Prototype-less Fuzzy Clustering
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Abstract—In contrast to standard fuzzy clustering, which opti- The most common fuzzy clustering algorithm is a straight-
mizes a set of prototypes, one for each cluster, this paperwies forward generalization of classicdl-means clustering [1],
fuzzy clustering without prototypes. Starting from an objective [14], [19] to fuzzy membership degrees: the fuzzmeans
function that only involves the distances between data pots | "th o1 131. 1151 is based int tot d
and the membership degrees of the data points to the differdn aigor m (2. [ ] [15] is based on po!n proto ypes a_n d1se
clusters, an iterative update rule is derived. The propertes of the Euclidean distance. More sophisticated variants diice
the resulting algorithm are then examined, especially w.t. to  cluster-specific covariance matrices (to describe eligao
schemes that focus on a constrained neighborhood for eachghapes), sizes, and weights (see, for example, [12], [5])], [
data point. Corresponding experimental results are repored that The optimization scheme, derived by exploiting the nec-
demonstrate the merits of this approach. . ”" L2 ..

essary condition that all partial derivatives of the ohject
|. INTRODUCTION function w.r.t. the parameters _(membership degrees,erlpgt—
| _ lorith rameters) must vanish at a minimum, is usually alternatng,

Fuzzy clustering algorithms [71, [2]_’ [3]. [15] are Verythat membership degrees and cluster prototypes are optimiz
popular methods for finding groups in data, especially Lpharately while the other group of parameters is fixed.
domains where groups are imperfectly separated and thus @, i naper, however, | present an algorithm that does
crisp assignment of data points to clusters is inappragriaf, ,+ employ prototypes to describe the clusters, but uses onl
These algorlthrfns are usually $rototy$‘e—lbased: Lheé, ry Onartition matrix. In addition to the basic algorithm (Sec-
optimize a set of prototypes, one for each cluster, whictsisbn 4, , 1), the derivation of which follows the standard pafbs

of a cluster's location, size, and shape parameters. Thmoafuzzy clustering, | study schemes that focus on a constiaine

fuzzly clus;eri(rjlg is thgn defihned by an objectivde fﬁnctioni,ohh eighborhood for the update of the fuzzy membership degrees
involves the data points, the prototypes, and the memerspsq 1o 111). Among these approaches those that are based o

degrees of the data points to the clusters, and is usuallg toapneighborhood graph are particularly interesting.
minimized. The most common objective function is

c I[l. THE BASIC ALGORITHM

J(X,C,U) = Z Zui’j dz;, The basic idea of the presented algorithm is that data points
i=1 j=1 that are far away from each other should not have high degrees

whereX = {Z; | 1 < j < n} is the given data set, consistingOf membership to the. same cluster, while for da}ta points that
of n vectors {n-dimensional) andC = {c; | 1 < i < ¢} are close together, high degrees of membership to the same

is the set of cluster prototypes; denotes the distancecluster are not only ac_ceptable, but actual_ly desirablee Th
between datumz; and thei-th cluster (where this distancescheme h_ag Some relatl(_)n_to the reformulation approach [13]
may depend not only on a cluster center, but also on clust4ffich. if it is used to eliminate the update of the prototype
specific parameters describing the cluster’s size and §ti@he parameters rat_her than the update of the. me_mbershlp degrees
[11], [5]). u;; € [0, 1] is the degree of membership to whicHeadS to a similar, but more complex objective function, and

data pointz; belongs to thei-th cluster. Thec x n matrix to fuzzy k-negrest neighbor algorithms [17], from which one
dnay also derive a candidate update rule.

and is called thefuzzy) partition matrixFinally w is the so- A Objective Function
calledfuzzifier which controls the crispness of the assignment:
the higher its value, the softer are the cluster boundaries.

In order to rule out the trivial (but useless) solutio

A natural way to code the intuitive fuzzy clustering goal
r(])utlined above is the objective function

Vi, j;u;; = 0 and to ensure that no cluster is empty, one c.n gl ) 1M )
introduces the constraints JX,U) =3 ufuidy, = 3 SN uhuids,
. n i=1 j=1 k=1 i=1j=1 k=1
Visl<j<m:» wy=1, Vil<i<ec: Y u;>0. whichisto be minimized subject to the usual constraints
i=1 =1 . n
Different fuzzy clustering algorithms are then distindigd  Vj;1 < j < n: Zuij =1, Vil<i<ec: Zuij > 0.
based on the cluster prototypes and the distance measure. i=1 j=1

L o ) . Hered;;, is the distance between the data poinjsand x;,
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Thefuzzifierw controls again the crispness of the assignmenthich for the special case = 2 (which is the most common

the higher its value, the softer is the clustering result. choice for prototype-based fuzzy clustering) simplifies to
Clearly the value of this objective function is the highée t -1

more distant data points are assigned to the same clustiée, wh (22:1 ufkdﬁ)

assigning close data points to the same cluster is relativel Yig = c no9 g2\

harmless (that is, does not increase the function value jnuch 21 (Zk:l ulkdjk)

Hence minimizing the abo_v_e functpn can be expected to yield o this (non-linear) equation system is technicallyhlyig

an appropriate fuzzy partition matrix. difficult to solve (due to the somewhat complicated interde-

B. Update Procedure pendence of the membership degrees), | draw on the same

The derivation of the update rule for the membership gdick that is exploited in prototype-based fuzzy clustgrin

grees follows the standard lines known from prototype—bas@ltemaﬂm‘:J optimizat_ion. That i;, I use th_e above equadsn
fuzzy clustering, for example, fuzzymeans. The constraint 2" updgte rule that is app_lled iteratively in order to approa
that the membership degrees of each data point must addau%ﬂoSSIny only local) optimum.

to one is introduced into the objective function with thephel i prfinc;]p_le, t_his rr?_a)r/] et:/en bde dgne in t;twohyva)c/js: an
of Lagrange multipliers, yielding the Lagrange function online fashion, in which the updated membership degrees

. immediately replace the old membership degrees and thus are
c n Jj—

B w w2 - - used directly for updating other membership degrees, and in
LX,U,A) = Z Z Zuijuikdjk T Z Ak <1_Z“ik>' a batch fashion, where a full new set of membership degrees
i=1 j=1 k=1 k=1 i=1

is computed in one step from the old membership degrees.
This Lagrange function is then minimized instead of thelowever, several experiments revealed that a batch upslate i
objective function, thus implicitly respecting the comdtt. not feasible in practice, regardless of the initializati@ee

One exploits that a necessary condition for a minimum iselow): a batch update process is highly unstable and often
that the partial derivatives w.r.t. the parameters (hefg e ends with a fairly random crisp assignment of the data points
membership degrees) vanish. That is, at a minimum of theAs a consequence | confine myself in this paper to an online

Lagrange function we havéa,1 <a <c:Vb,1<b<n: update, which cycles through the data points. That is, i eac
or n . , step aII_membership degrees of one da’Fa p_oint_are recomputed

Dy Z wusy  Ugkdiy — Ab (which is necessary due to thq normalization involved in thg

@ Z;i computation of the membership degrees). In order to avoid

n effects that could result from a special order of the datatspi
wul ! Z wd, — N = 0. the_ update order is changed after every epoch, that is, tiae da
1 points are shuffled after each traversal.

Note that the update rule refers only to pairwise distances

(N(.)te thilt the index conditioh # b can be dropped, becguseb tween the data points and thus is also applicable to datta th
vb: dy, = 0 andthusthe corresponding term always vanlshes.se not embedded in a metric space: only a distance matrix

) o , , ; . a
This condition leads t&i,1 <i<c:Vj,1<j<mn: . )
LIS CNLE S ST is needed. In contrast to this, prototype-based approaches

s w—T refer to the data points directly when computing new cluster
Ujj = ﬁ parameters (e.g. centers) and thus require a metric space.
W2 k=1 Wik Tjk

Summing these equations over the clusters (in order to ) ] ) )
able to exploit the corresponding constraint on the menfijers An iterative update needs a starting point. Here we need an

%. Initialization
e

degrees: they must sum to 1), we obtain initial (fuzzy) assignment of the data points to the cluster
L | tried two different schemes: in the first, all membership
¢ ¢ Aj woT degrees are initialized to random values from the unit ratier
1= Z“iﬂ' - Z w> o ubdZ, and then normalized for each data point (that is, they are
=1 =1 b=t Tk divided by the sum of the membership degrees for the data
Consequently, the,;, 1 < j <n, are point in order to achieve that this sum is 1 afterwards).
1—w Secondly, one may initialize all data points to the sameevalu
c n 1—w 1 .
A = Z wZu;f;Cd?k ' = (cis the numper of cIusters)_ and then seed the cIust_ers _by
P = randomly choosing a data point for each of them, which is

_ _ _ _ assigned crisply to it. Of course, in this case it is advisdbl
Inserting this result into the equations for the membershifake sure that the data points used as seeds are updated last

degrees yieldsi,1 <i<c:Vj1<j<mn: in the first epoch, so that the seeding does not get lost.
. = Although these two schemes appear to be considerably
(Zk:l Uffgd?k) different, | did not observe much of a difference betweemthe
Wij = : in my experiments: the results were basically the same. élenc

- J
1—w
PO (Zzzl U?fcd?k) | confine myself to the former method here.



D. Fuzzyk-Nearest Neighbor

As an alternative to the update rule derived above, | con-
sidered an online update based on the classification rula for
fuzzy k-nearest neighbor classifier [17]:

k =
_ D=1 Wil djl
N kooTw

Zl:l djl
Here d;; is the distance between a data pointfrom the
training data set and a new data point, which is to be
classified.u;; andu; are the degrees of membership of the
data pointsc; andz;, respectively, to the-th class. ([17] uses
a heuristic formula to fuzzify the crisp class assignmehéd t
are usually to be found in training data sets. However, this
formula is of no relevance here and therefore omitted.) The
sums are assumed to run over thelosest neighbors of the

data pointz; in the training data set, that is, they are assumed
to refer to thek smallest distanced;;, 1 <[ < k.

Wij

Fig. 1.

Iris data clustered with fuzzymeans @ = 2).

At first sight it seems plausible to use this rule also as an o o
update rule for fuzzy clustering, using either only thelosest o oo 0
neighbors of a data set or even all other data points. However T Y

my experiments revealed that this is not the case. Regardles

las]a) o}
o OO O

of the number of neighbors that are considered (even if &l da e °

o0 O =]
points are taken as neighbors), the fuZzypearest neighbor O D
rule equalizes the membership degrees (that is, in the eid ea * o
data point has the same degree of membership to all clusters) e il

Hence it is not usable as an update rule.
Nevertheless, one can extract from this approach the idea
to constrain the neighborhood that is taken into account for
the update of the membership of a data point. Such update
schemes are studied in the next section (Section III).
Note that the fact that the fuzzl-nearest neighbor rule
is not feasible does not invalidate the method in [23]. That Fig 2. Iris data clustered with prototype-less algorithm < 2).
method relies on a completely different approach, which
is actually prototype-based as it combines fuZzpearest
neighbor and (classical) fuzzy-means. It is therefore not
comparable with the algorithm presented in this paper.

result of the prototype-less algorithm would simply indeca
that the number of clusters was chosen inappropriately.
E. Experiments On the other hand, the prototype-less algorithm can be made
For a basic evaluation of the algorithm | used a classi@ yield a division into three clusters if the fuzzifier is ted.
benchmark, namely the Iris data [9], with all four descipti As an example, Figure 3 shows the result for= 2. Even
attributes (petal length and width and sepal length andhyidtthough the division of the lIris Virginica and Iris Versicolo
For comparisons, the result of the standard fuzayeans data points is still less crisp as for the standard fuzzyeans
algorithm withc = 3 andw = 2 is shown in Figure 1. It algorithms (since the grey does not get as dark in the upper
yields a clear division into three classes, even though soright, thus still providing information that these clusteare
data points cannot be assigned unambiguously. (The degneé well separated), the cluster structure is almost theesam
of membership to a cluster is the higher, the darker the grey. It is also worth noting that the result becomes closer to
The prototype-less algorithm, however, identifies only orthe fuzzy c-means result if only the two most informative
of these classes (Iris Setosa, lower left), while the reshef attributes (petal width and length) are used (see Figure 4).
data points have roughly equal membership degrees to fitevertheless the cluster division stays less crisp thafuizzy
remaining two clusters (see Figure 2). One may see this as-sneans, thus maintaining that the clusters are badly stuara
failure, but actually the division of the data points belmmgg ~ Generally, | found in my experiments (also with other data
to Iris Virginica and Iris Versicolor (upper right) into two sets) that the prototype-less algorithm seems to require a
clusters is rather arbitrary (if the class label is not knaavthe slightly lower fuzzifier than prototype-based fuzzy clusig
algorithm, as is the case here). It can rather be arguedihia t in order to yield comparable results. In this sense, proty
are actually only two clearly separated clusters and then tless fuzzy clustering is “fuzzier” than prototype-based.



Fig. 3. Iris data with prototype-less algorithm & %).

Fig. 4. Iris data with prototype-less algorithm (only pdisigth and width).

Fig. 5. Two half circles with fuzzye-means.

[1l. CONSTRAINED NEIGHBORHOOD

Fig. 7. Two half circles with prototype-less algorithm (50sest neighbors).

For studying the effects of such constraints | use an asilfici
two-dimensional data set that is shown in Figures 5 and
6 together with the results of fuzzy-means and standard
prototype-less clustering, respectively. It basicallysists of
two half circles of data points. However, in the middle there
are two data points (artificial, intentional “noise”) thasdroy
the clear separation of the two half circles. The goal is to
identify the two half circles as one cluster each.

A. Closest Neighbors

The most natural approach is to consider only the closest
neighbors of a data point for updating its membership degree
The intuition underlying this scheme is that the local nbigh
hood can remove the tendency of the basic algorithm to find
compact clusters. (Due to the goal to minimize the objective
function, all data points having high degrees of membership
to the same cluster must be close together and thus form a
compact cluster.) The hope is that then chain-like strestur
like those of the two half circles can be identified.

Unfortunately, this approach did not work quite as | hoped.
Even though the tendency towards compact clusters is indeed
removed, the effect is rather as shown in Figure 7, which
depicts the result of prototype-less clustering with thelaip
rule constrained to the 50 closest neighbors of each data

In constrained neighborhood clustering only a subset pbint. Rather then combining the points in a chain into one
the data points are used for updating the membership degctsster, each chain is split into smaller regions, whiclohgl
of a given data point. | study three approaches: using ordfternatingly to the two clusters. At second thought, teisult
the closest neighbors (Section IlI-A), using only the fadgh is actually plausible: it is advantageous for the value @ th
neighbors (Section I1I-B), and constructing a neighborhodmodified) objective function if neighboring points thatear
graph from which new distances are derived (Section IlI-C)distant are assigned to different clusters.



Fig. 10. Two half circles clustered with the prototype-leggorithm and a
neighborhood graph witlk = 12. (Note the inverted shading: the lighter the
grey, the higher the membership degree.)

Fig. 8. Iris data with prototype-less algorithm (60 farthesighbors). ~ C- Neighborhood Graph

As a final approach to use a constrained neighborhood, |
tried a scheme based on a neighborhood graph. In such a
graph each data point is connected by an edge tb a®sest
neighbors, with a user-specified numbeof neighbors. For
the data set with the two half circles, this neighborhooghra
is shown fork = 12 in Figure 10 and fok = 20 in Figure 11:
the black lines between the data points are the edges of the
neighborhood graph. (Note the bridge between the two point
sets in the middle of the figures, which is brought about by
the two intentional “noise” data points.)

Once a neighborhood graph is constructed, a new distance
Fig. 9. Two half circles with prototype-less algorithm (&0thest neighbors). matrix (which contains all pairwise distances between data

points) is computed for the data set. It is initialized bytingt
the distance of all data point pairs that are connected by an
. edge to their Euclidean distance. All other entries (except
B. Farthest Neighbors the diagonal entries, of course, which are always 0) are set

A closer investigation of the reasons, why a closest neighlio infinity. Then the Floyd-Warshall algorithm [10], [22] fo
approach fails, revealed that the terms of the objectivetfan computing shortest paths between node pairs in a graph is
that refer to data points with a large distance are decisivxecuted. That is, the distance between two data points that
For minimizing the objective function it is vital that theseare not closest neighbors of each other is set to the length of
points are assigned to different clusters, while point$ éma the shortest path in the neighborhood graph connecting thes
close together have only a comparatively small influence ¢oro points. In addition, it is advisable to replace any esgri
the value of the objective function. This insight led to tdea in the matrix that remained infinite by a user-specified value
to replace the closest neighbors with tlagthestneighbors. or a user-specified multiple of the largest finite distance in

An update scheme that is based on the farthest neighborshaf matrix. With this all distances become finite, which dgoi
each data point actually works surprisingly well. Figurdd3, numerical problems. The new distance matrix, which dessrib
example, shows the result obtained for the Iris data if oty t path lengths, is then used to do the clustering.

60 farthest neighbors of each data point are used for upgatin The results of such a neighborhood graph approach with
the membership degrees of a data point. This figure is almést= 12 and ¥ = 20 is shown in Figures 10 and 11,
identical to Figure 3, which showed the result for the staddarespectively. Note that no user-specified maximum distamce
algorithm (considering all data points), but with a fuzziftd multiplier is needed in this case, because both neighbarhoo
w = g This indicates that using only the farthest neighbographs are connected. Note also that the shading is inverted
could have a similar effect as reducing the fuzzifier: thestelu in these figures (that is, the lighter the grey, the higher the
division becomes harder. Other experiments confirmed thimembership degree) in order to make the neighborhood graph
observation. For instance, Figure 9 shows the result for thed the grey shades more easily discernable.

data set of two half circles, with the update also based on theEspecially fork = 12 the chain-like structure of the half

60 farthest neighbors. Compared to Figure 6, in which th# ligcircles is nicely recognized, even though the bridge in the
grey shades indicated that the clusters are not well segghramiddle leads to a fuzzy assignment of the data points close to
the result is crisper (but, of course, the clusters still d@d nthis bridge. However, this is actually a desirable res@tause
capture the chain-like structure of the data set). the bridge destroys the clear separation of the clusterstasd




Fig. 11. Two half circles clustered with the prototype-leggorithm and a
neighborhood graph witk = 20. (Note the inverted shading: the lighter the
grey, the higher the membership degree.)

should be reflected in the result without spoiling it comgliet

spanning tree or a threshold graph, which contains only £dge
with lengths below a user-specified maximum.

Software

The implementation of the algorithms described in this

(1]

(2]
(3]
(4

Fork = 20 the region of fuzzy assignments is, not surprisingly;s;

bigger, but the fundamental structure is still captured.wel

However, even though these results are very nice, | dé!

not want to conceal that the success depends heavily on the

symmetry of the structure. If one half circle is replaced by

a quarter circle, the result is considerably worse: theemrr
division of the clusters is not recognized.

(7]

Nevertheless this example demonstrates the potentiakof th

presented algorithm. A prototype-based algorithm wouleeha 8

considerable problems with the modified distances, sineg th [g)
do not allow for constructing cluster prototypes. One could

amend this situation by using an approach based on med !L%? R.W. Floyd. Algorithm 97: Shortest Patitommunications of the ACM

instead of means [16], [18], [20], but then the prototypesimu

be selected from the given data points, which may not contdial

appropriate cluster centers. A prototype-less algorithmthe

other hand, appears to be more natural and more flexible ag i

avoids the problem of constructing or selecting prototypes

IV. CONCLUSIONS

(23]

In this paper | presented a fuzzy clustering approach, which
does not optimize a set of prototypes, but works solely withjay
fuzzy partition matrix. A core advantage of such a prototype

less scheme is that it only needs a distance matrix of the
data objects, rather than the positions of the data poings in

metric space. Neither is a procedure for computing protesypl16]

needed. (It shares these advantages with (fuzzy) hiemlch't

agglomerative clustering [8], [16], [21], [6].) Therefoitecan

also be used in domains, in which the distances are noncmet[n8

and thus has a wide potential application area.

17]

The disadvantages of this approach are, of course, thethighe
computational complexity, which i©(cn?) for each update [19]

step (since alh? pairwise distances have to be evaluated f

)

each of the: clusters). However, this can be improved upon by

using only thek farthest neighbors as shown in Section IlI-B

which reduces the complexity 10(cnk) for each step. f21

Future work includes to test the algorithm on pure distance
data (that is, no embedding of data objects into a metricegpat?|

and to compare it to hierarchical agglomerative approach

Furthermore graph structures other than the ne|ghborhooci
graph may be worth to be investigated, like a minimum length

18] R. Krishnapuram, A. Joshi, O. Nasraoui, and L. Yi.

paper, which was also used for the experiments, is available
at http://www.borgelt.net/ptless.html.
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