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Abstract: A recent topic in probabilistic network
learning is to exploit local network structure, i.e. to
capture regularities in the conditional probability dis-
tributions, and to learn networks with local structure
from data. In this paper we apply this idea to pos-
sibilistic networks, i.e. we try to capture regularities
in conditional possibility distributions, and present a
modification of the learning algorithm for Bayesian
networks with local structure suggested in [7]. The
idea underlying this modification is to exploit the de-
cision graph structure that is used to represent the
regularities not only to capture a larger set of regular-
ities than decision trees can, but also to improve the
learning process.

1 Introduction

Probabilistic inference networks — Bayesian networks
[19], but also Markov networks [17] — are well-known
tools for reasoning under uncertainty in multidimen-
sional spaces. The idea underlying them is to ex-
ploit independence relations between variables in order
to decompose a multivariate probability distribution
into a set of (conditional or marginal) distributions
on lower-dimensional subspaces. Efficient implemen-
tations include HUGIN [1] and PATHFINDER [13].

Such independence relations have been studied ex-
tensively in the field of graphical modeling [15] and
though using them to facilitate reasoning in multidi-
mensional domains has originated in probabilistic rea-
soning, this approach has been generalized to other
uncertainty calculi [23], e.g. in the so-called valuation-
based networks [24], and has been implemented e.g. in
PULCINELLA [22].

Due to their connection to fuzzy systems and their
ability to deal not only with uncertainty but also with
imprecision, recently possibilistic networks also gained
some attention. They have been implemented e.g. in
POSSINFER [10, 16]. In this paper we consider a type
of possibilistic network that is based on the context-
model interpretation of a degree of possibility and fo-
cussed on imprecision [9].

2 Possibilistic Networks

The development of possibilistic networks was trig-
gered by the fact that probabilistic networks are well
suited to represent and process uncertain information,
but cannot that easily be extended to handle imprecise
information. Since the explicit treatment of imprecise
information is more and more claimed to be necessary
for industrial practice, it is reasonable to investigate
graphical models related to alternative uncertainty cal-
culi, e.g. possibility theory.

Maybe the best way to explain the difference be-
tween uncertain and imprecise information is to con-
sider the notion of a degree of possibility. The in-
terpretation we prefer is based on the context model
[9, 16]. In this model possibility distributions are seen
as information-compressed representations of (not nec-
essarily nested) random sets and a degree of possibility
as the one-point coverage of a random set [18].

To be more precise: Let wy be the actual, but un-
known state of a domain of interest, which is con-
tained in a set Q of possible states. Let (C,2¢,P),
C ={c1,ca,...,cm}, be a finite probability space and
v : C — 2% a set-valued mapping. C is seen as a set of
contexts that have to be distinguished for a set-valued
specification of wg. The contexts are supposed to de-
scribe different physical and observation-related frame
conditions. P({c}) is the (subjective) probability of
the (occurrence or selection of the) context c.

A set v(c) is assumed to be the most specific correct
set-valued specification of wg, which is implied by the
frame conditions that characterize the context c. By
‘most specific set-valued specification’ we mean that
wo € ¥(c) is guaranteed to be true for v(c), but is not
guaranteed for any proper subset of y(c). The result-
ing random set T' = (v, P) is an imperfect (i.e. impre-
cise and uncertain) specification of wy. Let 7 denote
the one-point coverage of T (the possibility distribution
induced by T'), which is defined as

ar:Q— [0,1,7r(w) =P ({ce Clwev(c)}).

In a complete modeling the contexts in C' must be
specified in detail, so that the relationships between



all contexts c; and their corresponding specifications
v(c;) are made explicit. But if the contexts are un-
known or ignored, then 7r(w) is the total mass of all
contexts ¢ that provide a specification (¢) in which wq
is contained, and this quantifies the possibility of truth
of the statement “w = wy” [9, 12].

As a concept of independence, which is fundamental
to the technique of graphical modeling, we use possi-
bilistic non-interactivity. Let X, Y, and Z be three
disjoint subsets of variables. Then X is called condi-
tionally independent of Y given Z w.r.t. m, if Vw € Q0 :

m(wxuy |wz) = min{r(wx |wz), 7(wy | wz)}

whenever m(wz) > 0, where 7 (- | -) is a non-normalized
conditional possibility distribution

wx
WZ}7

m(wx | wz) = max{m(w’) | w' € Q Aproj x (w)
Aproj z(w)

with projy(w) the projection of a tuple w to the vari-
ables in X.

A possibilistic network is a decomposition of a multi-
variate possibility distribution according to

m(Aq,...,Ap) =min?_ 7(A4; | parents(A4;)),
where parents(Ay) is the set of parents of variable Ay,
which is made as small as possible by exploiting con-
ditional independencies of the type indicated above.
Such an network is usually represented as a directed
graph in which there is an edge from each of the par-
ents to the conditioned variable.

Learning possibilistic networks from data has been
studied in [11, 12, 2, 3]. The idea to exploit local struc-
ture, which up to now has only been considered for
probabilistic networks, can be applied directly to (con-
ditional) possibility distributions, since it is not bound
to any specific uncertainty or imprecision calculus.

3 Local Network Structure

Whereas the global structure of a probabilistic or pos-
sibilistic network is the directed acyclic graph that en-
codes the conditional independence statements that
hold in a certain domain of interest, the term “lo-
cal structure” refers to regularities in the conditional
probability or possibility tables that are stored with
the nodes of the network. Several approaches to ex-
ploit such regularities have been studied for Bayesian
networks in order to capture additional (i.e. context
specific) independencies and (potentially) enhance in-
ference. In this paper we focus on the decision
tree/decision graph approach [4, 7] and review it trans-
ferred to possibilistic networks.

A very simple way to encode a conditional possi-
bility distribution is a table which for each combina-
tion of values of the conditioning variables contains
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Figure 1: A small section of a possibilistic network.

parents (a) child (b) child

A B C’:cl C:CQ 0261 C:CQ
ar by 11 T12 T11 12
ap by o1 T2 i1 12
ay by 31 32 731 32
az by 41 42 41 42
a3 by 51 52 21 22
az by o1 T62 T21 T22

Table 1: Two conditional possibility tables for the sec-
tion of a possibilistic network shown in figure 1, (a)
without, (b) with some regularities.
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Figure 2: A full decision tree for the variable C.
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Figure 3: A partial decision tree for the variable C.

a line stating the corresponding possibility distribu-
tion for the values of the conditioned variable. As a
simple example, let us consider the small section of
a network shown in figure 1 (and let us assume that
in this network the variable C' has no other parents
than variables A and B). Let dom(A) = {a1, a2, as},
dom(B) = {b1,b2}, and dom(C) = {c1,c2}. Then the
conditional possibilities 7(C' = ¢, | A = a;, B = b;)
have to be stored with the node for variable C, e.g. as
shown in table 1 (a).

The same set of conditional possibility distributions
can also be stored in a tree, in which the leaves hold
the conditional possibility distributions and each level
of inner nodes corresponds to one conditioning vari-
able (see figure 2). The branches in this tree are la-
beled with the values of the conditioning variables and
thus each path from the root to a leaf corresponds



parents (a) child (b) child

A B C=cp C=c||C=c1 C=cy
ar by 11 12 11 12
ar by 11 12 11 12
ay by 21 T2 o1 T22
az  bo 31 32 31 T32
az b a1 T2 31 32
a3 by 41 142 41 42

Table 2: Two conditional possibility tables for the sec-
tion of a Bayesian network shown in figure 1, with
different kinds of regularities.

to one combination of values of the conditioning vari-
ables. Obviously such a tree is similar to a decision
tree for the variable C' (like one learned e.g. by C4.5
[20]) with the following restrictions: All leaves have to
lie on the same level and in one level of the tree the
same variable has to be tested on all paths. If these
restrictions hold, we call the tree a full decision tree.

Let us now assume that there are some regulari-
ties in the conditional possibility distribution (see ta-
ble 1 (b)). Since the table clearly shows that the value
of the variable B is important only, if A has the value
as, the tests of variable B can be removed from the
branches for the values a; and as (see figure 3).

However, a decision tree is not powerful enough to
capture all possible regularities. Although we can
achieve a lot by tolerating a change in the test or-
der of the variables and by accepting binary splits and
multiple tests of the same variable (then, for exam-
ple, the regularities in table 2 (a) can be represented
by a decision tree, which, for reasons of space, is not
shown) the regularities shown in table 2 (b) cannot be
represented by a decision tree.

The problem is that in a decision tree a test of a vari-
able splits the lines of a conditional possibility table
into disjoint subsets that cannot be brought together
again. In table 2 (b) a test of variable B thus separates
lines 1 and 2 and a test of variable A separates lines 4
and 5. Hence either test prevents us from exploiting
one of the two equivalences of possibilities. This draw-
back can be overcome by allowing a node of the tree
to have more than one parent, thus going from deci-
sion trees to decision graphs [7]. With decision graphs
the regularities in table 2 can easily be captured, see
figure 4 (a).

4 Learning Local Structure

To learn a decision graph from data one can go about
as for learning a decision tree. That is, one can define
split operations (a full split and a binary split) and in
addition (since we are dealing with decision graphs) a
merge operation for leaf nodes. The operation to per-
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Figure 4: (a) A decision graph for which no equiva-
lent decision tree exists. It captures the regularities
in table 2 (b). Replacing the leftmost branch as indi-
cated in (b) turns it into a decision graph with a full
set of inner nodes. Note that in this case the test of
variable B in the leftmost node on the second level is
without effect, since both edges lead to the same leaf.

form is chosen by a greedy approach w.r.t. some eval-
uation measure. This is, in a nutshell, the approach
taken in [7].

Our own approach is a slight modification of the
above. The additional degree of freedom of decision
graphs compared to decision trees, namely that a node
in a decision graph can have more than one parent,
can be exploited not only to capture a larger set of
regularities but also to improve the learning process
for the local structure of a possibilistic network. Our
idea is as follows: With decision graphs, we can always
work with the complete set of inner nodes of a full
decision tree and let only leaves have more than one
parent. Even if we do not care about the order of
the conditioning variables in the decision structure and
allow only one test per variable on each path, such a
structure can capture all regularities of the examples
examined in the preceding section. E.g. the regularities
of table 2 are captured by the decision graph with a
full set of inner nodes shown in figure 4 (b).

It is easy to see that such an approach can capture
any regularities that may be present in conditional pos-
sibility tables. Basically, merging the leaves of a full
decision tree is the same as merging arbitrary lines
of a conditional possibility table. The decision graph
structure just makes it much easier to keep track of the
different value combinations of the conditioning (i.e.
parent) variables, for which the same possibility dis-
tribution for the values of the conditioned (i.e. child)
variable has to be adopted.

In a learning algorithm we use only two operations,
namely (1) adding a new level to a decision graph, i.e.
splitting all leaves according to the values of a new
parent variable, and (2) merging two leaves into one.
Which leaves to merge is determined, just as above,
in a greedy fashion w.r.t. some evaluation measure.
The first step (adding a new level), which may seem
to be costly, does no harm, since it is necessary, even
if one only learns a possibilistic network without local



structure (provided the conditional distributions are
represented as a decision tree). Only this step involves
a visit to the database to learn from in order to deter-
mine the conditional value frequencies. The next step,
in which leaves are merged, can be carried out without
visiting the database, since all necessary information is
already available in the leaf nodes (provided the orig-
inal leaf nodes are kept during a trial merge and are
simply restored afterwards). Thus we need to visit the
database only as often as an algorithm for learning a
possibilistic network without local structure does.

In contrast to this, the algorithm presented in [7]
needs to visit the database each time a split of leaf
nodes is considered. This can exceed by far the number
of times an algorithm for learning a network without
local structure needs to visit the database, especially,
since multiple tests of the same variable along the same
path are permitted.

Of course, our approach can result in a complicated
structure that may hide a simple structure of context-
specific independencies. But the same is true, though
maybe less likely, for the algorithm presented in [7] and
thus some postprocessing to simplify the structure by
changing the order of the variables and by splitting
tests along a path is always advisable.

5 Experimental Results

All experiments reported here were carried out with a
prototype learning program for probabilistic and pos-
sibilistic networks called INES (Induction of NEtwork
Structures, written by the first author of this paper),
into which the described method is incorporated. This
program also lets you choose from a variety of evalua-
tion measures described in [2]. As a test case we chose
the Danish Jersey cattle blood group determination
problem [21], for which a Bayesian network designed
by domain experts and a database of 500 real world
sample cases exist.

To evaluate the quality of the learned network, we
chose the following approach: Given a possibilistic net-
work, the possibility degree of any (complete) tuple can
be computed. If a tuple contains missing values, we as-
sign to this tuple the maximal possibility degree over
all complete tuples that are compatible with this tuple.
The sum of these possibility degrees we used as a qual-
ity measure. This is justified, since due to the the way
in which a possibilistic network approximates a mul-
tivariate possibility distribution, the possibility degree
resulting from the network must always be equal or
greater than the true possibility degree. Hence, the
lower the sum of the possibility degrees for the tuples
in the database, the better the network. More details
about this evaluation method can be found in [3].

The results of some of our experiments are shown in
table 4. In addition to the network evaluation, these

eval. num. of | num. of | network
measure conds. params. | quality
indep. vars. | 0 84 158.2
poss. x? 35 1074 141.7
mut. spec. 33 778 144.7
Sgain 31 1018 143.0
Ser 18 200 154.2
Segr 28 436 149.2

Table 3: Results of possibilistic network learning with-
out local structure.

eval. num. of | num. of | network
measure conds. params. | quality
poss. x? 35 1068 141.7
mut. spec. | 33 708 142.0
Sgain 31 795 145.9
Ser 24 157 157.5
Sser 30 494 152.6

Table 4: Results of possibilistic network learning with
local structure.

tables show the total number of conditions (parents)
as a measure of the complexity of the global network
structure and the number of parameters as a measure
of the complexity of the local network structure.

At first sight it is surprising that allowing local struc-
ture to be learned, although it often leads to a re-
duction of the number of necessary parameters, some-
times makes the global structure more complex (i.e.
leads to a larger number of conditions as for networks
without local structure). But a second thought (and
a closer inspection of the learned networks) reveals,
that this could have been foreseen. In a frequency dis-
tribution determined from a database of sample cases
random fluctuations are to be expected. Usually these
do not lead to additional conditions, since the evalua-
tion measures prevent a selection of too many parents,
simply because they “dislike” a lot of (roughly equiva-
lent) leaves. But the disadvantage of (approximately)
equivalent leaves is removed by the possibility to merge
these leaves, and thus those fluctuations that show a
higher deviation from the true (independent) distri-
bution are filtered out and become significant to the
measures.

This effect reduces when learning from a larger
dataset, but does not vanish completely. We believe
this to be a general problem any learning algorithm
for local structure has to cope with. Therefore it may
be advisable not to combine learning global and local
network structure, but to learn the global structure
first and to simplify the learned structure afterwards
by learning the local structure.



6 Conclusions

In this paper we presented a method to learn the local
structure of a possibilistic network from data, which is
derived from the approach to learn Bayesian networks
with local structure presented in [7]. The experimental
results show that trying to learn local structure has to
be handled with care, since it can lead to the counter-
intuitive effect of a more complicated global structure
(though this depends on the evaluation measure). It
may be advisable to base selecting another parent on
the score for a full decision tree, and to use local struc-
ture learning only to simplify this tree afterwards.
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