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Abstract. A large part of recent research on probabilistic and possi-
bilistic inference networks has been devoted to learning them from data.
In this paper we discuss two search methods and several evaluation mea-
sures usable for this task. We consider a scheme for evaluating induced
networks and present experimental results obtained from an application
of INES (Induction of NEtwork Structures), a prototype implementation
of the described methods and measures.

1 Introduction

Since reasoning in multi-dimensional domains tends to be infeasible in the do-
mains as a whole — and the more so, if uncertainty is involved — decompo-
sition techniques, that reduce the reasoning process to computations in lower-
dimensional subspaces, have become very popular. For example, decomposition
based on dependence and independence relations between variables has exten-
sively been studied in the field of graphical modeling [16]. Some of the best-known
approaches are Bayesian networks [22], Markov networks [19], and the more gen-
eral valuation-based networks [28]. They all led to the development of efficient
implementations, for example HUGIN [1], PULCINELLA [27], PATHFINDER
[11] and POSSINFER [7].

A large part of recent research has been devoted to learning such inference
networks from data [4, 12, 8]. In this paper we examine two search methods and
several evaluation measures usable for this task. We consider how to evaluate
an induced network and present some experimental results we obtained from an
application of INES (Induction of NEtwork Structures), a prototype implemen-
tation of the described search methods and evaluation measures.

2 Probabilistic and Possibilistic Networks

The basic idea underlying probabilistic as well as possibilistic networks is that
under certain conditions a multi-dimensional distribution can be decomposed



without much loss of information into a set of (overlapping) lower-dimensional
distributions. This set of lower-dimensional distributions is usually represented
as a hypergraph, in which there is a node for each attribute and a hyperedge
for each distribution of the decomposition. To each node and to each hyperedge
a projection of the multi-dimensional distribution (a marginal distribution) is
assigned: to the node a projection to its attribute and to a hypergraph a projec-
tion to the set of attributes connected by it. Thus hyperedges represent direct
influences the connected attributes have on each other, i.e. how constraints on
the value of one attribute affect the probabilities or possibilities of the values of
the other attributes in the hyperedge.

Reasoning in such a hypergraph is done by propagating evidence, i.e. ob-
served constraints on the possible values of a subset of all attributes, along the
hyperedges. This can be done with local computations, usually restricted to a
single hyperedge, if certain axioms are fulfilled [28].

Probability theory allows for local computations that are especially simple.
Evidence entered into a node is first extended to the hyperedge along which it
is to be propagated by multiplying the joint probability distribution associated
with the hyperedge with the quotients of the posterior and prior probability of
the values of the node. Then it can be projected to any other node contained
in the hyperedge by simply summing out the other attributes (computing the
new marginal distribution). A similar scheme can be derived for networks with
directed edges to which a conditional probability distribution is assigned.

Possibilistic networks can be based on an interpretation of a degree of pos-
sibility that rests on the context model [6, 17]. In this model possibility distri-
butions are interpreted as information-compressed representations of (not nec-
essarily nested) random sets, a degree of possibility as the one-point coverage of
a random set [21]. This interpretation allows to construct possibilistic networks
in analogy to probabilistic networks. Only the propagation functions have to be
replaced, namely the product (for extension) by the minimum and the sum (for
projection) by the maximum.

Both types of networks, probabilistic as well as possibilistic, can be induced
automatically from data. An algorithm for this task consists always of two parts:
an evaluation measure and a search method. The evaluation measure estimates
the quality of a given decomposition (a given hypergraph) and the search method
determines which decompositions (which hypergraphs) are inspected. Often the
search is guided by the value of the evaluation measure, since it is usually the goal
to maximize or to minimize its value. In the following two sections we describe
two search methods and several evaluation measures.

3 Search Methods

There is a large variety of search methods usable for learning inference networks.
In principle any general heuristic search method is applicable, like hill climbing,
simulated annealing, genetic algorithms etc. But to keep things simple, since our



emphasis is on evaluation measures, we consider only two methods: optimum
weight spanning tree construction and greedy parent selection.

The construction of an optimum weight spanning tree was suggested already
in [3]. An evaluation measure (in [3]: mutual information) is computed on all
possible edges (two-dimensional subspaces) and then the Kruskal algorithm is
applied to determine a maximum or minimum weight spanning tree.

Greedy parent selection is used in the K2 algorithm described in [4]. To nar-
row the search space and to avoid cycles in the resulting hypergraph a topological
order of the attributes is defined. A topological order of the nodes of a directed
graph satisfies: If there is a directed edge from a node A to a node B, then
A precedes B in the order. Fixing a topological order restricts the permissible
graph structures, since the parents of an attribute can be selected only from the
attributes preceding it in the order. A topological order can either be stated by
a domain expert or derived automatically [30].

Parent attributes are selected using a greedy search. At first an evaluation
measure (in [4]: the g-function) is calculated for the child attribute alone, or
— more precisely — for the hyperedge consisting only of the child attribute.
Then in turn each of the parent candidates (the attributes preceding the child in
the topological order) is temporarily added to the hyperedge and the evaluation
measure is computed. The parent candidate yielding the highest value of the
evaluation measure is selected as a first parent and is permanently added to the
hyperedge. In the third step all remaining candidates are added temporarily as
a second parent and again the evaluation measure is computed for each of the
resulting hyperedges. As before, the parent candidate yielding the highest value
is permanently added to the hyperedge. The process stops, if either no more
parent candidates are available, a given maximal number of parents is reached
or none of the parent candidates, if added to the hyperedge, yields a value of the
evaluation measure exceeding the best value of the preceding step. The resulting
hypergraph contains for each attribute a (directed) hyperedge connecting it to
its parents (provided parents where added).

4 Evaluation Measures

In this section we review some evaluation functions that can be used for learn-
ing inference networks from data. All of them estimate the quality of single
hyperedges and are based on the empirical probability or possibility distribu-
tions found in the database: If N is the number of tuples in the database and
Ni the number of tuples in which attribute A has value ai, then P (ai) = Ni

N .

4.1 Measures for Learning Probabilistic Networks

The basic idea of several evaluation measures used for learning probabilistic
networks is to compare the joint distribution with the product of the marginal
distributions. This seems to be reasonable, since the more these two distributions
differ, the more dependent the attributes are on each other. Other approaches
include Bayesian estimation and minimization of description length.



The χ2-Measure The χ2-measure directly implements the idea to compare the
joint distribution and the product of the marginal distributions by computing
their squared difference. For two attributes A and B it is defined as

χ2 =
∑
i,j

N
(P (ai)P (bj)− P (ai, bj))2

P (ai)P (bj)
,

where N is the number of tuples in the database to learn from.
This version of the χ2-measure is sufficient, if the optimum weight spanning

tree method is used, since then only two-dimensional edges have to be evaluated.
But for learning hypergraphs, e.g. with the greedy parent search method, we need
an extension to more than two attributes. Such an extension can be obtained in
two ways, the first of which is to define for m attributes A(1), . . . , A(m)

χ2
1 =

∑
i1,...,im

N

(∏m
k=1 P (a(k)

ik
)− P (a(1)

i1
, . . . , a

(m)
im

)
)2

∏m
k=1 P (a(k)

ik
)

,

i.e. to compare the joint probability with the product of the single attribute
marginal probabilities. The second extension is especially suited for learning
directed hyperedges and consists simply in viewing the (candidate) parent at-
tributes as one pseudo-attribute, i.e. if A(1), . . . , A(m−1) are the (candidate) par-
ents of attribute A(m), then

χ2
2 =

∑
i1,...,im

N

(
P (a(1)
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, . . . , a
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im−1

)P (a(m)
im

)− P (a(1)
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, . . . , a
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im

)
)2

P (a(1)
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)P (a(m)
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)
.

If not stated otherwise, all measures described for two attributes in the following
can be extended in these two ways.

Entropy-based Measures In [3] the (two-dimensional) edges of a tree-decom-
position of a multi-dimensional distribution are selected with the aid of mutual
information. Under the name of information gain this measure was later used
for the induction of decision trees [23, 24], which is closely related to learning
inference networks (with directed edges): A hyperedge consisting of an attribute
and its parents can be seen as a decision tree with the restriction that all leaves
have to lie on the same level and all decisions in the same level of the tree have
to be made on the same attribute.

Mutual information implements the idea to compare the joint distribution
and the product of the marginal distributions by computing the logarithm of
their quotient. For two attributes A and B mutual information is defined as

Imutual =
∑
i,j

P (ai, bj) log2

P (ai, bj)
P (ai)P (bj)

= HA + HB −HAB = Igain,



where H is the Shannon entropy [29]. It can be shown, that mutual information
is always greater or equal to zero, and equal to zero, if and only if the joint
distribution and the product of the marginal distributions coincide [18]. Hence
it can be seen as measuring the difference between the two distributions. In the
interpretation as information gain, it measures the information (in bits) gained
about the value of one attribute from the knowledge of the value of the other
attribute.

When using information gain for decision tree induction, it was discovered
that information gain is biased towards many-valued attributes. To adjust for
this bias the information gain ratio was introduced, which is defined as the
information gain divided by the entropy of the split attribute [23, 24]:

Igr =
Igain

HA
=

Igain

−
∑

i P (ai) log2 P (ai)
.

Transfered to learning inference networks this means to divide the information
gain by the entropy of the parent attributes. (Obviously this is only applicable
when directed edges are used. Otherwise there would be no “split attribute”
in contrast to the “class attribute.”) In the two extensions to more than two
attributes either the sum of the entropies of the marginal distributions of the
parent attributes (first version) or the entropy of the marginal distribution of the
pseudo-attribute formed from all the parent attributes (second version) forms
the denominator.

An alternative is the symmetric information gain ratio defined in [20], which
is the information gain divided by the entropy of the joint distribution:

I(1)
sgr =

Igain

HAB
=

Igain

−
∑

i,j P (ai, bj) log2 P (ai, bj)
.

Because of its symmetry this measure is also applicable for undirected edges.
Another symmetric version that suggests itself is to divide by the entropy sum
of the single attribute distributions, i.e.

I(2)
sgr =

Igain

HA + HB
=

Igain

−
∑

i P (ai) log2 P (ai)−
∑

j P (bj) log2 P (bj)
.

It is easy to see that this measure leads to the same edge selections as the previous
one. Nevertheless it is useful to consider both measures, since their effects can
differ, if weighting is used (see section 5).

The measures discussed above are all based on Shannon entropy, which can
be seen as a special case (for β → 1) of generalized entropy [5]:

Hβ(p1, . . . , pr) =
r∑

i=1

pi
2β−1

2β−1 − 1
(1− pβ−1

i )

Setting β = 2 yields the quadratic entropy

H2(p1, . . . , pr) =
r∑

i=1

2pi(1− pi) = 2− 2
r∑

i=1

p2
i .



Using it in a similar way as Shannon entropy leads to the so-called Gini index:

Gini =
1
2
(H2

A −H2
A|B) =

nB∑
j=1

P (bj)
nA∑
i=1

P (ai|bj)2 −
nA∑
i=1

P (ai)2,

a well known measure for decision tree induction [2, 31]. Here only the second
type of extension to more than two attributes is applicable. A symmetric ratio
can be derived, but only for two attributes:

Gininorm =
H2

A −H2
A|B + H2

B −H2
B|A

H2
A + H2

B

.

Bayesian Measures In the K2 algorithm [4] as an evaluation measure the
g-function is used, which is defined as

g(A,parA) = c ·
nparA∏
j=1

(nA − 1)!
(N.j + nA − 1)!

nA∏
i=1

Nij !,

where A is an attribute and parA the set of its parents. nparA
is the number

of distinct instantiations (value vectors) of the parent attributes that occur in
the database to learn from and nA the number of values of attribute A. Nij is
the number of cases (tuples) in the database in which attribute A has the ith
value and the parent attributes are instantiated with the jth value vector, N.j

the number of cases in which the parent attributes are instantiated with the jth
value vector, that is N.j =

∑nA

i=1 Nij . c is a constant prior probability, which can
be set to 1, since usually only the relation between the values of the evaluation
measure for different sets of parent attributes matters.

The g-function estimates (for a certain value of c) the probability of find-
ing the joint distribution of the attribute and its parents that is present in the
database. That is, assuming that all network structures are equally likely, and
that, given a certain structure, all conditional probability distributions compat-
ible with the structure are equally likely, it uses Bayesian reasoning to compute
the probability of the network structure given the database from the probability
of the database given the network structure.

MDL-based Measures Information gain can also be seen as measuring the
reduction in the description length of a dataset, if the values of a set of attributes
are encoded together (one symbol per tuple) instead of separately (one symbol
per value). The minimum description length principle [26] in addition takes into
account the information needed to transmit the coding scheme, thus adding a
“penalty” for making the model more complex by enlarging a hyperedge. We
consider the two types of minimum description length functions stated in [15]
for decision tree induction.



Coding based on relative frequencies:

L
(1)
gain = log2

(N.. + nA − 1)!
N..!(nA − 1)!

+N..HA L
(1)
prior

−
nB∑
j=1

(
log2

(N.j + nA − 1)!
N.j !(nA − 1)!

+N.jHA|bj

)
L

(1)
post

The first term in each line states the costs for transmitting the frequency distri-
bution. Intuitively, this is done by transmitting the page number for a code book
listing all possible distributions of N cases on nA attribute values. The second
term in each line describes the costs to actually transmit the value assignments.

Coding based on absolute frequencies:

L
(2)
gain = log2

(N.. + nA − 1)!
N..!(nA − 1)!

+ log2

N..!
N1.! · · ·NnA.!

L
(2)
prior

−
nB∑
j=1

(
log2

(N.j + nA − 1)!
N.j !(nA − 1)!

+ log2

N.j !
N1j ! · · ·NnAj !

)
L

(2)
post

Again the first term in each line describes the costs for transmitting the frequency
distribution, the second term the costs for transmitting the value assignments.
In this version the value assignments are also coded as a page number for a
code book listing all possible assignments of values to cases for a given abso-
lute frequency distribution. This measure is closely connected to the g-function
described above. More precisely, it is log2(g) = log2(c)− L

(2)
post.

4.2 Measures for Learning Possibilistic Networks

In analogy to the probabilistic setting the idea of some of the measures for learn-
ing possibilistic networks is to compare the joint distribution with the minimum
(instead of the product) of the marginal distributions. Other approaches are
based on nonspecificity measures.

All measures described in this section are extended to more than two at-
tributes in the first possible way and not by combining some of them into a
pseudo-attribute. The reason is that in possibilistic networks edges are undi-
rected, since it is difficult to define a conditional possibility distribution.

Comparison-based Measures For probabilistic networks both the χ2-measure
and mutual information compare directly the joint distribution and the prod-
uct of the marginal distributions; the former by the difference, the latter by the
quotient. Hence the idea suggests itself to apply the same scheme to possibilistic
networks, replacing the product by the minimum and the sum by the maximum.

We thus obtain for two attributes A and B

dχ2 =
∑
i,j

(min(π(ai), π(bj))− π(ai, bj))2

min(π(ai), π(bj))



as the analogon of the χ2-measure, and

dmi = −
∑
i,j

π(ai, bj) log2

π(ai, bj)
min(π(ai), π(bj))

as the analogon of mutual information. Since both measures are always greater
or equal to zero, and zero if and only if the two distributions coincide, they
can be seen as measuring the difference between the two distributions. Just as
for information gain it may be a good idea to divide dmi by the sum of the
logarithms of the possibility degrees of the joint distribution to remove (or at
least to reduce) a possible bias.

Nonspecificity-based Measures A possibilistic evaluation measure can also
be derived from the U -uncertainty measure of nonspecificity of a possibility
distribution [14], which is defined as

nsp(π) =
∫ sup(π)

0

log2 |[π]α|dα

and can be justified as a generalization of Hartley information [10] to the pos-
sibilistic setting [13]. nsp(π) reflects the expected amount of information (mea-
sured in bits) that has to be added in order to identify the actual value within
the set [π]α of alternatives, assuming a uniform distribution on the set [0, sup(π)]
of possibilistic confidence levels α [9].

The role nonspecificity plays in possibility theory is similar to that of Shan-
non entropy in probability theory. Thus the idea suggests itself to construct an
evaluation measure from nonspecificity in the same way as information gain and
(symmetric) information gain ratio are constructed from Shannon entropy.

By analogy to information gain we define specificity gain as

Sgain = nsp(πA) + nsp(πB)− nsp(πAB).

This measure is equivalent to the one defined in [9]. In addition, just like infor-
mation gain ratio and symmetric information gain ratio, specificity gain ratio

Sgr =
Sgain

nsp(πA)
=

nsp(πA) + nsp(πB)− nsp(πAB)
nsp(πA)

and symmetric specificity gain ratio in either of the two forms

S(1)
sgr =

Sgain

nsp(πAB)
=

nsp(πA) + nsp(πB)− nsp(πAB)
nsp(πAB)

or

S(2)
sgr =

Sgain

nsp(πA) + nsp(πB)
=

nsp(πA) + nsp(πB)− nsp(πAB)
nsp(πA) + nsp(πB)

can be defined.



5 Missing Values

In real world databases often a substantial number of values is missing. This,
of course, poses problems for any learning algorithm for probabilistic networks,
because it is not completely clear how to handle missing values when evaluating
edges. Thus, when constructing a learning algorithm, it is often required that
there are no missing values. In [4] and [12] this constraint is stated explicitly.
But it is obvious that such an assumption does not lead to much, because it
severely restricts the domain of application of the algorithm. Missing values are
just too frequent in the real world for such a requirement.

When trying to handle missing values, the idea that comes to mind first
is to ignore tuples possessing one or more of them, thus enforcing the above
assumption. In some cases, where the number of tuples with missing values is
small, this may be sufficient, but often a substantial part of the database has
to be discarded in this way. Other approaches include replacing a missing value
by a new distinct element unknown added to the domain of the correspond-
ing attribute, thus transforming it into a normal value, or imputing the most
frequent, an average, or a random value. But such approaches can distort the
frequency distribution present in the database and hence may either lead to
spurious dependences between attributes or conceal existing dependences.

Therefore in our implementation we refrained from using either of the above
approaches, but tried the following scheme: Since the evaluation measures we use
are local measures, they require only part of the tuple to be known in order to
be computable. Hence, when evaluating a hyperedge, we ignore only those tuples
in the database, in which a value is missing in one of the attributes contained
in the hyperedge. Other attributes may be known or unknown, we do not care.
In this way at least part of the information contained in a tuple with missing
values can be used.

If an edge is evaluated using the described scheme, the resulting value of
the measure for different edges can refer to different numbers of tuples. Hence
for some measures, e.g. the g-function, the χ2-measure and the reduction of
description length measures, it is necessary to normalize their value, such that
it refers to single tuples. To achieve this, the measure is simply divided by the
number of tuples used to compute it.

In addition one may consider weighting the worth of an edge with the frac-
tion of the tuples it was calculated on. This idea stems from learning decision
trees with an information gain measure [24], where based on such a weighting a
possible split attribute yielding a smaller gain is sometimes preferred to a split
attribute yielding a higher gain, if due to a low probability of knowing the lat-
ter attribute the expected gain is higher for the first. By similar reasoning such
weighting can be justified for learning inference networks. An edge may represent
a stronger dependence of the connected attributes, but due to missing values it
is less likely that this dependence can be exploited for inferences. In such a situa-
tion it may be preferable to use an edge connecting attributes whose dependence
is weaker, but can be exploited more often. Nevertheless, in our experiments we



used unweighted measures, since weighting is not applicable to all measures and
thus would have rendered some of the results incomparable.

For learning possibilistic networks, of course, missing values are no problem
at all, since possibility theory was designed especially to handle such kind of
uncertainty information. In the random set view, a missing value simply repre-
sents a random set containing all values of the underlying domain. Hence neither
removing tuples nor additional calculations are necessary.

6 Evaluating Learned Networks

Learning probabilistic and possibilistic networks with local evaluation measures
and search methods like greedy parent selection are heuristic methods. Hence
it is not guaranteed that an optimal solution will be found. Thus the question
arises: Can we find a way to assess a learned network, or at least a way to
compare the quality of two networks?

For probabilistic networks a simple evaluation scheme can be derived from the
idea underlying the Bayesian measure of the g-function described above. From
a given network — dependence structure and (conditional) probabilities — the
probability of each tuple in the database can be calculated. Multiplying these
probabilities yields the probability of the database given the network structure,
provided that the tuples are independent. If we assume all networks to have
the same prior probability, the probability of the database given the network
can be interpreted as a direct indication of the network quality. Although it is
not an absolute measure, since we cannot determine an upper bound for this
probability, networks can be compared with it.

The only problem with this method is the treatment of missing values, since
for tuples with missing values no definite probability can be calculated. For our
prototype program we decided on the following scheme: Every missing value of
a tuple is instantiated in turn with each possible value, and for each resulting
(completely known) tuple the probability is determined. Then the minimum,
average, and maximum of these probabilities are computed. We thus arrive at
a minimum, average, and maximum value for the probability of a database, of
which the average may be the best to use. It is obvious that this method is
applicable only, if the number of missing values per tuple is fairly small, since
otherwise the number of tuples to be examined gets too large.

In theory such a global evaluation method can be used directly to learn a
network. We only need to add a search method to traverse the space of possible
solutions. Each candidate selected by the search method is then evaluated using
the global evaluation function. But this is not very practical. The main reason is
that evaluating a network in the way described can take fairly long, especially if
there are missing values. If they abound, even a single network cannot be evalu-
ated in reasonable time. Since during a search a large number of networks has to
be inspected, the learning time can easily exceed reasonable limits. Nevertheless
it may be worthwhile to examine such an approach.
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3 – sire correct? 14 – offspring genotype
4 – stated dam ph.gr. 1 15 – factor 40
5 – stated dam ph.gr. 2 16 – factor 41
6 – stated sire ph.gr. 1 17 – factor 42
7 – stated sire ph.gr. 2 18 – factor 43
8 – true dam ph.gr. 1 19 – lysis 40
9 – true dam ph.gr. 2 20 – lysis 41

10 – true sire ph.gr. 1 21 – lysis 42
11 – true sire ph.gr. 2 22 – lysis 43

The grey nodes correspond to observable attributes.
Node 1 can be removed to simplify constructing the
clique tree for propagation.

Fig. 1. Domain expert designed network for the Danish Jersey cattle blood type de-
termination example

We now turn to evaluating possibilistic networks. Unfortunately we cannot
compute a degree of possibility for the whole database, but we can use a similar
approach. From the propagation method of possibilistic networks it is obvious
that the degree of possibility derivable from the network can only be greater or
equal to the (true) degree of possibility derivable from the database. Hence, the
better a network approximates the possibility distribution represented by the
database, the smaller the sum of the possibility degrees over the tuples in the
database should get. For tuples with missing values we use a similar approach
as above. For each completely known tuple compatible with the tuple missing
some values, the degree of possibility is determined from the network and the
minimum, average, and maximum of these degrees is computed. Then these
are summed for all tuples in the database. To be in accordance with the ideas
underlying possibility theory, the maximum value may be the proper quality
measure. If one commits to using the maximum, computation is significantly
simplified, since a completely known tuple compatible with a tuple with missing
values and having the maximum degree of possibility of all such tuples can
easily be determined without inspecting all compatible tuples. Hence, with this
restriction, a learning algorithm for possibilistic networks based on this global
evaluation method may be a noteworthy alternative.

7 Experimental Results

The experiments described in this section were conducted with a prototype pro-
gram called INES (Induction of NEtwork Structures). It contains the two search
methods (optimum weight spanning tree construction and greedy parent selec-
tion) and all evaluation measures described above.



network cond. log2(Pavg)

indep. 0 −11632

orig. 24 −7451

db. prob. 24 −5105

χ2 21 −5221

Igain 21 −5221

I
(1)
sgr 21 −5254

Gininorm 21 −5505

network cond. log2(Pavg)

χ2/N 33 −4373

Igain 32 −4357

Igr 20 −5243

I
(1)
sgr 24 −4736

Gini 32 −4357

log2(g)/N 24 −4620

L
(1)
gain/N 24 −4704

L
(2)
gain/N 26 −4620

Table 1. Evaluation of probabilistic networks obtained by optimum weight spanning
tree construction (left bottom) and by greedy parent selection (right) on the Danish
Jersey cattle data. As a reference point evaluations of a network with independent
nodes, of the original expert designed network, and of the expert designed network
with probabilities determined from the database (left top) are added.

Although we tested INES on several databases from the UCI machine learn-
ing repository (e.g. flags, solar flare, mushroom, vote etc.), we chose to present
here the results obtained on the Danish Jersey cattle blood type determination
example [25], because it has the advantage that there is a probabilistic network
designed by domain experts (see figure 1), which can be used as a baseline for
result evaluation. Results on other datasets do not differ significantly.

The Danish Jersey cattle blood type determination example consists of the
domain expert designed network, whose structure is shown in figure 1, and a
database containing 500 tuples over the twenty-two attributes of the network.
Only eight of the attributes, those shaded in the network, are actually observable.
Several tuples of the database contain missing values.

As a baseline for comparisons we first evaluated a network without any edges
(isolated nodes), the domain expert designed network, and the domain expert
designed network with probabilities determined from the database. Their evalu-
ation shows that the database seems to be a little distorted and not really fitting
the domain expert designed model, since the evaluation of the original network
is considerably worse than that of the network with adjusted probabilities.

We then tested inducing probabilistic networks on this dataset. For each of
the symmetric measures described in section 4 (Igain, Isgr, Gininorm, and χ2), we
constructed an optimum weight spanning tree and evaluated it on the database.
The results are shown in the bottom left of table 1 (since we did not use weight-
ing, the results for the two symmetric information gain ratios are the same, hence
only one is shown). Although they are restricted to 21 edges because of the tree
structure, they come fairly close to the evaluation of the adapted original net-
work. Inspecting the learned networks in more detail reveals that their structure
is indeed very close to the domain expert designed network.

In a third step we induced networks with the greedy parent selection method.
We selected a topological order compatible with the domain expert designed net-



network cond.
∑

πmin

∑
πavg

∑
πmax

indep. 0 139.8 141.1 158.2

db. poss. 24 137.3 137.7 157.2

dχ2 21 120.3 122.5 143.5

dmi 21 117.6 119.4 144.3

Sgain 21 123.3 124.9 148.8

S
(1)
sgr 21 121.1 123.8 148.3

dχ2 35 122.3 123.2 145.2

dmi 33 115.6 118.1 147.2

Sgain 35 122.9 123.8 146.1

Sgr 27 129.9 131.4 154.1

S
(1)
sgr 33 123.6 124.7 147.2

Table 2. Evaluation of possibilistic networks obtained by optimum weight spanning
tree construction (top) and by greedy parent selection (bottom) on the Danish Jersey
cattle blood type determination data.

work and restricted the number of parents to two. To compute the evaluation
measures for attributes with two parents, we combined the parents into one
pseudo-attribute, i.e. we extended the measure in the second possible way. Eval-
uations of the learned networks are shown on the right in table 1. With the
exception of the information gain ratio network they all perform better than
the original structure. A closer inspection reveals that they do so by exploiting
additional dependences present in the database but not in the domain expert
designed network.

From this table one may infer that information gain, Gini index and χ2-
measure lead to the best results, since given the networks learned with these
measures, the average probability of the database is highest. But taking into
account the number of conditions selected, which is highest for these measures,
the suspicion arises that the good evaluation results are obtained by “over fit-
ting” the data. This hypothesis was confirmed by an experiment on two artificial
datasets generated from the domain expert designed network. On the test dataset
the evaluation results of the networks learned with these measures where con-
siderably lower than on the dataset they were learned from. The effect seems to
be less pointed for information gain than for Gini index and χ2-measure. Nev-
ertheless, the bias in favour of many-valued attributes was clearly visible, since
with information gain the offspring genotype attribute (6 values) was selected
as a parent attribute for the lysis attributes instead of the factor attributes (2
values) as in the domain expert designed network. The results also confirmed
that forming some kind of ratio reduces the bias.

Evaluations of learned possibilistic networks are shown in table 2. It is not
surprising that the expert designed network (with possibility degrees determined
from the database) performs badly, since the possibilistic scheme exploits a dif-



ferent type of dependence. But it is remarkable that allowing larger edges to be
learned by using the greedy parent selection method seems not to improve the
results over optimum weight spanning trees, although this may be due to the
restrictions imposed by the topological order. The strength and weaknesses of
the measures seem to be similar to those of the analogous measures for learning
probabilistic networks.

8 Conclusions

In this paper we considered two search methods (optimum weight spanning tree
construction and greedy parent selection) and a large number of local evaluation
measures for learning probabilistic and possibilistic networks. The experimen-
tal results, which we obtained with the prototype program INES, show that a
problem of some evaluation measures is that they lead to the selection of too
large edges (in terms of the number of attributes as well as in terms of the num-
ber of attribute values), resulting in some kind of “over fitting” (information
gain, Gini index, χ2-measure). For probabilistic networks the best results seem
to be achievable with the symmetric information gain ratio, the g-function and
the minimum description length measures. For possibilistic networks dmi, the
analogon of mutual information, seems to yield the best results.
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