item fre-
quencies (2), transactions with sorted items (3), lexicographi-
cally sorted transactions (4), and the used data structure (5).
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Figure 2: The basic operations: split (left) and merge (right).

The basic processing scheme can be improved with so-
called perfect extension pruning: an item i /∈ I is called a
perfect extension of an item set I , iff I and I ∪ {i} have the
same support. Perfect extensions have the following proper-
ties: (1) if an item i is a perfect extension of an item set I ,
then it is also a perfect extension of any item set J ⊇ I as
long as i /∈ J and (2) if K is the set of all perfect extensions
of an item set I , then all sets I ∪ J with J ∈ 2K (where 2K

denotes the power set ofK) have the same support as I . These
properties can be exploited by collecting in the recursion not
only prefix items, but also, in a third element of a subproblem
description, perfect extension items. They are also removed
from the conditional databases and are only used to generate
all supersets of the prefix that have the same support.

3 A Simple Split and Merge Algorithm
In this section we describe the basic form of our SaM (split
and merge) algorithm. Preprocessing is very similar to many
other frequent item set mining algorithms. The steps are illus-
trated in Figure 1 for a simple example transaction database:
step 1 shows the transaction database in its original form. In
step 2 the item frequencies are determined in order to discard
infrequent items. With a minimum support of 3, items f and g
are infrequent and thus eliminated. In step 3 the (frequent)
items in each transaction are sorted according to their fre-
quency, because processing the items in the order of increas-
ing frequency usually leads to the shortest execution times.
In step 4 the transactions are sorted lexicographically into de-
scending order, with an item with higher frequency preceding
an item with lower frequency. In step 5 the basic data struc-
ture is built by combining equal transactions and setting up an
array, in which each element consists of two fields: an occur-
rence counter and a pointer to the sorted transaction.

The basic operations of the recursive processing, which fol-
lows the general divide-and-conquer scheme reviewed in Sec-
tion 2, are illustrated in Figure 2: in the split step (left) the

given array is split w.r.t. the leading item of the first transac-
tion (item e in our example): all elements referring to trans-
actions starting with this item are transferred to a new array.
In this process the pointer (in)to the transaction is advanced
by one item, so that the common leading item is “removed”
from all transactions. Obviously, this new array represents the
conditional database of the first subproblem (see Section 2),
which is then processed recursively to find all frequent item
sets containing the split item (provided this item is frequent).

The conditional database for frequent item sets not contain-
ing this item (second subproblem, see Section 2) is obtained
with a simple merge step (right part of Figure 2). The new ar-
ray and the rest of the original array are combined with a pro-
cedure that is almost identical to one phase of the well-known
mergesort algorithm. Since both arrays are lexicographically
sorted, one merging traversal suffices to create a lexicograph-
ically sorted merged array. The only difference to a mergesort
phase is that equal transactions (or transaction suffixes) are
combined: There is always only one instance of each trans-
action (suffix), while its number of occurrences is kept in a
counter. In our example this results in the merged array hav-
ing two elements less than the input arrays together: the trans-
action (suffixes) cbd and bd, which occur in both arrays, are
combined and their occurrence counters are increased to 2.

Pseudo-code of SaM is shown in Figure 3: a single page
of code suffices to describe the whole recursion in detail. The
actual C code is even shorter, despite the fact that it contains
additional functionality (like perfect extension pruning, Sec-
tion 2), because certain operations can be written very con-
cisely in C (especially when using pointer arithmetic).

4 Fuzzy Frequent Item Set Mining
There are many applications of frequent item set mining, in
which the transactions do not contain all items that are actu-
ally present. However, standard algorithms are based on exact
matching and therefore are not equipped to meet the needs
arising in such applications. An example is the analysis of
alarm sequences in telecommunication networks, where a core
task is to find collections of alarms occurring frequently to-
gether, so-called episodes. One approach to accomplish this
task is to slide a time window over the alarm sequence. Each
window position then captures a specific slice of the alarm se-
quence [12]. The underlying idea is that in this way the prob-
lem of finding frequent episodes is reduced to that of finding
frequent item sets in a database of transactions: each alarm
can be seen as an item and the alarms in a time window as a
transaction. The support of an episode is the number of win-
dow positions, so that the episode occurred in the window.

Unfortunately, alarms often get delayed, lost, or repeated
due to noise, transmission errors, failing links etc. If alarms
do not get through or are delayed, they are missing from the
transaction (time window) its associated items (alarms) occur
in. If we required exact containment of an item set in this case,
the support of some item sets, which would be frequent if the
items did not get lost, may be lower than the user-specified
minimum. This leads to a possible loss of potentially interest-
ing frequent item sets and to distorted support values.

To cope with such missing information, we rely on the no-
tion of a “fuzzy” or approximate frequent item set. In contrast
to research on fuzzy association rules (see, for example, [13]),



function SaM (a: array of transactions, (∗ conditional database ∗)
p: set of items, (∗ prefix of the cond. database a ∗)
smin: int) : int (∗ min. support of an item set ∗)

var i: item; (∗ buffer for split item ∗)
s: int; (∗ support of current split item ∗)
n: int; (∗ number of frequent item sets ∗)
b, c, d: array of transactions; (∗ cond. and merged database ∗)

begin (∗ – split and merge recursion – ∗)
n := 0; (∗ init. number of freq. item sets ∗)
while a is not empty do (∗ while database is not empty ∗)

b := empty; s := 0; (∗ init. split result, item support ∗)
i := a[0].items[0]; (∗ get the leading item ∗)
while a is not empty (∗ of the first transaction and ∗)
and a[0].items[0] = i do (∗ split database w.r.t. this item ∗)

s := s + a[0].wgt; (∗ sum occurrences (support) ∗)
remove i from a[0].items; (∗ remove the split item ∗)
if a[0].items is not empty (∗ if trans. is not empty ∗)
then remove a[0] from a and append it to b;
else remove a[0] from a; end; (∗ move it to cond. db., ∗)

end; (∗ otherwise simply remove it ∗)
c := b; d := empty; (∗ initialize the output array ∗)
while a and b are both not empty do (∗ merge step ∗)

if a[0].items > b[0].items (∗ copy trans. from a ∗)
then remove a[0] from a and append it to d;
else if a[0].items < b[0].items (∗ copy trans. from b ∗)
then remove b[0] from b and append it to d;
else b[0].wgt := b[0].wgt +a[0].wgt;

remove b[0] from b and append it to d;
remove a[0] from a; (∗ combine weights and ∗)

end; (∗ move and remove trans.: ∗)
end; (∗ only one instance per trans. ∗)
while a is not empty do (∗ copy the rest of a ∗)

remove a[0] from a and append it to d; end;
while b is not empty do (∗ copy the rest of b ∗)

remove b[0] from b and append it to d; end;
a := d; (∗ loop for second recursion ∗)
if s ≥ smin then (∗ if the split item is frequent: ∗)

p := p ∪ {i}; (∗ extend the prefix item set and ∗)
report p with support s; (∗ report the frequent item set ∗)
n := n + 1 + SaM(c, p, smin);
p := p− {i}; (∗ process cond. db. recursively, ∗)

end; (∗ sum the frequent item sets, ∗)
end; (∗ then restore the orig. prefix ∗)
return n; (∗ return num. of freq. item sets ∗)

end; (∗ function SaM() ∗)

Figure 3: Pseudo-code of the SaM algorithm.

where a fuzzy approach is used to handle quantitative items,
we use the term “fuzzy” to refer to an item set that may not be
present exactly in all supporting transactions, but only approx-
imately. Related work in this direction suggested Apriori-like
algorithms and mining with approximate matching was per-
formed by counting the number of different items in the two
item sets to be compared [6, 10]. However, here we adopt a
more general scheme, based on an approximate matching ap-
proach exhibiting much greater flexibility. Our approach has
two core ingredients: edit costs and transaction weights [15].

Edit costs: A convenient way of defining the distance be-
tween item sets is to consider the costs of a cheapest se-
quence of edit operations needed to transform one item set
into the other [14]. Here we consider only insertions, since
they are most easily implemented with our algorithm1. With
the help of an insertion cost or penalty a flexible and general
framework for approximately matching two item sets can be
established. How one interprets such costs or penalties de-

1Note that deletions are implicit in the mining process (as we
search for subsets of the transactions). Only replacements are an
additional case we do not consider here.

pends, of course, on the application. Note also that different
items may be associated with different costs. For example,
in telecommunication networks different alarms can have a
different probability of getting lost: usually alarms raised in
lower levels of the module hierarchy get lost more easily than
alarms originating in higher levels. In such cases it is conve-
nient to be able to associate the former with lower insertion
costs than the latter. Insertions of a certain item may also be
completely inhibited by assigning a very high insertion cost.

Transaction weights: Each transaction t is associated with
a weight w(t), the initial value of which is 1. If an item i
is inserted into a transaction t, the transaction weight is “pe-
nalized” with a cost c(i) associated with the item. Formally,
this can be described as applying a combination function: the
new weight of the transaction t after inserting an item i /∈ t is
w{i}(t) = f(w(t), c(i)), where f is a function that combines
the weight w(t) before editing and the insertion cost c(i). The
combination function f depends, of course, on the application
and may be chosen from a wide range of possible functions.
For example, any t-norm may be used. We choose multiplica-
tion here, that is, w{i}(t) = w(t) · c(i), mainly for reasons of
simplicity. Note, however, that with this choice lower values
of c(i) mean higher costs as they penalize the weight more, but
that it has the advantage that it is easy to extend to inserting
several items: w{i1,...,im}(t) = w(t)·

∏m
k=1 c(ik). It should be

clear that it isw∅(t) = 1 due to the initial weightingw(t) = 1.
How many insertions into a transaction are allowed may be

limited by a user-specified lower bound wmin for the transac-
tion weight. If the weight of a transaction falls below this
threshold, it is not considered in further mining steps. Of
course, this weight may also be set to zero (unlimited inser-
tions). As a consequence, the fuzzy support of an item set I
w.r.t. a transaction database T can be defined as s(fuzzy)

T (I) =∑
t∈T τ(wI−t(t) ≥ wmin) · wI−t(t), where τ(φ) is a kind of

“truth function”, which is 1 if φ is true and 0 otherwise.
Note that SaM is particularly well suited to handle item in-

sertions, because its purely horizontal transaction representa-
tion makes it easy to incorporate transaction weights. With
other algorithms, more effort is usually needed in order to ex-
tend them to approximate frequent item set mining.

For an implementation, it is beneficial to distinguish be-
tween unlimited item insertions (wmin = 0) and limited item
insertions (wmin > 0). If wmin = 0, it is possible to combine
equal transactions (or transaction suffixes) without restriction:
two equal transactions (or suffixes) t1 and t2 with weights w1

and w2, respectively, can be combined into one transaction
(suffix) t with weight w1 + w2 even if w1 6= w2. If another
item i needs to be inserted into t1 and t2 in order to make
them contain a given item set I , the distributive law (that is,
w1 · c(i) + w2 · c(i) = (w1 + w2) · c(i)) ensures that we still
compute the correct support for the item set I . If, however, we
have wmin > 0 and, say, w1 > w2, then using (w1 +w2) · c(i)
as the contribution of the combined transaction t to the sup-
port of the item set I may be wrong, because it may be that
w1 · c(i) ≥ wmin, but w2 · c(i) < wmin. Then the support
contributed by the two transactions t1 and t2 would rather be
w1 · c(i). Effectively, transaction t2 does not contribute, since
its weight has fallen below the transaction weight threshold.
Hence, with limited insertions, we may combine equal trans-
actions (or suffixes) only if they have the same weight.
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Figure 4: Unlimited item insertions, first recursion level.
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Figure 5: Unlimited item insertions, second recursion level.

5 Unlimited Item Insertions

If unlimited item insertions are possible (wmin = 0), only a
minor change of the data structure is needed: the integer oc-
currence counter for the transactions (or suffixes) has to be
replaced by a real-valued transaction weight. In the process-
ing, the split step stays the same (see Figure 4 on the left),
but now it only yields an intermediate database with all trans-
actions (or suffixes) that actually contain the split item under
consideration (item e in the example). In order to form the
full conditional database, we have to add those transactions
that do not contain the split item, but can be made to con-
tain it by inserting it. This is achieved in the merge step, in
which two parallel merge operations are carried out now (see
Figure 4 on the right). The first part (shown in black) is the
merge that yields the conditional database for frequent item
sets not containing the split item. The second part (shown in
blue/grey) adds those transactions that do not contain the split
item, weighted down with the insertion penalty, to the interme-
diate database created in the split step. Of course, this second
part of the merge operation is only carried out, if c(i) > 0,
where i is the split item, because otherwise no support would
be contributed by the transactions not containing the item i
and hence it would not be necessary to add them. In such a
case the result of the split step would already yield the condi-
tional database for frequent item sets containing the split item.

Note that in both merge operations equal transactions (or
suffixes) can be combined regardless of their weights. As a
consequence we have in Figure 4 entries like for the transac-
tion (suffix) cbd, with a weight of 1.2, which stands for one
occurrence with weight 1 and one occurrence with weight 0.2
(due to the penalty factor 0.2, needed due to the insertion of
item e). As an additional illustration, Figure 5 shows the split
and merge operations for the second recursion level.
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Figure 7: Limited item insertions, second recursion level.

6 Limited Item Insertions
If item insertions are limited by a transaction weight thresh-
old (wmin > 0), the transaction weight has to be represented
explicitly and kept separate from the number of occurrences.
Therefore the data structure must comprise, per transaction
(suffix), (1) a pointer to the item array, (2) an integer occur-
rence counter, and (3) a real-valued transaction weight. The
last field will be subject to a thresholding operation by wmin,
which eliminates all transactions with a weight less thanwmin.
Hence there may now be array elements that refer to the same
transaction (suffix), but differ in the transaction weight.

The processing scheme is illustrated in Figure 6. The split
step is still essentially the same. However, the merge step dif-
fers due to the fact that equal transactions (or suffixes) can
no longer be combined if their weight differs. As a conse-
quence, there are now, in the result of the second merge oper-
ation (shown in blue) two array elements for cbd and two for
bd, which carry different weights. This is necessary, because
they may reach, due to item insertions, the transaction weight
threshold at different times and thus cannot be combined.

That transactions are discarded due to the weight threshold
rarely happens on the first level of the recursion. (This can
occur only if the insertion penalty factor of the split item is
smaller than the transaction weight threshold, which is equiv-
alent to inhibiting insertions of this item altogether). There-
fore, in order to illustrate how transactions are discarded, Fig-
ure 7 shows the second recursion level, where the conditional
database with prefix e is processed. Here the second merge
operation actually discards transactions if we set a transaction
weight limit of 0.1: all transactions, which need two items
(namely both e and a) to be inserted, are not copied.
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Figure 8: Experimental results on the Census (Adult) data;
left: frequent item sets, right: execution times.

7 Experiments
We ran experiments on several data sets, of which we chose
two for this paper: Census (aka Adult, a data set derived from
an extract of the US census bureau data of 1994, which was
preprocessed by discretizing numeric attributes [2]) and BMS-
Webview-1 (a web click stream from a leg-care company that
no longer exists, which has been used in the KDD cup 2000
[8]). We chose these data sets, because Census is rather dense
(a rather large fraction of all items occur in each transaction),
while BMS-Webview-1 is rather sparse, and SaM and RElim
[15] (the two algorithms of which we have implementations
that can find approximate frequent item sets) exhibit a signifi-
cantly different behavior on dense and sparse data sets.

The results are shown in Figure 8 for the census data set and
in Figure 9 for the BMS-Webview-1 data set. In both figures
the diagrams on the left show the decimal logarithm of the
number of found frequent item sets, while the diagrams on the
right show the decimal logarithm of the execution times (in
seconds) for our implementations of SaM and RElim.2 We
tested insertion penalty factors of 1

8 = 0.125, 1
16 = 0.0625,

and 1
32 = 0.03125, non-vanishing insertion penalty factors

2Execution times were measured on an Intel Core 2 Quad Q9300
machine with 3 GB of main memory running openSuSE Linux 11.0
(32 bit) and gcc version 4.3.1.
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Figure 9: Experimental results on the BMS-Webview-1 data;
left: frequent item sets, right: execution times.

for 10, 20, and 40 items, and transaction weight thresholds
that allowed for 1, 2 or an unlimited number of insertions.

As can be seen from the diagrams on the left of each figure,
the two data sets react very differently to the possibility of
inserting items into transactions. While the number of found
frequent item sets rises steeply with all parameters for Census,
it rises only very moderately for BMS-Webview-1, with the
factor even leveling off for lower support values. As it seems,
this effect is due, to a large degree, to the sparseness of BMS-
Webview-1 (this still needs closer examination, though).

SaM fares considerably better on the dense data set (Cen-
sus), beating RElim by basically the same margin (factor) in
all parameter settings, while SaM is clearly outperformed by
RElim on the sparse data set (BMS-Webview-1), even though
the two algorithms are actually on par without item insertion
(solid lines). On both data sets, the number of insertions that
are allowed has the strongest influence: with two insertions
execution times are about an order of magnitude larger than
with only one insertion. However, the possibility to combine
equal transactions with different weights still seems to keep
the execution times for unlimited insertions within limits.

The number of items with a non-vanishing penalty factor
and the value of the penalty factor itself seem to have a similar
influence: doubling the number of items leads to roughly the
same effect as keeping the number the same and doubling the



penalty factor. This is plausible, since there should not be
much difference in having the possibility to insert twice the
number of items or preserving twice the transaction weight per
item insertion. Note, however, that doubling the penalty factor
from from 1

32 to 1
16 has only a comparatively small effect on

the BMS-Webview-1 data compared to doubling from 1
16 to 1

8 .
On the census data set the effects are a bit more in line.

Overall it should be noted that the execution times, al-
though considerably increased over those obtained without
item insertions, still remain within acceptable limits. Even
with 40 items having an insertion penalty factor of 1

8 and un-
limited insertions, few execution times exceed 180 seconds
(log10(180) ≈ 2.25). In addition, we can observe the inter-
esting effect on the BMS-Webview-1 data that at the highest
parameter settings the execution times become almost inde-
pendent of the minimum support threshold.

8 Conclusions
In this paper we presented a very simple split and merge algo-
rithm for frequent item set mining, which, due to the fact that
it uses a purely horizontal transaction representation, lends it-
self well to an extension to “fuzzy” or approximate frequent
item set mining. In addition, it is a highly recommendable
method if the data to mine cannot be loaded into main mem-
ory and thus the data has to be processed on external storage
or in a (relational) database system. As our experimental re-
sults show, the SaM algorithm performs the task of “fuzzy”
frequent item set mining excellently on the dense Census data,
but shows certain weaknesses on the sparse BMS-Webview-1
data. However, our experiments provided some evidence (to
be substantiated on more data sets) that “fuzzy” frequent item
set mining is much more useful for dense data sets as more ad-
ditional frequent item sets can be found. Hence SaM performs
better in the (likely) more relevant case. Most importantly,
however, one should note that with both SaM and RElim the
execution times remain bearable.

Software: SaM and RElim sources in C can be found at:

http://www.borgelt.net/sam.html
http://www.borgelt.net/relim.html
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