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Abstract. When classifying molecules for virtual screening, the molec-
ular structure �rst needs to be converted into meaningful features, before
a classi�er can be trained. The most common methods use a static algo-
rithm that has been created based on domain knowledge to perform this
generation of features. We propose an approach where this conversion is
learned by a convolutional neural network �nding features that are use-
ful for the task at hand based on the available data. Preliminary results
indicate that our current approach can already come up with features
that perform similarly well as common methods. Since this approach
does not yet use any chemical properties, results could be improved in
future versions.

Keywords: Convolutional neural networks · Feature generation ·Molec-
ular features · Virtual screening.

1 Introduction

High-throughput screens [5] are large-scale, biological experiments to �nd
molecules that show a desired biological activity. Even though they are mostly
automated, they are still expensive and time consuming. For this reason, machine
learning methods are used for virtual screening to select a subset of molecules
that are most likely to show activity. This is done by formulating a binary classi-
�cation problem with the classes active and inactive. A diverse subset is tested in
the lab and the results are used as training data for the classi�er. The molecules
with unknown activity are then classi�ed, and the probability of a molecule
belonging to the active class is assumed to be the probability of the molecule
showing actual activity. Based on this the top-n molecules are picked for actual
testing in the lab, thus reducing the number of actual tests to be conducted.

Most classi�ers need numerial features to work. In such cases, the molecular
structure gets converted into numerical features using a feature generator. The
most common feature generators for molecules are based on a static algorithm
that creates the same output for the same molecules without taking the speci�c



classi�cation task into account. Once the features have been created a classi�er
is learned to distinguish active molecules from inactive ones.

Dynamic approaches, that generate features for a speci�c classi�cation task
like substructure mining [11] do also exist. Here substructures are selected based
on their frequency and how well they discriminate between the di�erent classes.

The method that we propose uses a network that uses convolutions to gen-
erate features from the molecules structure and then classi�es based on these
features using dense layers. By training the feature generation and classi�cation
together, the feature generation will learn features which are useful for the spe-
ci�c classi�cation task. These features could potentially outperform handcrafted
features for the task that they are built for.

1.1 Fingerprints

The most common approach to feature generation for molecules is the use of
�ngerprints [23]. These �ngerprints are built using domain knowledge. A simple
example for a �ngerprint is the MACCS �ngerprint [6], which represents 166
prede�ned aspects of the molecule's structure as a bit vector. A di�erent ap-
proach can be seen in circular �ngerprints, such as the extended connectivity
�ngerprint [19], which encodes the occurrence of di�erent substructures in the
molecule as a bit or counting vector (see Section 2.1 for details). Many years of
research and extensive expert knowledge went into the creation of many di�erent
�ngerprints. Therefore the selection of the best �ngerprint for a speci�c problem
is not obvious.

Riniker et al. created a benchmark [18] comparing 14 di�erent �ngerprints
on a variety of data sets. The results showed that the top 12 �ngerprints had no
signi�cant di�erence on average, even though their performance on individual
data sets did di�er. This indicates that there is no gold standard �ngerprint
that can be relied upon to give the best performance most of the time. Since
the features given to the classi�er determine how well it is able to distinguish
between the classes, it would be desirable if those features not be based on a
static decision as to which feature generator to use, but instead were learned
automatically based on the task that needed to be solved.

1.2 Image Processing

Approaches for automatically learning useful features for images using convolu-
tional neural networks [14] have been around for a while. But it was only after a
convolutional neural network won the ImageNet challenge in 2012 [12] and fast
implementations, especially those that utilize graphics processing units (GPUs),
became available, that these networks started replacing the old methods that
used handcrafted features [16].

These convolutional neural networks take the RGB values of the image as
input with little to no preprocessing. They then learn convolutional layers that
abstract this input into features that are useful to the classi�cation that is per-
formed by dense layers at the end. In this way decisions on how to best generate



useful features are made, based on what the classi�er needs in order to improve
the separation of the classes.

To understand more about what a neural network has actually learned, there
are multiple methods. One of them is the class activation map [25], which visu-
alizes the patterns in an image that were responsible for the predicted class.

2 Related Work

Although learning the feature generation is now commonplace for images, this
has not yet been the case for molecular structures, where the use of (hand-
crafted) �ngerprints is still the most common approach. Even many approaches
using neural networks use them for classi�cation only and still use molecular
descriptors and �ngerprints as input (e.g., [15, 24, 17]).

Some work has been done to use graph neural networks [2, 10] for learning
on molecules. In this work however we focus on the use of traditional, grid based
convolution networks similar to the ones used in image processing. This way we
can build on the extensive research done in this �eld.

2.1 Fingerprint Examples

Common molecular �ngerprints rely heavily on human expert knowledge. For
example, the MACCS [6] �ngerprint is based on a list of 166 manually selected
aspects of a molecule's structure. The presence or absence of each aspect is then
checked for each molecule and represented in that molecule's �ngerprint as a
bit. The aspects are based on domain knowledge and assumed to be especially
descriptive of a molecule's behavior.

Another approach to �ngerprints is the extended connectivity �ngerprint. It
is based on the idea of encoding the occurrence of speci�c substructures into the
�ngerprint. For the encoding, the algorithm iterates over each heavy atom in
the molecule's structure and looks at the properties of all the atoms contained
in a given radius around this center atom. Just which properties are computed
is con�gurable. The properties are then hashed into a single value in the range
of 1 to n with n being the length of the generated �ngerprint. This value is
now used as the position in the �ngerprint for substructures with these aspects.
The value at this position is set to 1 for binary �ngerprints or counted up by
1 for counting �ngerprints. The problem with the extended connectivity �nger-
print is that multiple di�erent substructures can end up with the same hash
value. As a consequence di�erent substructures can end up setting the same bit:
two di�erent substructures can thus appear to be the same. The �ngerprint is
also dependent on selecting the right parameters for the radius, the measured
molecular properties, and the length of the �ngerprint.

2.2 Neural Networks

Convolutional neural networks are an approach for learning features. They con-
sist of a collection of di�erent layer types. The earlier part of the network learns



how to convert the input into useful features and the later part learns how to
classify the data based on the generated features.

Neural networks have a tendency to over�t the training data. To counter
this, dropout layers [22] can be used. During training they randomly deactivate
a speci�ed amount of neurons to force the network to work with the remaining
information instead of zeroing in on the most prominent ones and ignoring other
opportunities. This leads to a more robust network.

Convolutional layers implement a sliding window over the data and thus learn
to abstract the data in a local area. The size of the window and the number of
�lters per position as well as the step size can be con�gured and need to �t the
problem. Since the same weights are used in all positions, they also implement
position invariance.

Often neural networks are applied to problems with a large amount of input
neurons and since convolutional layers are usually used to create an increasing
amount of output features per position, the network tends to get very big. In
order to keep the number of neurons per layer down, max pooling layers down-
sample the input data, keeping only the most prominent information. This is
based on the idea that the presence of patterns is more important than their
exact location and information about the most dominant patterns is su�cient.

In a dense layer every neuron is fully connected to every neuron in the previ-
ous layer. Dense layers are used to learn a classi�er and are therefore usually at
the end of a network. A typical use of dense layers are multi-layer perceptrons.
They consist of the input layer, a number of hidden dense layers, and a dense
layer as output.

In order to understand why a trained network assigns a certain class to a spe-
ci�c image, class activation maps [25] can be used. They visualize the recognized
patterns associated with the chosen class in the input image by highlighting the
pixels most responsible for the high value in the output neuron for the win-
ning class. This is done by back propagating how much each previous neuron
contributed to the activation of a selected neuron. When this is done through
the entire network, a heat map is created over the input dimensions. The class
activation map can be a useful tool for seeing how the network actually learns
the expected patterns and if the network is functioning as desired.

3 Learned Feature Generation

Our new method adopts the ideas from the �eld of image processing and tries
to modify them for use with molecular structures. We are in a similar situation
in that we have no universal best method to generate useful features and there-
fore an approach of letting a network learn which features bene�t the speci�c
classi�cation task most seems to be a viable option.

As illustrated in Figure 1 we replace the static feature generator and the clas-
si�er with one network. This network learns how to generate useful features in
the �rst part and how to classify the data in the second part. In this way the gen-
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Fig. 1. Classical method (left): A feature generator converts the structure into numer-
ical features. The numerical features are then used to train a classi�er. Demonstrated
method (right): Feature generation and classi�cation are both done by one neural net-
work. Features are learned by the �rst part of the network and the classi�cation is
learned by the second part.

erated features are learned based on what is useful for the speci�c classi�cation
task.

3.1 Preprocessing
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Fig. 2. Grid based data representation (right) using the layout of the 2D renderer (left).
Each cell is encoded using a one-hot array resulting in a 3D tensor with 2 dimensions
(x and y) for the position and 1 dimension (z) for the features at this position.

As with most other machine learning methods, a neural network needs its
input data to be in a numerical format. However, the strength of neural networks



is that the input is allowed to be in a format, which, by itself, does not represent
a good abstraction of the content of the data. This abstraction into a useful rep-
resentation is learned by the convolutional network. The current approach (see
Figure 2) encodes the structure into a 2-dimensional grid containing characters
that represent the atoms and the bonds between them. Instead of the RGB val-
ues for each pixel in an image, every cell is encoded by a one-hot array which
marks what character is located at this position. This one-hot array is based on
a global dictionary containing all possible characters. If no character is present
in the cell, then no bit will be set. The position for each atom is obtained by
using the layout engine of the RDKit [13] renderer that is normally used to ren-
der molecules as images. This provides a representation of the molecule that is
close to a 2D rendered image of the molecule but in a machine readable format.
Since atom symbols are directly encoded with single bits instead of a collection
of pixels that form the symbol's character we remove the need for the network
to reconstruct this information back. In addition we can keep the grid smaller
for more performant computation.

Because screening data usually has highly imbalanced classes we oversam-
ple the minority class in the training data to learn on an equal distribution of
classes. The oversampled data are then shu�ed to prevent the network from
training too much of a single class in succession. Before training, the data are
transformed using rotation and �ipping, similar to what is done with images.
Each transformation yields a valid representation for the same molecule. As a
result, even the oversampled data is presented in many di�erent ways instead of
using the same representation of the same molecule multiple times. Training on
the transformed data also gives the network a chance to learn rotation invariance.
This is important, since the same substructure, in di�erent molecules, can occur
in di�erent positions (position invariance handled by the convolutional layers)
and di�erently rotated (rotation invariance handled by learning on di�erently
transformed data).

The transformation is performed by randomly rotating the molecule around
the center and then randomly �ipping it vertically. These transformations are
performed on the original coordinates before being �t into the smaller grid. In
some cases a small rotation only moves a single atom in the grid, since it was
the only one that passed the threshold into another cell during downsampling.
This e�ect can also occur when the same substructure is contained in a di�erent
model and is therefore in a di�erent position and di�erently rotated. That is why
it is important to teach the network tolerance with regard to these smaller shifts.
The parameters of the transformation are chosen randomly, with a rotation of
0�359 degrees and with or without �ipping. Since di�erent parameters can result
in the same representation (not every rotation by one additional degree has an
e�ect) uniqueness is not ensured.

3.2 Network Architecture

The network architecture (Figure 3) is inspired by the structure of VGG net-
works [21]. The input layer is followed by a dropout layer with a dropout rate
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Fig. 3. Architecture of the used network. The convolutional part of the network (CNN)
learns the generation of features while the multi-layer perceptron (MLP) at the end
learns the classi�cation.

of 30% to counter over�tting. For feature generation we have 5 blocks of a con-
volution and a max pooling layer each. The convolutions generate an increasing
amount of features while the max pooling downscales the resolution of the data.
This way we increasingly transform the low information density with high local-
ity into high information density and very low locality. After a �atten layer that
converts the output of the convolutional part of the network into 1 dimension, we
obtain the features that are used for classi�cation. A multi-layer perceptron with
one hidden layer and an output layer goes on to perform the classi�cation based
on these features. The multi-layer perceptron also uses dropout layers with a
dropout rate of 75% to increase generalisation. Since the back propagation goes
through the entire network, the classi�er can in�uence which features are learned
by the convolutional part of the network.

Once the network has been fully trained it can either be used as a whole
to perform feature generation and classi�cation together, or otherwise only the
convolutional part is used to generate the features. In the latter case the output



of the �atten layer is used as the features. These features can then also be used
to work with di�erent classi�ers like a random forest.

4 Preliminary Results

In order to evaluate our method we ran two experiments. The purpose of the
�rst one was to check if our network can recognize patterns in the data as
expected. We did this by using class activation maps. In the second experiment
we compared the classi�cation performance with the performance of existing
�ngerprints on real world data sets.

4.1 Learned Patterns
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Fig. 4. Class activation map showing the patterns that are responsible for classi�cation.
Warmer colors (red > yellow > green > blue) represent a higher importance of a cell
to the classi�cation task. We can clearly see that the contained benzene rings are the
reason why this molecule was classi�ed as class A.

A data set was split into molecules that either contain a benzene ring (class
A) or not (class B). The network then had to learn this classi�cation and would
hopefully learn the pattern that was responsible for the split purely on the class
information. Looking at the class activation maps for the molecules that were
classi�ed as class A (example in Figure 4) we can visually verify that the network
picked up the correct pattern, as intended. Looking at the mean activation values
for atoms that are part of a benzene ring and atoms that are not we were also
able to see a considerable di�erence (see Figure 5).
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Fig. 5. Activation values of class activation maps for atoms that are contained in the
benzene ring substructure responsible for classi�cation and for atoms that are not
contained in a benzene ring.

4.2 Benchmark

Table 1. Number of times a method obtained a certain rank in comparison to the
other methods.

ROC Curve AUC Enrichment Factor at 5%

Rank CNN ECFC0 ECFP4 MACCS CNN ECFC0 ECFP4 MACCS

1 16 1 50 21 23 1 57 7

2 19 14 27 28 27 8 24 29

3 20 34 9 25 19 29 4 36

4 33 39 2 14 19 50 3 16

In order to evaluate the performance on real-world data sets we used the data
assembled by Riniker et al. [18] to benchmark di�erent �ngerprints. We compared
our method (CNN) against 3 �ngerprints. The binary extended connectivity
�ngerprint with a diameter of 4 (ECFP4), the counting extended connectivity
�ngerprint with a diameter of 0 (ECFC0) and the MACCS �ngerprint (MACCS).
As classi�er we used a random forest. The metrics used for evaluation are the
ROC curve AUC [4] and the enrichment factor [8] at 5% as suggested by Riniker
et al. [18]. The ROC curve AUC measures the performance of the prediction on
the entire data set sorted by probability of belonging to the active class. The
enrichment factor at 5% is based on how many more active molecules are found
in the top 5% of the sorted predictions in comparison to random selection.
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Fig. 6. Results comparing the CNN features with the MACCS, ECFC0 and ECFP4
�ngerprints. The ROC Curve AUC (top) measures the performance o� the entire pre-
diction while the enrichment factor at 5% (bottom) measures the early recognition.

The data contains 88 single data sets. The data sets come from 3 sources: 17
are from the maximum unbiased validation (MUV) data sets [20], 21 from the
directory of useful decoys (DUD) [9, 3], and 50 from the ChEMBL [7, 1] database.
Each data set consists of 1,344�15,560 inactive and 30�365 active molecules. 20%
of the data was sampled via strati�ed sampling to create a training set. The
remaining 80% were used for testing.

The grid size of the preprocessed data was automatically selected so that
all molecules in the speci�c data set will �t into it. The same is true for the
dictionary of characters where only characters that are present in the data set
have an index in the one hot-array.

For the neural network we oversampled and shu�ed the training data. We
trained the network for 100 epochs with di�erent random seeds for the transfor-
mation in every epoch. In this way the network could only see the same molecule
with the same representation if the transformation, by random chance, was done
with the same or very similar parameters.



In order to compare only the performance of the learned features with the
�ngerprints without the performance di�erence in classi�ers, we extracted the
features from the trained networks. We then trained a random forest for each
�ngerprint and also for the features generated by the network. Each random
forest had 10,000 trees. We used soft voting and a minimum leaf size of 10 to
retrieve a �ne granular class probability for sorting.

We ran every experiment 10 times and used the mean as result. Figure 6
shows the results for both the entire prediction as well as for early recognition.
Table 1 shows how well the method compare against each other. The results
indicate that the CNN features perform similarly well as the �ngerprints. Con-
sidering how much expert knowledge had to be put into the creation of the
�ngerprints, this is already an achievement.

5 Conclusion and Future Work

We created a method that represents a molecule's structure as a 2D grid and
uses a convolutional neural network to convert this representation into a set of
features that are useful for the learned classi�cation task. Using class activation
maps we were able to see that the network was actually able to recognize the
pattern responsible for the class in a generated data set. In a bigger evaluation on
88 data sets we were able to achieve results similar to �ngerprints. Considering
how many years of research and how much expert knowledge went into the
creation and re�nement of these �ngerprints, this is already a promising result.

Our next step is to add chemical properties to the input data. This would give
the network the opportunity to also learn something about the chemistry of the
molecules, and thus should end up in a boost to the classi�cation performance.
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