
Notes on the Dynamic Bichromatic All-Nearest-Neighbors Problem

Magdalene G. Borgelt∗ Christian Borgelt†

Abstract

Given a set S of n points in the plane, each point
having one of c colors, the bichromatic all-nearest-
neighbors problem is the task to find (in the set S) a
closest point of different color for each of the n points
in S. We consider a dynamic variant of this prob-
lem where the points are fixed but can change color.
More precisely, we consider restricted problem in-
stances, which allow us to improve over the time
needed for solving the problem from scratch after each
color change. In these variants we maintain, in O(n)
time per color change, a data structure of size O(cn)
or O(n), with which the closest neighbor of different
color of any point in S can be found in time O(log n),
and the restrictions allow us to bound the number of
look ups that are necessary in each step.

1 Introduction

Point proximity problems have been studied intensely
over the years. One of the simplest instances is the
closest pair problem, which consists in the task to find
a closest pair of points from a set S of n points in d-
dimensional space. It can be solved in O(n log n) time
[5]. Its colored counterpart can be solved by comput-
ing a Euclidean minimum spanning tree, thus bound-
ing the time complexity by the one of computing such
a tree [10]. Better results are known for the special
cases of 2 colors and 2 as well as 3 dimensions [1].

There are two dynamic versions of this problem. In
the uncolored variant, the set S is modified by insert-
ing or deleting points. [6] presents a data structure of
size O(n) that maintains a closest pair of S in O(log n)
update time per insertion or deletion of a point. In the
colored variant, the points in S are fixed, but they can
change color dynamically. [10] showed that for an ar-
bitrary number of colors the bichromatic closest pair
can be maintained in O(d+log log n) update time per
color change with a data structure of size O(n).

A natural extension of the closest pair problem is
the all-nearest-neighbors problem, which is the task of
finding the nearest neighbors for all points of a set S of
n points. It can be solved, for arbitrary dimension d,
in O(n log n) time [18]. The colored variant of this
∗Department of Information and Computing Sciences,

Utrecht University, Netherlands, magdalene@cs.uu.nl
†European Center for Soft Computing, Edificio Cientifico-

Tecnologico, c/ Gonzalo Gutiérrez Quirós s/n, 33600 Mieres,
Asturias, Spain, christian.borgelt@softcomputing.es

problem consists in the following task: given a set S
of n points, each having one of c colors, find (in the
set S) a closest point of different color for each of
the n points in S. It can be solved in the plane in
O(n log n) time for an arbitrary number of colors [2].
The static colored all-nearest-neighbor problem has
applications in spatial databases and data mining [15,
13, 8, 19] and in information retrieval [7, 9].

Again there are two dynamic versions of this prob-
lem. In the uncolored variant, S is modified by in-
serting or deleting points. It can be solved by main-
taining a Voronoi diagram for the set of points, thus
bounding the time complexity to that of updating a
Voronoi diagram (which in 2 dimensions takes O(n)
time per insertion or deletion, see Section 4). In the
colored version the points in S are fixed, but they
can change color dynamically. We consider this prob-
lem only in the plane (d = 2) and confine ourselves
to restricted problem instances, which allow us to im-
prove on the time that would be needed for solving the
problem from scratch for each color change (leading
to O(n log n) time per color change, since the static,
colored all-nearest-neighbors problem can be solved
in the plane with this time complexity).

2 A Closer Look at the Problem

Suppose that we obtained, by some algorithm, the
closest bichromatic neighbor for each point in S for a
given coloring of the points. What makes it difficult to
maintain these closest neighbors under color changes?
Obviously it is not that a point that changed from
color i to color j is now eligible as the closest bichro-
matic neighbor of (other) points of color i. This type
of update could easily be achieved in linear time: tra-
verse all points of color i and replace their previously
closest bichromatic neighbor if the point that changed
color is closer. The difficulty comes from the comple-
mentary situation (see Figure 1): if the point that
changed color from i to j was the closest bichromatic
neighbor of some points of color j, a new bichromatic
closest neighbor has to be found for each of these
points. This is difficult, because all points not having
color j are candidates for the new bichromatic clos-
est neighbor, and simply searching them would take
linear time per point that lost its closest neighbor.

The first idea to handle this problem is to maintain
a data structure for all differently colored neighbors of
a point, so that the next closest can be found quickly

1

Figure 1: If the white point in
the middle changes color, all black
points need a new closest neighbor.

if the closest becomes invalid due to a color change.
A natural choice for such a data structure would be a
heap—like a binomial heap or a Fibonacci heap—for
each point, which contains the bichromatic neighbors
of that point. Unfortunately, this would not lead to a
time complexity per color change that is better than
solving the problem from scratch: in the worst case a
linear number of heaps have to be updated by delet-
ing points from them, and even the amortized time
complexity of a deletion is O(log n), thus leading to
a time complexity of O(n log n) per color change. In
addition, the total size of all heaps would be O(n2).

3 Restricted Problem Instances

The efficiency of solutions to dynamic point proximity
problems is measured by parameters like the prepro-
cessing time, the space needed to store the data struc-
tures, the time needed to update the data structures,
and the time needed to answer a user-defined query.
When we studied the dynamic all-nearest-neighbor
problem, we discovered that some options concerning
the last two items in this list had not been investi-
gated fully, and that there was room for improvement
in certain restricted problem instances. Our ratio-
nale is that not all applications require solutions to
the general problem and therefore faster solutions to
restricted instances may be useful in practice.

Our ideas mainly rest on the insight that the stan-
dard problem can be seen as the task to maintain
a data structure that allows a user to query for the
closest, differently colored neighbor of any point in
constant time. Unfortunately, this turns out to be
surprisingly difficult. However, we found that it is ac-
tually fairly easy to maintain, in linear time, data
structures that allow a user to query for the clos-
est neighbor of any point in S in time O(log n) per
point. Hence, if we have an application in which a
user queries for the closest neighbor of, say, only a
constant number of points after each color change,
such a data structure is already very useful.

In addition, if we actually want to maintain, at any
point in time, knowledge about the closest neighbor
of each point in S, then such a solution can lead to
an improvement under constraints. For example, if
we face a restricted problem instance in which a color
change only invalidates a sub-linear number of bichro-
matic neighbors (at least on average), having to look
up the new neighbors still improves on the time com-
plexity of solving the problem from scratch.

This reasoning led us to two restricted problem in-
stances, in which improvements are possible. Sup-

pose, in the first place, that the number of points that
may have the same color is limited to kn

c , where n is
the total number of points, c the number of colors, and
k a real-valued constant greater than 1. Intuitively,
this means that the color distribution may not devi-
ate (upwards) more than a factor k from a uniform
one. In this case we show that the update, maintain-
ing knowledge of all closest neighbors (i.e., lookup in
constant time per point), can be done in O(n

c log n)
time per color change, while solving the problem from
scratch still incurs O(n log n) time.

Alternatively, suppose that the sequence of points
that change color is a concatenation of arbitrary per-
mutations of the point set. In other words, in each
section of n color changes that starts at index kn,
k ∈ IN0, each point appears at most once. Thus on
average each point changes color every n steps, with
0 being the minimum and 2n− 2 being the maximum
number of steps. For this case we show that an up-
date takes O(n) time on average, even though it can
be as bad as O(n2) in the worst case. (It should be
noted that, in principle, it is possible to generalize this
result beyond concatenations of permutations, pro-
vided that on average a point still changes color every
n steps. However, we confine ourselves to the more
restricted version as this simplifies the analysis.)

4 Preliminaries

The data structures we use are always sets of Voronoi
diagrams in the plane. Therefore we recall some prop-
erties of Voronoi diagrams that we need to show the
properties of the update algorithms.

Given a set S of points in the plane, the Voronoi
region VR(p) of a point p in S is the set of all points
in the plane that are closer to the point p than to any
other point in S. The Voronoi diagram VD(S) of S is
the collection of all Voronoi regions of the points in S.
Two points in S are said to be Voronoi neighbors if
the closures of their regions have more than one point
in common. These common points form a so-called
Voronoi edge. Sometimes a Voronoi diagram is also
defined as the union of all Voronoi edges.
Observation 1 The number of Voronoi neighbor
pairs in a Voronoi diagram for a set S of n points
is at most 3n− 6 if n > 3.

This observation follows immediately from the fact
that the Voronoi diagram of a set S of points is closely
related to the Delaunay triangulation of S: each mid-
perpendicular of an edge in the Delaunay triangula-
tion gives rise to at most one Voronoi edge. Therefore
the neighbor graph of the Voronoi diagram (which is
obtained by connecting all Voronoi neighbors in S by
an edge) is a subgraph of the Delaunay triangulation.
As a consequence the neighbor graph has at most as
many edges as the Delaunay triangulation, which, as
any triangulation, has 3n− 6 edges.

2

Observation 2 The sum of degrees in the neighbor
graph, over all points in S, is at most 6n− 12.

This observation follows trivially from the preceding
one, since each edge (Voronoi neighbor pair) con-
tributes to the degree of exactly two points.

The Voronoi diagram of n points can be computed
in O(n log n) time and stored in O(n) space and these
bounds have been shown to be optimal in the worst
case [16]. They can also easily be preprocessed for
point location queries. The methods of [14] and [11],
when combined with a linear time algorithm for trian-
gulating simple polygons [17], need O(n) preprocess-
ing time. After preprocessing the Voronoi diagram,
a point location query can be answered in O(log n)
time [4]. It was also shown that n-point Voronoi di-
agrams can be updated in O(n) worst case time per
insertion or deletion of a point [12]. Consequently, a
data structure allowing for point location queries in
Voronoi diagrams can be maintained in O(n) update
time per insertion or deletion of a point.

5 Constrained Color Distribution

For the cases where the user queries only for the
closest neighbors of a restricted number of points af-
ter each color change or the number of points hav-
ing the same color is bounded by kn

c , we form the
sets Si = {p ∈ S | p has color i}, i = 1, . . . , c, and
Ci = S − Si (that is, the complement sets of points
for each color). Then we build the Voronoi diagrams
VD(Ci), i = 1, . . . , c, which takes O(n log n) time per
Voronoi diagram and thus O(cn log n) total time. Pre-
processing these Voronoi diagrams for point location
adds O(cn) time and thus does not change the overall
time complexity. The total size of the Voronoi dia-
grams is O(cn), since each has worst case size O(n).

In order to maintain this data structure when a
point p changes color from i to j, we have to update
two Voronoi diagrams, namely VD(Ci) and VD(Cj).
The former has to be updated by inserting p, since p
now has color j and thus is in the complement of Si,
the latter by deleting p, since p is now in Sj . These
two updates take O(n) time each (see Section 4).

Of course, updating the two Voronoi diagrams only
yields a data structure that allows us to query for the
closest neighbor of each point in O(log n) time. How-
ever, suppose we queried the initial Voronoi diagrams
with all points and recorded the closest bichromatic
neighbor of each point. In order to update this di-
rect knowledge about closest bichromatic neighbors,
we distinguish again the two situations discussed in
Section 2. For all points in Ci (except p), we check
whether p is now the closest bichromatic neighbor
and update accordingly. This obviously takes at most
O(n) time. For all points in Sj that had p as theirs
closest bichromatic neighbor (which may be all points
of Sj in the worst case), we have to look up new closest

bichromatic neighbors. Due to the restricted problem
instance we consider, we know that |Sj | ≤ kn

c and
thus that we have to execute at most O(n

c) queries,
each of which takes O(log n) time. Therefore the to-
tal update time is O(n

c log n) if we maintain a data
structure in which the closest neighbor of any point
can be found in constant time.

6 Constrained Update Sequence

For the case where the sequence of points that change
color changes is a concatenation of arbitrary permu-
tations of all points in S, we use the algorithm of
[2] for the static colored all-nearest-neighbors prob-
lem. This algorithm builds c + 1 Voronoi diagrams:
one for all points in S (that is, VD(S)) and one for
each of the c colors. The latter are formed for the
sets Ti = {p ∈ Ci | p has a Voronoi neighbor in Si},
where “Voronoi neighbor” is meant w.r.t. VD(S). The
reason is that in order to find a closest neighbor of dif-
ferent color for each point, it suffices to locate every
point pi ∈ Si in the Voronoi diagram of Ti [2]. Hence
the Voronoi diagrams VD(Ti), i = 1, . . . , c, are built.
In addition, since we need this information for the
update, we record for each (occurrence of a) point in
each set Ti how many Voronoi neighbors it has in Si.

Due to Observation 2 we have
∑c

i=1 |Ti| ∈ O(n)
and thus building all Voronoi diagrams VD(Ti), i =
1, . . . , c, takes O(n log n) time. Preparing them for the
queries takes O(n) time, hence the overall time com-
plexity is still O(n log n). The total size of all Voronoi
diagrams is O(n), and the total number of counters
for the Voronoi neighbors in VD(S) is also O(n).

In order to maintain this data structure when a
point p changes color from i to j, we have to update
two Voronoi diagrams, namely VD(Ti) and VD(Tj).
Let VN(p) be the set of all Voronoi neighbors (w.r.t.
VD(S)) of p in Si, that is, VN(p) = {q ∈ S |
q is a Voronoi neighbor of p}. Since p is now in Sj ,
we have to add to Tj all points of VN(p) that are not
yet in Tj (and must update VD(Tj) accordingly), and
since p is no longer in Si, we have to remove those
points in VN(p) that do not have any other Voronoi
neighbor in Si from Ti (and must update VD(Ti) ac-
cordingly) — see Figure 2 for an example. Especially
for the latter operation the Voronoi neighbor counters
are important, because they make it easy to deter-
mine whether a point has another Voronoi neighbor
that entitles it to stay in the set Ti.

Updating the Voronoi diagrams takes O(n) time per
point that has to be added or deleted. Since, in the
worst case, a point can have O(n) Voronoi neighbors,
all of which may have to be added or deleted, the
worst case time complexity of an update due to a color
change is O(n2). However, one may also consider a
scheme where the Voronoi diagrams are rebuild if too
many points (more than k log n for some constant k)

3

a

b c

d
Figure 2: If a changes color from
grey to black, b and c are re-
moved from VD(Tgrey) and c and
d are inserted into V D(Tblack).

have to be added or deleted, thus reducing the worst
case time complexity to O(n log n).

However, if the sequence of points that change color
is a concatenation of arbitrary permutations of all
points in S, we obtain a much better average time
complexity. In order to demonstrate this, we con-
sider one permutation of all points from the sequence
of color changes, say, the section from step kn to step
(k+1)n−1, k ∈ IN0. Let ps be the point that changed
color in step s. Then we know from Observation 2
that

∑n
s=1 VN(ps) ∈ O(n). Consequently, at most a

linear number of points have to be inserted into and
deleted from Voronoi diagrams in n steps. Since each
of these updates take O(n) time each, the total up-
date time in n steps is bounded by O(n2). Therefore
the average update time is linear per color change.

Of course, this procedure only maintains a data
structure with which the closest bichromatic neigh-
bor can be found in (log n) time. In order to improve
the situation for a constant time lookup, we have to
draw again on the restriction of the number of points
that may have the same color. However, the advan-
tage of this procedure is the smaller size of the data
structure that needs to be maintained (namely O(n)
space instead of O(cn)).

7 Conclusions

We described two restrictions that may be introduced
for the dynamic version of the all-nearest neighbor
problem, in which points are fixed, but can change
color. These restrictions allowed us to improve the
time complexity of the update operations compared
to that needed for solving the problem from scratch
after each color change.

Acknowledgments

Partially funded by the Netherlands Organization for Sci-

entific Research (NWO) under FOCUS/BRICKS grant

number 642.065.503.

References

[1] P. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and
E. Welzl. Euclidean Minimum Spanning Trees and
Bichromatic Closest Pairs. Discrete and Computa-
tional Geometry 6:407–422. 1991

[2] A. Aggarwal, H. Edelsbrunner, P. Raghavan, and
P. Tiwari. Optimal Time Bounds for Some Prox-
imity Problems in the Plane. Information Processing
Letters 42:55–60. 1992

[3] F. Aurenhammer. Voronoi Diagrams — A Survey
of a Fundamental Geometric Data Structure. ACM
Computing Surveys 23(3):345–405. 1991

[4] F. Aurenhammer and R. Klein. Voronoi Diagrams.
In: J.-R. Sack and J. Urrutia, eds. Handbook of Com-
putational Geometry, 210–290. Elsevier Science, Am-
sterdam, Netherlands, 2000

[5] J. Bentley and M. Shames. Divide and Conquer in
Multidimensional Space. Proc. 8th Ann. ACM Symp.
Theory of Computing, 220–230. 1976

[6] S. Bespamyatnikh. An Optimal Algorithm for Closest
Pair Maintenance. Proc. 11th Ann. Symp. Computa-
tional Geometry, 152–161. 1995

[7] W. Burkhard and R. Keller. Some Approaches to
Best-match File Searching. Communications of the
ACM, 230–236. 1973

[8] F. Cazals. Effective Nearest Neighbours Searching
on the Hyper-cube, with Applications to Molecular
Clustering. Proc. 14th Ann. ACM Symp. Computa-
tional Geometry. 1998

[9] L. Devroye and T. Wagner. Nearest Neighbor Meth-
ods in Discrimination. In: P.R. Krishnaiah and L.N.
Kanal, eds. Handbook of Statistics, Vol. 2. North-
Holland, Netherlands, 1982

[10] A. Dumitrescu and S. Guha. Extreme Distances in
Multicolored Point Sets. Proc. Int. Conf. Computa-
tional Science (ICCS 2002), Part III , LNCS 2331,
14–25. Springer-Verlag, Heidelberg, Germany 2002

[11] H. Edelsbrunner, L. Guibas, and J. Stolfi. Optimal
Point Location in a Monotone Subdivision. Report 2,
Digital Systems Research Center, Palo Alto, Califo-
nia, USA 1984

[12] I. Gowda, D. Kirkpatrick, D. Lee, and A. Naamad.
Dynamic Voronoi Diagrams. Information Theory,
IEEE Transactions 29:724–731. 1983

[13] T. Hastie and R. Tibshirani. Discriminant Adap-
tive Nearest Neighbor Classification. Proc. 1st Int.
Conf. Knowledge Discovery and Data Mining, 142–
149. 1995

[14] D. Kirkpatrick. Optimal Search in Planar Subdivi-
sions. SIAM Journal Comp. Sci. 28–35. 1983

[15] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, Reading, MA, USA 1989

[16] M. Shamos and D. Hoey. Closest Point Problems.
Proc. 16th Ann. IEEE Symp. Foundations of Com-
puter Science, 151–162. 1975

[17] R. Tarjan and C. van Wyk. A Linear-time Algorithm
for Triangulating Simple Polygons. Proc. 18th Ann.
ACM Symp. Theory of Computing. 1985

[18] P. Vaidya. An O(n log n) Algorithm for the All-
Nearest-Neighbors Problem. Discrete and Compu-
tational Geometry 4:101–115. 1989

[19] J. Zhang, N. Mamoulis, D. Papadias, and Y. Tao.
All-Nearest-Neighbors Queries in Spatial Databases.
Proc. 16th Int. Conf. Scientific and Statistical
Database Management, 297–306. 2004

4

