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Abstract

In this paper we propose to solve two hard geometric
optimization problems: We describe a fixed parame-
ter algorithm for computing the minimum weight tri-
angulation (MWT) of a simple polygon with (n − k)
vertices on the perimeter and k hole vertices in the in-
terior, that is, for a total of n vertices. We show that
the MWT can be found in time at most O(n44kk),
and thus in time polynomial in n if k ≤ O(log n). We
implemented our algorithm in Java and report exper-
iments backing our analysis.

Given a convex polygon with (n − k) vertices on
the perimeter and k hole vertices in the interior,
that is, for a total of n vertices, we also describe a
fixed parameter algorithm for computing the mini-
mum weight convex partition (MWCP) of the input.
We show that the MWCP problem can be found in
at most O(n3 · k4k−8 · 213k) time, and thus at O(n3)
time if k is constant, and in time polynomial in n if
k = O( log n

log log n ). Our results for the MWCP problem
hold also for the more general case where the input is
an n-vertex PSLG and k is the total number of holes
and/or reflex vertices inside the convex hull.

1 Introduction

We propose to solve two hard geometric optimization
problems in this paper:

1. We consider the problem of finding the minimum
weight triangulation (MWT) of a simple polygon
with n − k vertices on the perimeter and k hole
vertices in the interior, i.e., for a total of n ver-
tices. In this case, a MWT is a maximal set of
non-intersecting edges with minimum total edge
length, all of which lie inside the polygon. The
problem of finding the MWT of a set S of points
can be reduced to this problem by finding the
convex hull of S, which is then treated as a (con-
vex) polygon, while all vertices not on the convex
hull are treated as hole vertices. The MWT prob-
lem has several applications [17, 15].

2. We also consider the problem of finding the min-
imum weight convex partition (MWCP) of a con-
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vex polygon with n− k vertices on the perimeter
and k hole vertices in the interior, i.e., for a to-
tal of n vertices. In this case, the MWCP is a
convex partition such that the total edge length
is minimised. The MWCP has applications in
computer graphics [17], image processing [15],
database systems [13], and data compression [17].

It is known that the MWCP of G is NP-hard [11].
With respect to a convex polygon with a single hole
vertex or a convex polygon with two hole vertices,
we [7] gave O(n) and O(n2) time algorithms, respec-
tively. With respect to n-vertex polygons without
holes, Keil [9] developed a dynamic programming al-
gorithm that runs in O(n2N2 log n) time, where N
is the number of concave vertices. Later Agarwal,
Flato, and Halperin [1] improved this time bound to
O(n2N2).

The complexity status of the MWT problem has
been open since 1975, when it was included in a list
of problems neither known to be NP-complete or solv-
able in polynomial time [5]. Recently, however, it was
reported that the MWT problem is NP-hard [16]. For
k = 0 (no holes), however, a MWT can be found by
dynamic programming in time O(n3) [6, 12].

Recent attempts to give exact algorithms for com-
puting a MWT and a MWCP exploit the idea of de-
veloping a so-called fixed parameter algorithm. Such
an algorithm has a time complexity of O(nc · f(k)),
where n is the input size, k is a (constrained) param-
eter, c is a constant independent of k, and f is an
arbitrary function [3].

W.r.t. a MWT of a simple polygon with holes the
total number n of vertices is the size of the input
and we may choose the number k of hole vertices as
the constrained parameter. An algorithm based on
such an approach was presented in [10] and analyzed
to run in O(n5 log(n) 6k) time. In this paper we de-
scribe a fixed parameter algorithm inspired by a basic
observation in this algorithm, but deviating in several
respects. Due to improvements in both the algorithm
and its analysis, we are able to show that the time
needed to find a MWT of a polygon with hole vertices
is at most O(n44kk). In addition, we implemented our
algorithm in Java and performed experiments backing
our analysis.

W.r.t. a MWCP of a convex polygon with holes the
total number n of vertices is the size of the input and
we may choose the number k of hole vertices as the
constrained parameter. In this paper, we describe a
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fixed parameter algorithm for computing the MWCP
of a convex polygon G with n − k vertices on the
perimeter and k hole vertices in the interior, that is,
for a total of n vertices. We show that our algorithm
can solve the problem in at most O(n3 · k4k−8 · 213k)
time, and thus at O(n3) time if k is constant, and in
time polynomial in n if k = O( log n

log log n ). Our results
for the MWCP problem hold also for the more general
case where the input is an n-vertex PSLG and k is the
total number of holes and/or reflex vertices inside the
convex hull.

The paper is structured as follows. In Section 2 we
discuss our results for the MWT problem. In section 3
we discuss our results for the MWCP problem.

The full versions of both algorithms can be found
in [7] and [8] respectively.

2 A Fixed Parameter Algorithm for the MWT
Problem

In this Section we will discuss our results for the MWT
problem.

2.1 Preliminaries and Basic Idea

Following [2], we call a polygon with holes a pointgon
for short. We denote the set of (n− k) perimeter ver-
tices by Vp = {v1, v2, . . . , vn−k}, assuming that they
are numbered in counterclockwise order starting at an
arbitrary vertex. The set of k hole vertices we denote
by Vh = {vn−k+1, vn−k+2, . . . , vn}. The set of all ver-
tices is denoted by V = Vp ∪ Vh, the pointgon formed
by them is denoted by G.

Definition 1 A vertex u ∈ V is said to be lexico-
graphically smaller than a vertex v ∈ V , written
u ≺ v, iff (1) the x-coordinate of u is smaller than
the x-coordinate of v or (2) the x-coordinate of u is
equal to the x-coordinate of v, but the y-coordinate
of u is smaller than the y-coordinate of v.

W.l.o.g. we assume that the vertices in Vh are in lex-
icographical order, i.e., ∀i;n − k < i < n : vi ≺ vi+1.
(Otherwise we can sort and renumber them.)

Definition 2 A path in a pointgon G, i.e., a sequence
of vertices from V , is called lexi-monotone iff it is ei-
ther lexicographically increasing or lexicographically
decreasing. A separating lexi-monotone path (or sim-
ply a separating path) is a lexi-monotone path with
start and end vertices on the perimeter of G (i.e. ver-
tices in Vp) and a (possibly empty) sequence of hole
vertices (i.e. vertices in Vh) in the middle, which does
not intersect the perimeter of G.

With these definitions, the core idea of our algorithm
(as well as the core idea of the algorithm in [10]) is
based on the following observation:

Observation 1 Let v ∈ Vp be an arbitrary vertex on
the perimeter of a pointgon G. Then in every triangu-
lation T of G there exists: either a separating path π
starting at v or two perimeter vertices vc and vcc that
are adjacent to v and that together with v form a
triangle without any hole vertices in its interior.

As a consequence, we can try to find the MWT of
a given pointgon G with a recursive procedure that
considers possible splits of G into at most two sub-
pointgons (using the above observation). The MWT
is then obtained as the minimum over all these splits.

Formally, we can describe the solution procedure as
follows: Let G be a given pointgon and v ∈ Vp an ar-
bitrary vertex on the perimeter of G. Let Π(G, v) be
the set of all separating paths of G starting at v. If
π ∈ Π(G, v) is a separating path, let |π| be the length
of π and L(G, π) and R(G, π) the sub-pointgons to
the left and to the right of π, respectively. Further-
more, let vc and vcc be the perimeter vertices that
are adjacent to v in clockwise and counterclockwise
direction, respectively. Then the weight of a MWT of
G can be computed recursively as

min
{

minπ∈Π(G,v){MWT(L(G, π))

+ MWT(R(G, π))− |π|
}
,

MWT(R(G, (vcc, vc))) + |(v, vcc)|+ |(v, vc)|
}

.

The first term in the outer minimum considers all
splits by separating lexi-monotone paths. The second
term in the outer minimum refers to the special path
(vcc, vc) that “cuts off” v from the rest of the point-
gon if the triangle (v, vcc, vc) does not contain any
hole vertices. Although the above recursive formula
only computes the weight of a MWT, it can easily be
extended to yield the edges of a MWT by returning
the set of edges that is added in order to achieve a tri-
angulation for each recursive call. The union of these
sets of edges for the term that yields the minimum
weight is a MWT for the original pointgon G.

2.2 Dynamic Programming

To apply dynamic programming, we have to identify
the different subproblems that we meet in the recur-
sion, and we have to find a representation for them.
The core idea here is: if in the recursion we prefer to
use the same vertex v for attaching separating paths
as in the preceding split, every subproblem we en-
counter can be described by one or two lexi-monotone
paths that start at the same vertex v (which we call
an anchor of the subproblem) and a coherent piece of
the perimeter of the input pointgon. An analysis of
this statement, providing a proof, will be given later.

We represent a subproblem by an index word over
an alphabet with n characters, which uniquely iden-
tifies each subproblem. This index word has the gen-
eral form (v, πcc, πc) and describes a counterclockwise
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Figure 1: The four types of pointgons we encounter.

walk along the perimeter of the subproblem. The first
element is the anchor v, which may be a perimeter
vertex or a hole vertex of the input pointgon and thus
can have n possible values. πcc and πc describe the
sequences of hole vertices of the input pointgon that
are on the separating paths. All elements of πcc and
πc are in Vh—with the possible exception of the last
elements, which may be perimeter vertices scc and
sc, respectively. The vertices in a coherent perimeter
piece between the end vertices scc and sc (if such a
perimeter piece exists) are not part of the subproblem
representation, but are left implicit.

Instead of pure dynamic programming, we use
memorized tree recursion based on a trie structure,
which is accessed through the index word represent-
ing a subproblem. In each recursive call, we first ac-
cess the trie structure in order to find out whether the
solution to the current subproblem is already known.
If it is, we simply retrieve and return the solution.
Otherwise we carry out the split computations and in
the end store the found solution in the trie.

2.3 Types of Pointgons

Apart from the input pointgon, which is of neither of
these types, we encounter four types of sub-pointgons
(see Figure 1; this set differs from the one used in [10]):

Type A pointgons have only one separating path
starting at the anchor v, which must be on the perime-
ter of the input pointgon. The vertices on the path are
lexicographically increasing. There is also a coherent
perimeter piece of the input pointgon.

Type B pointgons are bounded by two separating
paths starting at the anchor v, which may be either a
perimeter vertex or a hole vertex of the input point-
gon. The vertices on both paths are lexicographi-
cally increasing. There may or may not be a coherent
perimeter piece of the input pointgon.

Type C pointgons are bounded by two separating
paths starting at the anchor v, which must be a
perimeter vertex of the input pointgon. One of them

v A
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v B

vB

v B
vB

A
vA

v

A
vA

C

vC

Figure 2: Processing of Type A
pointgons in the recursion. v
and v∗, ∗ ∈ {A,B, C}, mark
the subproblem anchors.

is lexicographically increasing, the other decreasing.
There is a perimeter piece of the input pointgon.

Type D pointgons are bounded by two separating
paths starting at the anchor v, which may be either a
perimeter vertex or a hole vertex of the input point-
gon. The vertices on both paths are lexicographically
decreasing. There must be a perimeter piece of the
input pointgon, which contains at least two vertices.

The general principle of the choice of the anchor
of a subproblem is that it is the leftmost vertex on
the separating path if there is just one path, and the
vertex that is on both paths if there are two sepa-
rating paths. If there are two vertices that are on
both paths (because they share both start and end
vertex), we choose the leftmost of the two. For the
input pointgon, we choose the lexicographically small-
est perimeter vertex as the anchor.

For the input pointgon, regardless of whether the
path starts at the anchor or cuts off the anchor, we
obtain a sub-pointgon of type A for the subproblems.
The other types of pointgons can only be created in
deeper levels of the recursion. In the following we
consider how these types of pointgons are treated in
the recursion in our algorithm and thus also prove
that these are the only types of pointgons that occur.

Type A: The different splits of a type A pointgon are
sketched in Figure 2. On the very left a path “cut-
ting off” the anchor, which is seen as leading from the
counterclockwise neighbor of v to its clockwise neigh-
bor, can be merged with the existing separating path
to give a new type A pointgon. Otherwise, we ob-
tain a type B pointgon (second sketch). For a path
starting at the anchor, we distinguish whether it is
lexicographically increasing (third sketch) or decreas-
ing (fourth sketch, note the different anchor). In the
former case, we obtain one type A and one type B
pointgon, which receive the same anchor as the origi-
nal pointgon. In the latter case, we obtain one type A
pointgon, with its anchor at the end of the new sepa-
rating path, and one type C pointgon, with its anchor
equal to that of the original pointgon. Note that all
cases may also occur mirrored at a horizontal axis,
which should also be kept in mind for the other types.
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Figure 3: Processing of Type B
pointgons in the recursion. v
and v∗, ∗ ∈ {A,B}, mark the
subproblem anchors.
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Figure 4: Processing of Type C
pointgons in the recursion. v
and v∗, ∗ ∈ {A,B, C, D}, mark
the subproblem anchors.

Type B: Type B pointgons behave similarly to
type A pointgons (see Figure 3). Again we have to
check whether a type A pointgon can result (first
sketch). Otherwise we get a type B pointgon with
an anchor that is one end of the cutting path (second
sketch). For separating paths starting at the anchor
only type B pointgons can result (third and fourth
sketch), since both separating paths are increasing.

Type C: Type C pointgons (which do not appear in
[10]) are the most complicated case (see Figure 4). If
the anchor is “cut off”, we only have one separating
path, so the anchor is set to its starting vertex and
we obtain a type A pointgon (first sketch). If a sepa-
rating path is attached to the anchor, we have to dis-
tinguish whether it is lexicographically increasing or
decreasing. Increasing paths are simpler, leading to a
split into one type C and one type B pointgon (second
sketch). If the path is lexicographically decreasing, we
have to check whether there is a perimeter piece of the
input pointgon with at least two vertices. If there is
not, we obtain one type B pointgon, with its anchor
at its leftmost vertex, and one type C pointgon, which
maintains the anchor of the original pointgon (third
sketch). Otherwise we obtain one type D and one
type C pointgon, both of which receive the anchor of
the original pointgon (fourth sketch).

Type D: Type D pointgons behave symmetrically to
type B pointgons. When the anchor is “cut off” we
also have to check whether a type A pointgon results
(first sketch). Otherwise we get a type D pointgon
with an anchor that is one end of the cutting path
(second sketch). For separating paths starting at the
anchor either one type B and one type D pointgon
(third sketch), namely if one perimeter piece is empty,
or two type D pointgons result (fourth sketch).

vD
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vD

vB
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D
vD
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Figure 5: Processing of Type D
pointgons in the recursion. v
and v∗, ∗ ∈ {A,B, D}, mark
the subproblem anchors.

Comparison to [10]: Our approach gives rise to a
different set of sub-pointgons. An important advan-
tage of our approach is that it uses a coherent scheme
for processing the sub-pointgons, which is strictly
based on either “cutting off” the anchor or attach-
ing a lexi-monotone path to the anchor (Section 2.1).
In contrast to this, the approach of [10] needs an ad-
ditional split type (when processing a type 1/type A
pointgon).

2.4 Analysis

To estimate the time complexity of our algorithm, we
group the subproblems and analyze the groups sepa-
rately. The groups are defined by the number of hole
vertices the sub-pointgon has on its perimeter.

So consider the number of subproblems with l, 0 ≤
l ≤ k, hole vertices on the perimeter. The worst case
is that we have three perimeter vertices of the input
pointgon, namely the anchor and the two ends of the
separating paths. This gives us a factor of n3. Next
we have to choose l of the k input hole vertices, for
which we have

(
k
l

)
possibilities, and then we have to

distribute the chosen hole vertices on the two paths,
for which there are 2l possibilities. As a consequence
we have in the worst case O(n3

(
k
l

)
2l) possible sub-

pointgons with l holes on the perimeter.
Given a sub-pointgon with l holes on the perimeter,

there are at most k − l holes left to form a separat-
ing path and at most n end points. This gives us a
maximum of n2k−l possible paths. For each path, we
have to check whether it intersects the perimeter of
the sub-pointgon. This check can exploit a prepro-
cessing step in which we determine for each edge that
could be part of a separating path whether it inter-
sects the perimeter of the input pointgon or not. The
resulting table has a size of at most n2. With this
table we can check in O(k − l) whether a given sepa-
rating path intersects a (possibly existing) perimeter
piece. We also have to check for an intersection with
the at most two already existing separating paths,
which contain at most l +2 edges. By exploiting that
all paths are lexi-monotone, this check can be car-
ried out in O(k). Once a path is found to be valid,
the sub-pointgons have to be constructed by collect-
ing their at most k + 3 defining vertices, and their
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n− k k time in seconds time/n44kk

3 1 0.008± 0.000 7.813·10−6

6 1 0.009± 0.000 9.371·10−7

9 2 0.039± 0.003 8.324·10−8

12 3 0.071± 0.004 7.305·10−9

15 4 0.121± 0.020 9.067·10−10

18 5 0.370± 0.090 2.582·10−10

21 6 1.365± 0.539 1.045·10−10

24 7 5.402± 2.209 5.100·10−11

27 8 25.335± 10.449 3.220·10−11

30 9 90.641± 34.399 1.661·10−11

Table 1: Results obtained from our Java implementa-
tion. All results are averages over 20 runs.

solutions have to be looked up. Both operations take
O(k) time. Finally the length of the path has to be
computed, which takes O(k−l) time. Thus processing
one path takes in all O(k) time.

Therefore the overall time complexity is O(n44kk).

2.5 Implementation

As already mentioned, we implemented our algorithm
in Java. Example results for different numbers of holes
and perimeter vertices (averages over 20 runs, convex
pointgons) are shown in Table 1. The test system
was an Intel Pentium 4C@2.6GHz with 1GB of main
memory running S.u.S.E. Linux 10.0 and Sun Java
1.5.0 03. To check our estimate of the time complex-
ity, we computed the ratios of the measured execution
times to the theoretical values. As can be seen, these
ratios are decreasing for increasing values of n and k,
indicating that the theoretical time complexity is ac-
tually a worst case, while average results in practice
are considerably better. The source code of our imple-
mentation can be downloaded at http://fuzzy.cs.uni-
magdeburg.de/˜borgelt/pointgon.html.

3 A Fixed Parameter Algorithm for the MWCP
Problem

In this Section we will discuss our results for the
MWCP problem.

3.1 Preliminaries

We consider as input a convex polygon with (n − k)
vertices on the perimeter and k hole vertices, thus
a total of n input vertices. We call such a con-
vex polygon with holes a convex pointgon for short.
We denote the set of perimeter vertices by Vp =
{v0, v1, . . . , vn−k−1}, assuming that they are num-
bered in counterclockwise order starting at an arbi-
trary vertex. The set of hole vertices we denote by

Vh = {vn−k, vn−k+1, . . . , vn−1}. The set of all ver-
tices is denoted by V = Vp ∪ Vh, the convex pointgon
formed by them is denoted by G.

Given a convex pointgon G a p-edge is an edge from
a hole vertex to any vertex on the perimeter.

Fact 1 Given a convex pointgon G , apart from edges
going between hole vertices, at most 3 p-edges inci-
dent to a hole vertex are sufficient to induce a convex
partition.

Proof. At most three p-edges suffice for each hole
vertex because if a hole vertex is incident to four p-
edges, there must be one that can be removed without
introducing a concavity at the hole vertex. Removing
it also does not introduce a concavity at the perimeter,
because the polygon we consider is convex. �

From the proof in Fact 1, we observe a decisive dif-
ference between a p-edge and an edge going between
hole vertices. That is, removing an edge going be-
tween hole vertices so that no concavity is introduced
at one end point may very well introduce a concavity
at the other end point and thus we cannot remove it.

From Fact 1 we deduce a more special case:

Fact 2 For any MWCP of G there are at most three
p-edges incident to a hole vertex.

Proof. At most three p-edges are needed for each
hole vertex because of the same reasoning in the proof
of Fact 1. Moreover removing the forth p-edge de-
creases the weight for the case of the MWCP prob-
lem. �

Given a convex polygon with k vertex holes, at most
3 p-edges incident to each hole vertex are needed to in-
duce a minimum convex partition. Thus a maximum
of at most 3k p-edges can be in the solution. Given at
most 3k p-edges we can also check whether they inter-
sect in constant time since k is constant. A simple and
obvious way to solve the problem is to use a brute-
force approach of examining all the possible ways of
selecting the 3k p-edges. For each possible 3k p-edges
we consider all possible combinations of non-crossing
edges going between hole vertices. There are at most
O(23 · 59)k · k−6) such combinations [4, 18]. Selecting
the best over all combinations solves the problem in
O(n3k · (23 · 59)k · k−6) time.

Given a convex pointgon G, we consider partition-
ing G into so called v-pieces. These v-pieces serve the
purpose to divide the problem into subproblems such
that a subproblem denotes a piece of G containing
a single hole vertex. The v-pieces alone do not nec-
essarily yield a convex partition. The subproblems
representing v-pieces are solved and the results are
combined. The idea is that for any given convex par-
tition CP, the v-pieces and CP are compatible if and
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only if for each hole vertex vh ∈ Vh, the p-edges inci-
dent to vh in CP lie only in one or several v-pieces of
vh.

Definition 1 A v-piece (vh, v1, v2) is a part of a given
polygon P with holes, where vh ∈ Vh is a hole vertex
and v1 ∈ Vp and v2 ∈ Vp are (not necessarily dis-
tinct) perimeter vertices (the so-called vital points of
the v-piece). It is the part bounded by the two p-
edges (vh, v1) and (vh, v2), the so-called vital edges,
and the part of the perimeter of G that is traversed
by a counterclockwise walk from v1 to v2. If a v-piece
(vh, v1, v2) contains no other hole vertices, we call it a
legal v-piece (or just a v-piece, for short). If a v-piece
(vh, v1, v2) contains other hole vertices, we call it an
illegal v-piece.

Note that the v-piece (vh, v1, v2) is not the same
as the v-piece (vh, v2, v1). That is, the order of the
vertices v1 and v2 is important, since the part of the
perimeter of G that bounds the v-piece is defined by
a counter-clockwise walk from the first vertex to the
second. Therefore (vh, v1, v2) and (vh, v2, v1) are com-
plements of each other w.r.t. the convex pointgon G;
their union is the whole convex pointgon G.

The idea of the algorithm is to partition the perime-
ter of G into (legal) v-pieces, such that each hole ver-
tex h has at most 3 v-pieces. Three v-pieces suffice,
because no more than three p-edges per hole vertex
are needed to achieve a convex partition (see Fact 1).
If there were more than 3 v-pieces, at most three can
contribute p-edges to the solution. Therefore we can
remove all v-pieces that do not contribute without
changing the solution. The partition should be such
that the v-pieces of a coonvex pointgon G put together
contain the entire perimeter of G (but not necessar-
ily the entire polygon P ). Adjacent v-pieces, that is,
v-pieces that have at least one perimeter vertex in
common, should belong to different hole vertices.

The core idea of our algorithm is that in order to
find a MWCP it suffices to search all possible parti-
tions into v-pieces, where the partition is such that
two v-pieces associated with the same whole do not
share a vital point, but all v-pieces together cover
the perimeter. To show this, we only have to show
that any convex partition has a compatible partition
into v-pieces, from which it can be derived, so that
we do not “miss” any convex partition by searching
only partitions into v-pieces. One can do this by ini-
tially constructing an v-piece partition by placing one
vital point at the end of each p-edge, associating it
with the hole vertex the p-edge leads to. We turn
this into a list, by starting at a perimeter vertex and
following the perimeter counterclockwise, numbering
vertices and collecting vital points. If several vital
points are located at the same perimeter vertex, we
order them according to the order in which the corre-

sponding p-edges are met on a traversal of the perime-
ter shrunk by some small ε. That is we follow a route
inside the perimeter which is at a distance ε from the
perimeter. Next we remove from this list consecutive
vital points that are associated with the same hole
vertex to satisfy the condition stated in the definition
above. The resulting list induces a partition into v-
pieces that is compatible with the convex partition.
Since we did not restrict the convex partition in any
way, this procedure enables us to find a compatible
partition into v-pieces for all convex partitions.

Note that the partition into v-pieces generated as
described in the preceding paragraph is valid, that is,
there are no intersecting vital edges. To see this, con-
sider any two consecutive (with respect to the perime-
ter) p-edges {(vh, v), (vh, v′)}, vh ∈ Vh, v, v′ ∈ Vp. If
no p-edge is incident to the perimeter between v and
v′, then (vh, v) and (vh, v′) must belong to the same
hole-free convex polygon in the partition. Hence the
v-piece of vh, which contains v can extend to any ver-
tex between v and v′, including v′.

It is shown in [7] (the full version) that given k
hole vertices in a convex polygon P , there are at most
E = max(2k − 2, 1) v-pieces in the minimum convex
partition. Note however that the precise number of v-
pieces is not crucial for the complexity result, it only
helps to refine it a little bit. A rougher approximation
of its number would suffice to get similar asymptotic
upper bounds.

In order to generate all possible partitions into v-
pieces (which we have to search), we proceed as de-
scribed in the following sections.

3.2 Preprocessing Phase

We consider all possible combinations of non-crossing
edges going between hole vertices, i.e., all non-crossing
super-graphs on the k hole vertices. The total number
of such graphs is at most O((23 · 59)k · k−6) [4, 18].

As shown pointed out above, it can be shown that
given a convex pointgon G, at most 3 v-pieces in-
cident to a hole vertex are sufficient achieve a con-
vex partition (See [7] as well for further explanation).
Therefore for each non-crossing graph on the k hole
vertices, we allocate a label i ∈ {1, 2, 3} to each non-
convex hole vertex, which is meant to indicate how
many v-pieces that hole vertex would have in a convex
partition if it can be constructed. There are no more
than 3k such labelings for any non-crossing graph.

Since we know the upper bound E = max(2k−2, 1)
on the total number of v-pieces the k hole vertices may
have in an MWCP [7], we discard all labelings where
the total number of v-pieces is greater that E. To
process one labeling, we allocate unique names to each
hole’s v-pieces as follows: A v-piece name is a tuple
(vh, x), where vh ∈ Vh is a hole vertex and x ∈ {a, b, c}
distinguishes between the (at most) three v-pieces the
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hole vertex vh has.

We then consider the arrangement of lines, such
that for each pair of hole vertices we have a line con-
taining them. We look at all intersections of this
arrangement with the perimeter. There are O(k2)
such intersections. Therefore the intersections of
these lines with the perimeter partition the perime-
ter into O(k2) pieces. We will refer to each such piece
as a ‘topologically homogeneous perimeter piece’ (or
‘homogeneous piece’ for short). Assume we let the
homogeneous pieces of the perimeter CH(P ) to be
{CH(P ) = C0, C1, . . . , Cµ} in counterclockwise or-
der.

For each vital edge (see Definition 1) of a v-piece
there can be O(k2) possibilities as to which homo-
geneous piece the vital edge should be incident to.
However, since the v-pieces are contiguous, that is,
neighbouring v-pieces share a vital point, it suffices
to allocate one tag Cj , j = 1, 2, . . . , µ, to each v-piece
name (vh, x), instead of one tag for each vital edge.
We define that the tag Cj represents the homogeneous
piece the most clockwise vital edge of (vh, x) is inci-
dent to. To find the homogeneous perimeter piece the
most counterclockwise vital edge of a v-piece is inci-
dent to, we retrieve the tag of the neighboring v-piece
that shares the vital point this vital edge goes to.

A v-piece name assigned to a homogeneous piece Cj

is a tuple ((vh, x), Cj). There are O(k4k−4·22k−2) such
assignments to be considered for a given labeling L,
since there are at most 2k−2 v-piece names and each
v-piece name can be assigned to O(k2) homogeneous
pieces.

For each homogeneous assignment to v-piece name,
we then take an arbitrary point on the perimeter of
each homogeneous piece and connect it to all hole ver-
tices which should have a vital edge going to it. Let
E′ be the set of edges (line segments) created in this
way, for all homogeneous pieces. We do this to:
(1) Check for possible edge intersections. (We have
no intersections if and only if the set E′ together
with all edges of the non-crossing supergraph does
not lead to any intersections.) If there are edge inter-
sections, we discard the current labeling. (2) Find an
ordering Φ of the v-piece names of the current label-
ing L, corresponding to the counterclockwise ordering
in which the vital edges of the v-pieces will appear on
the shrunk perimeter if a convex partition is to be
constructed. This step takes O(k log k) time, because
it is basically a sorting operation.

Before we start the dynamic programming, which
determines whether it is possible to place the p-edges
on the perimeter vertices we know: 1) How many v-
pieces are associated to each hole vertex. 2) The ho-
mogeneous piece a vital edge of a v-piece should go
to. 3) The counterclockwise ordering Φ of the v-piece
names. 4) All edges connecting hole vertices.

3.3 Dynamic Programming Phase

For each ordering Φ of the v-piece names, we look
at coherent subsequences of 1 ≤ j ≤ 2k − 2 v-piece
names. We consider and solve each subsequence of
j v-piece names with the condition that either a hole
vertex has all its v-piece names (at most three) in this
subsequence, or none of them. We will refer to such
subsequences as valid coherent subsequences. Let C
be a coherent piece of the polygon starting at perime-
ter vertex l and containing m vertices. If we have
the most clockwise vital edge for a v-piece i at ver-
tex l and the most counterclockwise vital edge for a
v-piece j at (l+m) mod n (the other end of the chain),
we want to find the optimal way to place the p-edges
on the way counterclockwise from l to (l + m) mod n
in order to minimise the length of the correspond-
ing convex partition, if such a convex partition ex-
ists. To be precise, we specify each subproblem as a
4-tuple (i, j, l,m), where i ∈ 1 . . .max(2k − 2, 1) indi-
cates the position of the first element of the coherent
subsequence in the counterclockwise ordered list of
v-piece names, j ∈ 1 . . .max(2k − 2, 1) represents the
number of v-piece names of the coherent subsequence,
l ∈ 0 . . . n − k − 1 represents the vertex vl where the
considered perimeter piece starts at, m ∈ 1 . . . n − k
represents the number of vertices on the considered
perimeter piece.

We start with smaller subproblems which are later
used to solve larger subproblems, that is, we consider
subproblems in the order of increasing j and m.

For each subproblem we store the length of the min-
imum convex partition if it is possible to obtain a
convex partition. Otherwise we store ∞ indicating a
convex partition cannot be constructed.

See [7] for how the type of subproblems are solved.

3.4 Analysis

We considered all possible combinations of non-
crossing super-graphs on the k hole vertices. There
are O((23 · 59)k · k−6) number of such non-crossing
super-graphs [7]. It takes O((23 · 59)k · k−6) time to
enumerate all such non-crossing super-graphs [7]. For
each non-crossing super-graph G′, we considered all
the possible labelings of the number of v-pieces cor-
responding to each hole vertex. There are not more
than 3k such labelings for each non-crossing super-
graph. For each labeling L, we considered all possible
homogeneous assignments. There are O(k4k−4 ·22k−2)
such assignments to be considered for a given label-
ing L. For each assignment, we then obtained the
counterclockwise ordering Φ of the corresponding v-
piece names in O(k log k) time. For the ordering Φ
of an assignment Π of a labeling L, we then check
for possible edge intersections in time polynomial in
k and then run the dynamic programming algorithm
which takes O(n3k2) time at each time it is called.
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This is because, the memory requirement in the worst
case is dominated by the O(n2 · k2) space for the ta-
ble entries. We solve directly each subproblem in time
O(n) with the help of the smaller subproblems. That
is why each call of the dynamic programming algo-
rithm takes O(n3k2) time. We call the dynamic pro-
gramming algorithm at most O(k4k−10 · 213k) times.
Thus the time taken to solve the MWCP problem
is O((23 · 59)k · (k−6) · 3k · (k4k−4 · 22k−2) · n3k2) =
O(n3 · k4k−8 · 213k).

It is straightforward to generalize this result to the
case where we have as input a PSLG G and k is the
total number of holes and/or reflex vertices inside the
convex hull of G.1
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