
Prototype-less Fuzzy Clustering

Christian Borgelt

Abstract—In contrast to standard fuzzy clustering, which opti-
mizes a set of prototypes, one for each cluster, this paper studies
fuzzy clustering without prototypes. Starting from an objective
function that only involves the distances between data points
and the membership degrees of the data points to the different
clusters, an iterative update rule is derived. The properties of
the resulting algorithm are then examined, especially w.r.t. to
schemes that focus on a constrained neighborhood for each
data point. Corresponding experimental results are reported that
demonstrate the merits of this approach.

I. I NTRODUCTION

Fuzzy clustering algorithms [7], [2], [3], [15] are very
popular methods for finding groups in data, especially in
domains where groups are imperfectly separated and thus a
crisp assignment of data points to clusters is inappropriate.
These algorithms are usually prototype-based: they try to
optimize a set of prototypes, one for each cluster, which consist
of a cluster’s location, size, and shape parameters. The goal of
fuzzy clustering is then defined by an objective function, which
involves the data points, the prototypes, and the membership
degrees of the data points to the clusters, and is usually to be
minimized. The most common objective function is

J(X,C,U) =
c
∑

i=1

n
∑

j=1

uw
ij d2

ij ,

whereX = {~xj | 1 ≤ j ≤ n} is the given data set, consisting
of n vectors (m-dimensional) andC = {ci | 1 ≤ i ≤ c}
is the set of cluster prototypes.dij denotes the distance
between datum~xj and thei-th cluster (where this distance
may depend not only on a cluster center, but also on cluster-
specific parameters describing the cluster’s size and shape[12],
[11], [5]). uij ∈ [0, 1] is the degree of membership to which
data pointxj belongs to thei-th cluster. Thec × n matrix
U = (uij)1≤i≤c,1≤j≤n combines the individual assignments
and is called the(fuzzy) partition matrix. Finally w is the so-
calledfuzzifier, which controls the crispness of the assignment:
the higher its value, the softer are the cluster boundaries.

In order to rule out the trivial (but useless) solution
∀i, j; uij = 0 and to ensure that no cluster is empty, one
introduces the constraints

∀j; 1 ≤ j ≤ n :

c
∑

i=1

uij = 1, ∀i; 1 ≤ i ≤ c :

n
∑

j=1

uij > 0.

Different fuzzy clustering algorithms are then distinguished
based on the cluster prototypes and the distance measure.

Christian Borgelt is with the European Center for Soft Computing, Edifi-
cio Cientı́fico-Tecnológico, c/ Gonzalo Gutiérrez Quir´os s/n, 33600 Mieres,
Asturias, Spain (email: christian.borgelt@softcomputing.es).

The most common fuzzy clustering algorithm is a straight-
forward generalization of classicalk-means clustering [1],
[14], [19] to fuzzy membership degrees: the fuzzyc-means
algorithm [2], [3], [15] is based on point prototypes and uses
the Euclidean distance. More sophisticated variants introduce
cluster-specific covariance matrices (to describe ellipsoidal
shapes), sizes, and weights (see, for example, [12], [11], [5]).

The optimization scheme, derived by exploiting the nec-
essary condition that all partial derivatives of the objective
function w.r.t. the parameters (membership degrees, cluster pa-
rameters) must vanish at a minimum, is usually alternating,so
that membership degrees and cluster prototypes are optimized
separately, while the other group of parameters is fixed.

In this paper, however, I present an algorithm that does
not employ prototypes to describe the clusters, but uses only
a partition matrix. In addition to the basic algorithm (Sec-
tion II), the derivation of which follows the standard pathsfor
fuzzy clustering, I study schemes that focus on a constrained
neighborhood for the update of the fuzzy membership degrees
(Section III). Among these approaches those that are based on
a neighborhood graph are particularly interesting.

II. T HE BASIC ALGORITHM

The basic idea of the presented algorithm is that data points
that are far away from each other should not have high degrees
of membership to the same cluster, while for data points that
are close together, high degrees of membership to the same
cluster are not only acceptable, but actually desirable. The
scheme has some relation to the reformulation approach [13],
which, if it is used to eliminate the update of the prototype
parameters rather than the update of the membership degrees,
leads to a similar, but more complex objective function, and
to fuzzy k-nearest neighbor algorithms [17], from which one
may also derive a candidate update rule.

A. Objective Function

A natural way to code the intuitive fuzzy clustering goal
outlined above is the objective function

J(X,U) =
c
∑

i=1

n
∑

j=1

j−1
∑

k=1

uw
iju

w
ikd2

jk =
1

2

c
∑

i=1

n
∑

j=1

n
∑

k=1

uw
iju

w
ikd2

jk,

which is to be minimized subject to the usual constraints

∀j; 1 ≤ j ≤ n :

c
∑

i=1

uij = 1, ∀i; 1 ≤ i ≤ c :

n
∑

j=1

uij > 0.

Here djk is the distance between the data pointsxj and xk

anduij anduik are the degrees of membership to which the
data pointsxj andxk, respectively, belong to thei-th cluster.



The fuzzifierw controls again the crispness of the assignment:
the higher its value, the softer is the clustering result.

Clearly the value of this objective function is the higher, the
more distant data points are assigned to the same cluster, while
assigning close data points to the same cluster is relatively
harmless (that is, does not increase the function value much).
Hence minimizing the above function can be expected to yield
an appropriate fuzzy partition matrix.

B. Update Procedure

The derivation of the update rule for the membership de-
grees follows the standard lines known from prototype-based
fuzzy clustering, for example, fuzzyc-means. The constraint
that the membership degrees of each data point must add up
to one is introduced into the objective function with the help
of Lagrange multipliers, yielding the Lagrange function

L(X,U, Λ) =

c
∑

i=1

n
∑

j=1

j−1
∑

k=1

uw
iju

w
ikd2

jk +

n
∑

k=1

λk

(

1−

c
∑

i=1

uik

)

.

This Lagrange function is then minimized instead of the
objective function, thus implicitly respecting the constraint.
One exploits that a necessary condition for a minimum is
that the partial derivatives w.r.t. the parameters (here only the
membership degrees) vanish. That is, at a minimum of the
Lagrange function we have∀a, 1 ≤ a ≤ c : ∀b, 1 ≤ b ≤ n :

∂L

∂uab

=

n
∑

k=1

k 6=b

wuw−1

ab uw
akd2

kb − λb

= wuw−1

ab

n
∑

k=1

uw
akd2

kb − λb = 0.

(Note that the index conditionk 6= b can be dropped, because
∀b : dbb = 0 and thus the corresponding term always vanishes.)
This condition leads to∀i, 1 ≤ i ≤ c : ∀j, 1 ≤ j ≤ n :

uij =

(

λj

w
∑n

k=1
uw

ikd2

jk

)
1

w−1

.

Summing these equations over the clusters (in order to be
able to exploit the corresponding constraint on the membership
degrees: they must sum to 1), we obtain

1 =
c
∑

i=1

uij =
c
∑

i=1

(

λj

w
∑n

k=1
uw

ikd2

jk

)
1

w−1

.

Consequently, theλj , 1 ≤ j ≤ n, are

λj =





c
∑

i=1

(

w

n
∑

k=1

uw
ikd2

jk

)
1

1−w





1−w

.

Inserting this result into the equations for the membership
degrees yields∀i, 1 ≤ i ≤ c : ∀j, 1 ≤ j ≤ n :

uij =

(

∑n

k=1
uw

ikd2

jk

)
1

1−w

∑c

l=1

(

∑n

k=1
uw

lkd2

jk

)
1

1−w

.

which for the special casew = 2 (which is the most common
choice for prototype-based fuzzy clustering) simplifies to

uij =

(

∑n

k=1
u2

ikd2

jk

)−1

∑c

l=1

(

∑n

k=1
u2

lkd2

jk

)−1
.

Since this (non-linear) equation system is technically highly
difficult to solve (due to the somewhat complicated interde-
pendence of the membership degrees), I draw on the same
trick that is exploited in prototype-based fuzzy clustering:
alternating optimization. That is, I use the above equationas
an update rule that is applied iteratively in order to approach
a (possibly only local) optimum.

In principle, this may even be done in two ways: an
online fashion, in which the updated membership degrees
immediately replace the old membership degrees and thus are
used directly for updating other membership degrees, and in
a batch fashion, where a full new set of membership degrees
is computed in one step from the old membership degrees.
However, several experiments revealed that a batch update is
not feasible in practice, regardless of the initialization(see
below): a batch update process is highly unstable and often
ends with a fairly random crisp assignment of the data points.

As a consequence I confine myself in this paper to an online
update, which cycles through the data points. That is, in each
step all membership degrees of one data point are recomputed
(which is necessary due to the normalization involved in the
computation of the membership degrees). In order to avoid
effects that could result from a special order of the data points,
the update order is changed after every epoch, that is, the data
points are shuffled after each traversal.

Note that the update rule refers only to pairwise distances
between the data points and thus is also applicable to data that
are not embedded in a metric space: only a distance matrix
is needed. In contrast to this, prototype-based approaches
refer to the data points directly when computing new cluster
parameters (e.g. centers) and thus require a metric space.

C. Initialization

An iterative update needs a starting point. Here we need an
initial (fuzzy) assignment of the data points to the clusters.
I tried two different schemes: in the first, all membership
degrees are initialized to random values from the unit interval
and then normalized for each data point (that is, they are
divided by the sum of the membership degrees for the data
point in order to achieve that this sum is 1 afterwards).
Secondly, one may initialize all data points to the same value
1

c
(c is the number of clusters) and then seed the clusters by

randomly choosing a data point for each of them, which is
assigned crisply to it. Of course, in this case it is advisable to
make sure that the data points used as seeds are updated last
in the first epoch, so that the seeding does not get lost.

Although these two schemes appear to be considerably
different, I did not observe much of a difference between them
in my experiments: the results were basically the same. Hence
I confine myself to the former method here.



D. Fuzzyk-Nearest Neighbor

As an alternative to the update rule derived above, I con-
sidered an online update based on the classification rule fora
fuzzy k-nearest neighbor classifier [17]:

uij =

∑k

l=1
uil d

2

1−w

jl

∑k

l=1
d

2

1−w

jl

.

Here djl is the distance between a data pointxl from the
training data set and a new data pointxj , which is to be
classified.uij and uil are the degrees of membership of the
data pointsxj andxl, respectively, to thei-th class. ([17] uses
a heuristic formula to fuzzify the crisp class assignments that
are usually to be found in training data sets. However, this
formula is of no relevance here and therefore omitted.) The
sums are assumed to run over thek closest neighbors of the
data pointxj in the training data set, that is, they are assumed
to refer to thek smallest distancesdjl, 1 ≤ l ≤ k.

At first sight it seems plausible to use this rule also as an
update rule for fuzzy clustering, using either only thek closest
neighbors of a data set or even all other data points. However,
my experiments revealed that this is not the case. Regardless
of the number of neighbors that are considered (even if all data
points are taken as neighbors), the fuzzyk-nearest neighbor
rule equalizes the membership degrees (that is, in the end each
data point has the same degree of membership to all clusters).
Hence it is not usable as an update rule.

Nevertheless, one can extract from this approach the idea
to constrain the neighborhood that is taken into account for
the update of the membership of a data point. Such update
schemes are studied in the next section (Section III).

Note that the fact that the fuzzyk-nearest neighbor rule
is not feasible does not invalidate the method in [23]. That
method relies on a completely different approach, which
is actually prototype-based as it combines fuzzyk-nearest
neighbor and (classical) fuzzyc-means. It is therefore not
comparable with the algorithm presented in this paper.

E. Experiments

For a basic evaluation of the algorithm I used a classic
benchmark, namely the Iris data [9], with all four descriptive
attributes (petal length and width and sepal length and width).
For comparisons, the result of the standard fuzzyc-means
algorithm with c = 3 and w = 2 is shown in Figure 1. It
yields a clear division into three classes, even though some
data points cannot be assigned unambiguously. (The degree
of membership to a cluster is the higher, the darker the grey.)

The prototype-less algorithm, however, identifies only one
of these classes (Iris Setosa, lower left), while the rest ofthe
data points have roughly equal membership degrees to the
remaining two clusters (see Figure 2). One may see this as a
failure, but actually the division of the data points belonging
to Iris Virginica and Iris Versicolor (upper right) into two
clusters is rather arbitrary (if the class label is not knownto the
algorithm, as is the case here). It can rather be argued that there
are actually only two clearly separated clusters and then the

Fig. 1. Iris data clustered with fuzzyc-means (w = 2).

Fig. 2. Iris data clustered with prototype-less algorithm (w = 2).

result of the prototype-less algorithm would simply indicate
that the number of clusters was chosen inappropriately.

On the other hand, the prototype-less algorithm can be made
to yield a division into three clusters if the fuzzifier is reduced.
As an example, Figure 3 shows the result forw = 5

3
. Even

though the division of the Iris Virginica and Iris Versicolor
data points is still less crisp as for the standard fuzzyc-means
algorithms (since the grey does not get as dark in the upper
right, thus still providing information that these clusters are
not well separated), the cluster structure is almost the same.

It is also worth noting that the result becomes closer to
the fuzzy c-means result if only the two most informative
attributes (petal width and length) are used (see Figure 4).
Nevertheless the cluster division stays less crisp than forfuzzy
c-means, thus maintaining that the clusters are badly separated.

Generally, I found in my experiments (also with other data
sets) that the prototype-less algorithm seems to require a
slightly lower fuzzifier than prototype-based fuzzy clustering
in order to yield comparable results. In this sense, prototype-
less fuzzy clustering is “fuzzier” than prototype-based.



Fig. 3. Iris data with prototype-less algorithm (w =
5

3
).

Fig. 4. Iris data with prototype-less algorithm (only petallength and width).

Fig. 5. Two half circles with fuzzyc-means.

III. C ONSTRAINED NEIGHBORHOOD

In constrained neighborhood clustering only a subset of
the data points are used for updating the membership degree
of a given data point. I study three approaches: using only
the closest neighbors (Section III-A), using only the farthest
neighbors (Section III-B), and constructing a neighborhood
graph from which new distances are derived (Section III-C).

Fig. 6. Two half circles with clustered prototype-less algorithm.

Fig. 7. Two half circles with prototype-less algorithm (50 closest neighbors).

For studying the effects of such constraints I use an artificial,
two-dimensional data set that is shown in Figures 5 and
6 together with the results of fuzzyc-means and standard
prototype-less clustering, respectively. It basically consists of
two half circles of data points. However, in the middle there
are two data points (artificial, intentional “noise”) that destroy
the clear separation of the two half circles. The goal is to
identify the two half circles as one cluster each.

A. Closest Neighbors

The most natural approach is to consider only the closest
neighbors of a data point for updating its membership degrees.
The intuition underlying this scheme is that the local neighbor-
hood can remove the tendency of the basic algorithm to find
compact clusters. (Due to the goal to minimize the objective
function, all data points having high degrees of membership
to the same cluster must be close together and thus form a
compact cluster.) The hope is that then chain-like structures
like those of the two half circles can be identified.

Unfortunately, this approach did not work quite as I hoped.
Even though the tendency towards compact clusters is indeed
removed, the effect is rather as shown in Figure 7, which
depicts the result of prototype-less clustering with the update
rule constrained to the 50 closest neighbors of each data
point. Rather then combining the points in a chain into one
cluster, each chain is split into smaller regions, which belong
alternatingly to the two clusters. At second thought, this result
is actually plausible: it is advantageous for the value of the
(modified) objective function if neighboring points that are
distant are assigned to different clusters.



Fig. 8. Iris data with prototype-less algorithm (60 farthest neighbors).

Fig. 9. Two half circles with prototype-less algorithm (60 farthest neighbors).

B. Farthest Neighbors

A closer investigation of the reasons, why a closest neighbor
approach fails, revealed that the terms of the objective function
that refer to data points with a large distance are decisive.
For minimizing the objective function it is vital that these
points are assigned to different clusters, while points that are
close together have only a comparatively small influence on
the value of the objective function. This insight led to the idea
to replace the closest neighbors with thefarthestneighbors.

An update scheme that is based on the farthest neighbors of
each data point actually works surprisingly well. Figure 8,for
example, shows the result obtained for the Iris data if only the
60 farthest neighbors of each data point are used for updating
the membership degrees of a data point. This figure is almost
identical to Figure 3, which showed the result for the standard
algorithm (considering all data points), but with a fuzzifier of
w = 5

3
. This indicates that using only the farthest neighbors

could have a similar effect as reducing the fuzzifier: the cluster
division becomes harder. Other experiments confirmed this
observation. For instance, Figure 9 shows the result for the
data set of two half circles, with the update also based on the
60 farthest neighbors. Compared to Figure 6, in which the light
grey shades indicated that the clusters are not well separated,
the result is crisper (but, of course, the clusters still do not
capture the chain-like structure of the data set).

Fig. 10. Two half circles clustered with the prototype-lessalgorithm and a
neighborhood graph withk = 12. (Note the inverted shading: the lighter the
grey, the higher the membership degree.)

C. Neighborhood Graph

As a final approach to use a constrained neighborhood, I
tried a scheme based on a neighborhood graph. In such a
graph each data point is connected by an edge to itsk closest
neighbors, with a user-specified numberk of neighbors. For
the data set with the two half circles, this neighborhood graph
is shown fork = 12 in Figure 10 and fork = 20 in Figure 11:
the black lines between the data points are the edges of the
neighborhood graph. (Note the bridge between the two point
sets in the middle of the figures, which is brought about by
the two intentional “noise” data points.)

Once a neighborhood graph is constructed, a new distance
matrix (which contains all pairwise distances between data
points) is computed for the data set. It is initialized by setting
the distance of all data point pairs that are connected by an
edge to their Euclidean distance. All other entries (except
the diagonal entries, of course, which are always 0) are set
to infinity. Then the Floyd-Warshall algorithm [10], [22] for
computing shortest paths between node pairs in a graph is
executed. That is, the distance between two data points that
are not closest neighbors of each other is set to the length of
the shortest path in the neighborhood graph connecting these
two points. In addition, it is advisable to replace any entries
in the matrix that remained infinite by a user-specified value
or a user-specified multiple of the largest finite distance in
the matrix. With this all distances become finite, which avoids
numerical problems. The new distance matrix, which describes
path lengths, is then used to do the clustering.

The results of such a neighborhood graph approach with
k = 12 and k = 20 is shown in Figures 10 and 11,
respectively. Note that no user-specified maximum distanceor
multiplier is needed in this case, because both neighborhood
graphs are connected. Note also that the shading is inverted
in these figures (that is, the lighter the grey, the higher the
membership degree) in order to make the neighborhood graph
and the grey shades more easily discernable.

Especially fork = 12 the chain-like structure of the half
circles is nicely recognized, even though the bridge in the
middle leads to a fuzzy assignment of the data points close to
this bridge. However, this is actually a desirable result, because
the bridge destroys the clear separation of the clusters andthis



Fig. 11. Two half circles clustered with the prototype-lessalgorithm and a
neighborhood graph withk = 20. (Note the inverted shading: the lighter the
grey, the higher the membership degree.)

should be reflected in the result without spoiling it completely.
Fork = 20 the region of fuzzy assignments is, not surprisingly,
bigger, but the fundamental structure is still captured well.

However, even though these results are very nice, I do
not want to conceal that the success depends heavily on the
symmetry of the structure. If one half circle is replaced by
a quarter circle, the result is considerably worse: the correct
division of the clusters is not recognized.

Nevertheless this example demonstrates the potential of the
presented algorithm. A prototype-based algorithm would have
considerable problems with the modified distances, since they
do not allow for constructing cluster prototypes. One could
amend this situation by using an approach based on medoids
instead of means [16], [18], [20], but then the prototypes must
be selected from the given data points, which may not contain
appropriate cluster centers. A prototype-less algorithm,on the
other hand, appears to be more natural and more flexible as it
avoids the problem of constructing or selecting prototypes.

IV. CONCLUSIONS

In this paper I presented a fuzzy clustering approach, which
does not optimize a set of prototypes, but works solely with a
fuzzy partition matrix. A core advantage of such a prototype-
less scheme is that it only needs a distance matrix of the
data objects, rather than the positions of the data points ina
metric space. Neither is a procedure for computing prototypes
needed. (It shares these advantages with (fuzzy) hierarchical
agglomerative clustering [8], [16], [21], [6].) Thereforeit can
also be used in domains, in which the distances are non-metric,
and thus has a wide potential application area.

The disadvantages of this approach are, of course, the higher
computational complexity, which isO(cn2) for each update
step (since alln2 pairwise distances have to be evaluated for
each of thec clusters). However, this can be improved upon by
using only thek farthest neighbors as shown in Section III-B,
which reduces the complexity toO(cnk) for each step.

Future work includes to test the algorithm on pure distance
data (that is, no embedding of data objects into a metric space)
and to compare it to hierarchical agglomerative approaches.
Furthermore graph structures other than the neighborhood
graph may be worth to be investigated, like a minimum length

spanning tree or a threshold graph, which contains only edges
with lengths below a user-specified maximum.

Software

The implementation of the algorithms described in this
paper, which was also used for the experiments, is available
at http://www.borgelt.net/ptless.html.

REFERENCES

[1] G.H. Ball and D.J. Hall. ISODATA — An Iterative Method of
Multivariate Data Analysis and Pattern Classification.IEEE Int. Comm.
Conf. (Philadelphia, PA). IEEE Press, Piscataway, NJ, USA 1966

[2] J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function
Algorithms. Plenum Press, New York, NY, USA 1981

[3] J.C. Bezdek and N. Pal.Fuzzy Models for Pattern Recognition. IEEE
Press, New York, NY, USA 1992

[4] J.C. Bezdek, J. Keller, R. Krishnapuram, and N. Pal.Fuzzy Models
and Algorithms for Pattern Recognition and Image Processing. Kluwer,
Dordrecht, Netherlands 1999

[5] C. Borgelt. Prototype-based Classification and Clustering. Habilitation
thesis, University of Magdeburg, Germany 2005

[6] Y. Dong and Y. Zhuang. Fuzzy Hierarchical Clustering Algorithm Facing
Large Databases.Proc. 5th World Congress on Intelligent Control and
Automation (WCICA 2004, Hangzhou, China), 4282–4286. IEEE Press,
Piscataway, NJ, USA 2004

[7] J.C. Dunn. A Fuzzy Relative of the ISODATA Process and ItsUse
in Detecting Compact Well-Separated Clusters.Journal of Cybernetics
3(3):32–57. American Society for Cybernetics, Washington, DC, USA
1973 Reprinted in [3], 82–101

[8] B.S. Everitt. Cluster Analysis. Heinemann, London, United Kingdom
1981

[9] R.A. Fisher. The Use of Multiple Measurements in Taxonomic Prob-
lems. Annals of Eugenics7(2):179–188. Cambridge University Press,
Cambridge, United Kingdom 1936

[10] R.W. Floyd. Algorithm 97: Shortest Path.Communications of the ACM
5(6):345. ACM Press, New York, NY, USA 1962

[11] I. Gath and A.B. Geva. Unsupervised Optimal Fuzzy Clustering. IEEE
on Trans. Pattern Analysis and Machine Intelligence (PAMI)11:773–
781. IEEE Press, Piscataway, NJ, USA 1989. Reprinted in [3],211–218

[12] E.E. Gustafson and W.C. Kessel. Fuzzy Clustering with aFuzzy
Covariance Matrix.Proc. of the IEEE Conf. on Decision and Control
(CDC 1979, San Diego, CA), 761–766. IEEE Press, Piscataway, NJ,
USA 1979. Reprinted in [3], 117–122

[13] R.J. Hathaway and J.C. Bezdek. Optimization of Clustering Criteria by
Reformulation.IEEE Trans. on Fuzzy Systems3:241–145. IEEE Press,
Piscataway, NJ, USA 1995

[14] J.A. Hartigan and M.A. Wong. Ak-means Clustering Algorithm.
Applied Statistics28:100–108. Blackwell, Oxford, United Kingdom
1979

[15] F. Höppner, F. Klawonn, R. Kruse, and T. Runkler.Fuzzy Cluster
Analysis. J. Wiley & Sons, Chichester, England 1999

[16] L. Kaufman and P. Rousseeuw.Finding Groups in Data: An Introduction
to Cluster Analysis. J. Wiley & Sons, New York, NY, USA 1990

[17] J.M. Keller, M.R. Gray, and J.A. Givens Jr. A Fuzzy k-nearest Neighbor
Algorithm. IEEE Trans. on Systems, Man, and Cybernetics15(4):580–
584. IEEE Press, Piscataway, NJ, USA 1985

[18] R. Krishnapuram, A. Joshi, O. Nasraoui, and L. Yi. Low-Complexity
Fuzzy Relational Clustering Algorithms for Web Mining.IEEE Trans.
on Fuzzy Systems9(4):595–607. IEEE Press, Piscataway, NJ, USA 2001

[19] S. Lloyd. Least Squares Quantization in PCM.IEEE Trans. on
Information Theory28:129–137. IEEE Press, Piscataway, NJ, USA 1982

[20] T.A. Runkler. Relational Gustafson–Kessel Clustering with Medoids
and Triangulation.Proc. 14th IEEE Int. Conf. Fuzzy Systems (FUZZ-
IEEE’06, Reno, NV), 73–78. IEEE Press, Piscataway, USA 2005

[21] P.-C. Wang and J.-J. Leou. New Fuzzy Hierarchical Clustering Algo-
rithms. J. Information Science and Engineering9(3):461–489. Inst. of
Information Science, Taipei, Taiwan, Chine 1993

[22] S. Warshall. A Theorem on Boolean Matrices.Journal of the ACM
9(1):11–12. ACM Press, New York, NY, USA 1962

[23] N. Zahid, O. Abouelala, M. Limouri, and A. Essaid. FuzzyClustering
based on K-nearest Neighbours Rule.Fuzzy Sets and Systems120:239–
247. Elsevier Science, Amsterdam, Netherlands 2001


