
Probabilistic Networks and Fuzzy Clustering
as Generalizations of Naive Bayes Classifiers

Christian Borgelt, Heiko Timm, and Rudolf Kruse

Dept. of Knowledge Processing and Language Engineering
Otto-von-Guericke-University of Magdeburg

Universitätsplatz 2, D-39106 Magdeburg, Germany

e-mail: {borgelt,htimm,kruse}@iws.cs.uni-magdeburg.de

Abstract. Although at first sight probabilistic networks and fuzzy clus-
tering seem to be disparate areas of research, a closer look reveals that
they can both be seen as generalizations of naive Bayes classifiers. If all
attributes are numeric (except the class attribute, of course), naive Bayes
classifiers often assume an axis-parallel multidimensional normal distri-
bution for each class as the underlying model. Probabilistic networks
remove the requirement that the distributions must be axis-parallel by
taking the covariance of the attributes into account, where this is neces-
sary. Fuzzy clustering is an unsupervised method that tries to find gen-
eral or axis-parallel distributions to cluster the data. Although it does
not take into account the class information, it can be used to improve the
result of naive Bayes classifiers and probabilistic networks by removing
the restriction that there can be only one distribution per class.

1 Introduction

Probabilistic networks are a method to decompose a multivariate probability
distribution in order to make reasoning in multi-dimensional domains feasible.
Fuzzy clustering is a method to find groups of similar objects or cases, which
compared to classical (crisp) clustering has the advantage that an object or a
case can belong (with a degree between 0 and 1) to more than one cluster. Thus,
at first sight, there seems to be little connection between these two methods.
Nevertheless, in this paper we venture to discuss them together, since they can
both be seen as generalizations of naive Bayes classifiers.

Our rationale is that the three techniques mentioned above—naive Bayes
classifiers, probabilistic networks, and fuzzy clustering—share the idea that un-
derlying the dataset to process there is a model consisting of a set of probability
distributions/density functions that generated the data. They differ w.r.t. the
assumptions they make about the distributions/density functions and whether
they take into account the value of a distinguished class attribute (supervised
methods: naive Bayes classifiers, probabilistic networks) or not (unsupervised
methods: fuzzy clustering). Of course, there are still other methods, for exam-
ple, radial basis function neural networks [19], that can be interpreted in much
the same fashion. However, a complete list of such methods and a discussion

of their similarities and differences is beyond the scope of this paper. We se-
lected the three methods mentioned above as examples, because the first two
(naive Bayes classifiers, probabilistic networks) show very clearly the properties
we are interested in and because the connection to fuzzy clustering points out
interesting directions to improve these techniques.

To simplify the explanation of the ideas this paper tries to convey, we con-
fine ourselves to numeric attributes (with the exception of the class attribute,
of course). That is, we consider only those attributes used to characterize an
object or case under consideration that can be described by real numbers. With
this restriction a common assumption, that is made with all three methods we
are going to discuss, is that the data to process was generated by a set of mul-
tidimensional normal distributions (also called Gaussians). The three methods
differ in the constraints they place on this set of distributions. Naive Bayes clas-
sifiers and probabilistic networks (if the latter are used for classification tasks)
restrict the number of distributions to the number of classes, since they assume
exactly one distribution per class. Naive Bayes classifiers, in addition, assume
that for each multivariate normal distribution, i.e., for each class, the attributes
are independent, thus requiring the distributions to be axis-parallel. Of fuzzy
clustering algorithms, there are also general and axis-parallel variants. In fuzzy
clustering, however, the number of multivariate normal distributions is not re-
stricted to the number of classes (it is an unsupervised method and does not
take the class information into account), but can be chosen freely. This often
leads to a better fit to the data and may be exploited to improve the two other
methods.

The brief overview just given already fixes the order in which we discuss the
methods. In section 2 we examine naive Bayes classifiers. In section 3 we turn
to probabilistic networks and show how a naive Bayes classifier can be seen as a
special Bayesian network and how general Bayesian networks remove the strong
independence assumptions underlying naive Bayes classifiers. In section 4 we
study fuzzy clustering algorithms from the specific point of view indicated above
(as estimators of an underlying set of probability distributions/density functions)
and show how they can improve the aforementioned methods by removing the
restriction of one distribution per class. Finally, in section 5, we draw conclusions
from our discussion.

2 Naive Bayes Classifiers

Naive Bayes classifiers [11, 6, 16, 17] are an old and well-known type of classifiers,
i.e., of programs that assign a class from a predefined set to an object or case
under consideration based on the values of attributes used to describe this object
or case. They do so using a probabilistic approach, i.e., they try to compute
conditional class probabilities and then predict the most probable class. To be
more precise, let C denote a class attribute with a finite domain of m classes,
i.e., dom(C) = {c1, . . . , cm}, and let A1, . . . , An be a set of other attributes used
to describe a case or an object of the domain under consideration. These other

attributes may be symbolic, i.e., dom(Aj) = {a(j)
1 , . . . , a

(j)
mj}, or numeric, i.e.,

dom(Aj) = IR. For simplicity, we always use the notation a
(j)
ij

for a value of an
attribute Aj , independent of whether it is a symbolic or a numeric one.1 With
this notation, a case or an object can be described by an instantiation ω =
(a(1)

i1
, . . . , a

(n)
in

) of the attributes A1, . . . , An and thus the universe of discourse is
Ω = dom(A1)× . . .× dom(An).

For a given instantiation ω, a naive Bayes classifier tries to compute the
conditional probability

P (C = ci | ω) = P (C = ci | A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

for all ci and then predicts the class ci for which this probability is highest.
Of course, it is usually impossible to store all of these conditional probabilities
explicitly, so that a simple lookup would be all that is needed to find the most
probable class. If there are numeric attributes, this is obvious (we need some
parameterized function then). But even if all attributes are symbolic, such an
approach most often is infeasible: We would have to store a class (or a class
probability distribution) for each point of the Cartesian product of the attribute
domains, whose size grows exponentially with the number of attributes. To cir-
cumvent this problem, naive Bayes classifiers exploit—as their name already
indicates—Bayes rule and a set of conditional independence assumptions. With
Bayes rule

P (Y | X) =
P (X | Y) · P (Y)

P (X)
,

where X and Y are events, the conditional probabilities are inverted. That is,
naive Bayes classifiers consider2

P (C = ci | A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

=
f(A1 = a

(1)
i1

, . . . , An = a
(n)
in

| C = ci) · P (C = ci)

f(A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

Of course, for this inversion to be always possible, the probability density func-
tion f(A1 = a

(1)
i1

, . . . , An = a
(n)
in

) must be strictly positive.
There are two observations to be made about the inversion carried out above.

In the first place, we can neglect the denominator of the fraction on the right,
since for a given case or object to be classified, it is fixed and therefore does not
have any influence on the class ranking (which is all we are interested in). In

1 To be able to use this notation for numeric attributes, we simply have to choose an
appropriate uncountably infinite index set Ij , from which the index ij is to be taken.

2 For simplicity, we always use a probability density function f , although this is strictly
correct only, if there is at least one numeric attribute. If all attributes are symbolic,
this should be a probability P . The only exception is the class attribute, since it
necessarily has a finite domain.

addition, its influence can always be restored by normalizing the distribution on
the classes, i.e., we can exploit

f(A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

=
m∑

j=1

f(A1 =a
(1)
i1

, . . . , An =a
(n)
in

| C =cj) · P (C = cj).

It follows that we only need to consider

P (C = ci | A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

=
1
S
· f(A1 = a

(1)
i1

, . . . , An = a
(n)
in

| C = ci) · P (C = ci),

where S is a normalization constant.3

Secondly, we can see that just inverting the probabilities does not buy us any-
thing, since the probability space is just as large as it was before the inversion.
However, here the second ingredient of naive Bayes classifiers, which is responsi-
ble for the “naive” in their name, comes in, namely the conditional independence
assumptions. To exploit them, we first apply the chain rule of probability:4

P (C = ci | A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

=
1
S
· f(An = a

(n)
in

| An−1 = a
(n−1)
in−1

, . . . , A1 = a
(1)
i1

, C = ci)

. . .

· f(A2 = a
(2)
i2

| A1 = a
(1)
i1

, C = ci)

· f(A1 = a
(1)
i1

| C = ci)

· P (C = ci).

Now we make the crucial assumption that given the value of the class attribute,
any attribute Aj is independent of any other. That is, we assume that knowing
the class is enough to determine the probability (density) for a value a

(j)
ij

, i.e.,
that we need not know the values of any other attributes. Of course, this is a
pretty strong assumption, which is very likely to fail. It is truly “naive” to make
it nevertheless. However, it considerably simplifies the formula stated above,
since with it we can cancel all attributes Aj appearing in the conditions:

P (C = ci | A1 = a
(1)
i1

, . . . , An = a
(n)
in

) =
1
S
· P (C = ci) ·

n∏
j=1

f(Aj = a
(j)
ij

| C = ci)

3 Strictly speaking, the constant S depends on the instantiation (a
(1)
i1

, . . . , a
(n)
in

). How-
ever, as already said above, when classifying a given case or object, this instantiation
is fixed and hence we need to consider only one value S.

4 Again we always use a probability density function f , although this is strictly correct
only, if the conditioned attribute is numeric.

This is the fundamental formula underlying naive Bayes classifiers. For a sym-
bolic attribute Aj the conditional probabilities P (Aj = a

(j)
ij

| C = ci) are stored
as a simple conditional probability table. This is feasible now, since there is only
one condition and hence only m·mj probabilities have to be stored.5 For numeric
attributes it is usually assumed that the probability density is a Gaussian func-
tion (a normal distribution) and hence only the expected values µj(ci) and the
variances σ2

j (ci) need to be stored in this case. Alternatively, numeric attributes
may be discretized [5] and then treated like symbolic attributes. In this paper,
however, we make the normal distribution assumption, since we need it for the
connection to fuzzy clustering.

Naive Bayes classifiers can easily be induced from a dataset of preclassi-
fied sample cases. All we have to do is to estimate the conditional probabili-
ties/probability densities f(Aj = a

(j)
ij

| C = ci) using, for instance, maximum
likelihood estimation. For symbolic attributes, this yields

P̂ (Aj = a
(j)
ij

| C = ci) =
#(Aj = a

(j)
ij

, C = ci)

#(C = ci)
,

where #(C = ci) is the number of sample cases that belong to the class ci and
#(Aj = a

(j)
ij

, C = ci) is the number of sample cases that belong to class ci and

have the value a
(j)
ij

for the attribute Aj . To ensure that the probability is strictly
positive (see above), it is assumed that there is at least one example for each
class in the dataset. Otherwise the class is simply removed from the domain of
the class attribute. If an attribute value does not occur given some class, its
probability is either set to 1

2N , where N is the number of sample cases, or a
uniform prior of 1

N is added to the estimated distribution, which is then renor-
malized (Laplace correction). For a numeric attribute Aj the standard maximum
likelihood estimation functions

µ̂j(ci) =
1

#(C = ci)

#(C=ci)∑
k=1

a
(j)
ij(k)

for the expected value, where a
(j)
ij(k) is the value of the attribute Aj in the k-th

sample case belonging to class ci, and

σ̂2
j (ci) =

1
#(C = ci)

#(C=ci)∑
k=1

(
a
(j)
ij(k) − µ̂j(ci)

)2

for the variance can be used.

5 Actually only m · (mj − 1) probabilities are really necessary. Since the probabilities
have to add up to one, one value can be discarded from each conditional distribution.
However, in implementations it is usually much easier to store all probabilities.

3 Probabilistic Networks

Probabilistic inference networks—especially Bayesian networks [20], but also
Markov networks [18]—are well-known tools for reasoning under uncertainty
in multidimensional domains. The idea underlying them is to exploit indepen-
dence relations between the attributes used to describe a domain in order to
decompose a multivariate probability distribution into a set of (conditional or
marginal) distributions on lower-dimensional subspaces. Early efficient imple-
mentations include HUGIN [1] and PATHFINDER [12].

Dependence and independence relations have been studied extensively in the
field of graphical modeling [14, 24] and though using them to facilitate reason-
ing in multidimensional domains has originated in the probabilistic setting, this
approach has been generalized to be usable with other uncertainty calculi [22],
for instance, in the so-called valuation-based networks [23] and has been imple-
mented, for example, in PULCINELLA [21]. Due to their connection to fuzzy
systems, which in the past have successfully been applied to solve control prob-
lems, and due to their ability to deal not only with uncertainty but also with
imprecision, recently possibilistic networks also gained some attention. They can
be based on the context-model interpretation of a degree of possibility, which
focuses on imprecision [9], and have been implemented, for example, in POSS-
INFER [10, 15]. In this paper, however, we focus on Bayesian networks, since
they are closest to naive Bayes classifiers and thus to fuzzy clustering.

A Bayesian network is a directed acyclic graph in which each node represents
an attribute (interpreted as a random variable), that is used to describe some
domain of interest, and each edge represents a direct dependence between two
attributes. The structure of the directed graph encodes a set of conditional in-
dependence statements that can be read from the graph using a graph theoretic
criterion called d-separation [20]. In addition, the graph represents a particular
joint probability distribution, which is specified by assigning to each node in the
network a (conditional) probability distribution for the values of the correspond-
ing attribute given its parent attributes in the network (if any).

Formally, a Bayesian network describes a factorization of a multivariate prob-
ability distribution/density function. This factorization results from applying
first the chain rule of probability to the joint distribution/density function. Then
the factors are simplified by exploiting conditional independence statements of
the form ∀ω ∈ Ω :

P (ωX∪Y | ωZ) = P (ωX | ωZ) · P (ωY | ωZ)

whenever P (ωZ) > 0, where X, Y , and Z are three disjoint sets of attributes and
ωX = projX(ω) is the projection of an instantiation ω = (A1 = a

(1)
i1

, . . . , An =
a
(n)
in

) to the attributes in X. As one can easily verify, these statements are equiv-
alent to statements of the form ∀ω ∈ Ω :

P (ωX | ωY ∪Z) = P (ωX | ωZ).

From the description given up to now one can already guess the connection
to naive Bayes classifiers. To be more precise, consider a probability distribu-
tion/density function f on the joint domain of a set of attributes A1, . . . An. We
first apply the chain rule of probability to obtain (we use the same notation as
in the preceding section):

f(A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

= f(An = a
(n)
in

| An−1 = a
(n−1)
in−1

, . . . , A1 = a
(1)
i1

)

· f(An−1 = a
(n−1)
in−1

| An−2 = a
(n−2)
in−2

, . . . , A1 = a
(1)
i1

)
. . .

· f(A2 = a
(2)
i2

| A1 = a
(1)
i1

)

· f(A1 = a
(1)
i1

).

Then we exploit conditional independence statements to simplify the conditions
by removing those attributes of which the conditioned attribute is independent
given the values of the remaining attributes. Thus the joint distribution/density
function can be computed from ∀i1, . . . , in :

f(ω) = f(A1 = a
(1)
i1

, . . . , An = a
(n)
in

) =
n∏

i=1

P (Aj = a
(j)
ij

| ωparents(Ai)),

where parents(Aj) is the set of attributes of which to know the instantiations
is sufficient to determine the probability (density) of the values of attribute Aj .
The name “parents(Aj)” stems from the fact that in a Bayesian network the
conditioning attributes are connected by directed edges to the conditioned at-
tributes and hence are the parents of this attribute in the graph. This makes
it very simple to read the factorization formula from a Bayesian network: For
each attribute (node) there is exactly one factor in which it is the conditioned
attribute, and the conditions of this factor are the attributes corresponding to
the attribute’s parent nodes in the graph. An example is shown on the left in
figure 1, which represents the factorization ∀i1, . . . , i7 :

f(A1 = a
(1)
i1

, . . . , A7 = a
(7)
i7

)

= f(A1 = a
(1)
i1

) · f(A2 = a
(2)
i2

| A1 = a
(1)
i1

) · f(A3 = a
(3)
i3

)

· f(A4 = a
(4)
i4

| A1 = a
(1)
i1

, A2 = a
(2)
i2

) · f(A5 = a
(5)
i5

| A2 = a
(2)
i2

, A3 = a
(3)
i3

)

· f(A6 = a
(6)
i6

| A4 = a
(4)
i4

, A5 = a
(5)
i5

) · f(A7 = a
(7)
i7

| A5 = a
(5)
i5

)

It is obvious that a sparse graph is desirable to obtain a factorization with
“small” factors. Whether a sparse graph can be found sometimes depends on
the order of the attributes, but it cannot be guaranteed that a sparse graph
exists for a given domain. In such cases usually an approximation is accepted.

Bayesian networks can be used for probabilistic reasoning by fixing the val-
ues of some (observed) attributes and then propagating this information in the

A1���
JĴ

- A2���

� JĴ

A3���

�

A4���
?

�
�+

A5���
A6��� ?

A7��� C�����3 A1���
6

A2���
QQk

A3���
��+

A4���
· · ·

QQs
An��� C�����3 A1���

6

A2���
QQk

A3���
��+

A4���
· · ·

QQs
An���?

��+�
�

���

Fig. 1. A simple Bayesian network on a domain consisting of seven attributes (left). A
naive Bayes classifier is a Bayesian network with a star-like structure (middle). It can
easily be extended by adding edges between attributes that are still dependent given
the class (right).

network to obtain the probabilities/densities for values of other (unobserved)
attributes. This process, which is usually called evidence propagation, basically
consists in replacing the prior probability distribution/density function with the
posterior one, that is, the one conditioned on the values of the observed at-
tributes. To make it efficient, a Bayesian network is often transformed into a
clique tree for which a simple propagation scheme exists. The evidence is prop-
agated along the edges of this clique tree using the marginal probability distri-
butions/density functions associated with the nodes that represent the cliques.
For details on clique tree construction and the clique tree propagation (CTP)
algorithm, see e.g. [18].

It is easy to see that Bayesian networks are directly related to naive Bayes
classifiers. In fact, a naive Bayes classifier is just a special Bayesian network
with a star-like structure as shown in the middle of figure 1. That is, there is a
distinguished attribute, namely the class attribute. It is the only unconditioned
attribute (the only one without parents). All other attributes are conditioned on
the class attribute and on the class attribute only. Reasoning consists in propa-
gating the evidence about the values of the attributes A1, . . . , An along the edges
to obtain information about the class. This information is then accumulated.

The main drawback of naive Bayes classifiers are the very strong conditional
independence assumptions underlying them (see above). Although these assump-
tions necessarily lead to sparse graph, a lot of information can get lost. Fortu-
nately, exploiting the more general approach underlying Bayesian networks, this
severe constraint can be relaxed. That is, we may add edges between those of
the attributes A1, . . . , Aj which are still dependent given the class (see figure 1
on the right). This can lead to improved classification results, since the extended
conditional probability distributions are better suited to capture the dependence
structure of the domain. To keep the resulting graph sparse, one may introduce
the restriction that no attribute may have more than a fixed number of parents.
Probabilistic networks of this type have been successfully applied in telecommu-
nication [7].

As an illustrative example, let us take a look at the well-known iris data. The
classification problem here is to predict the iris type (iris setosa, iris versicolor,

iris type iris setosa iris versicolor iris virginica

prior probability 0.333 0.333 0.333

petal length 1.46 ± 0.17 4.26 ± 0.46 5.55 ± 0.55

petal width 0.24 ± 0.11 1.33 ± 0.20 2.03 ± 0.27

Table 1. A naive Bayes classifier for the iris data. The normal distributions are de-
scribed by stating µ̂ ± σ̂. It is easy to see from this table how different petal lengths
and widths provide evidence for the different types of iris flowers.

6

-
petal length

petal width

�����
����������
������
�

�
�
��

�
����
�
��������
���

�
������

◦◦ ◦◦
◦
◦
◦

◦
◦◦

◦

◦

◦

◦◦ ◦◦

◦

◦

◦

◦

◦
◦
◦◦

◦ ◦
◦

◦

◦◦◦
◦

◦◦◦◦
◦◦◦ ◦
◦

◦
◦

◦◦◦◦◦
◦

?

?
?

?

?
?

?
??

?

?
?
?

?

?
?

?

?
?

?

?

? ?
?

?

???

?

?

?
?

?

?
?

?
?

??

?

?
?

?

?
?

?

?
?

?

?

ABC
6

-
petal length

petal width

�����
����������
������
�

�
�
��

�
����
�
��������
���

�
������

◦◦ ◦◦
◦
◦
◦

◦
◦◦

◦

◦

◦

◦◦ ◦◦

◦

◦

◦

◦

◦
◦
◦◦

◦ ◦
◦

◦

◦◦◦
◦

◦◦◦◦
◦◦◦ ◦
◦

◦
◦

◦◦◦◦◦
◦

?

?
?

?

?
?

?
??

?

?
?
?

?

?
?

?

?
?

?

?

? ?
?

?

???

?

?

?
?

?

?
?

?
?

??

?

?
?

?

?
?

?

?
?

?

?

DEF
� iris setosa ◦ iris versicolor ? iris virginica

Fig. 2. Naive Bayes density functions for the iris data (axis-parallel ellipses, left) and
density functions that take into account the covariance of the two measures (general
ellipses, right). The ellipses are the 2σ-boundaries of the probability density functions.

or iris virginica) from measurements of the sepal length and width and the petal
length and width. Due to the limited number of dimensions of a sheet of paper we
confine ourselves to the latter two measures. The naive Bayes classifier induced
from these two measures and all 150 cases is shown in table 1. The conditional
probability density functions used by this classifier to predict the iris type are
shown graphically in figure 2 on the left. The ellipses are the 2σ-boundaries
of the (bivariate) normal distribution. These ellipses are axis-parallel, which is
a consequence of the strong conditional independence assumptions made by a
naive Bayes classifier: The normal distributions are estimated separately for each
dimension and no covariance is taken into account. However, even a superficial
glance at the data points reveals that the two measures are far from independent
given the iris type. Especially for iris versicolor the density function is a rather
bad estimate. However, if we allow for an additional edge between the petal
length and the petal width, which, in this case, is most easily implemented by
estimating the covariance matrix of the two measures, a much better fit to the
data can be achieved (see figure 2 on the right, again the ellipses are the 2σ-
boundaries of the probability density function). As a consequence the number

of misclassifications drops from six to three (which can easily be made out in
figure 2).

To summarize, probabilistic networks generalize naive Bayes classifiers in
two ways. In the first place, by additional edges, the restriction to axis-parallel
density functions can be removed and thus conditional dependences between the
attributes can be taken into account. Secondly, in probabilistic networks there is
usually no distinguished class attribute. Any attribute (or any set of attributes)
can be made the focus of inferences. Thus several, quite different reasoning tasks
can be solved with the same probabilistic network.

However, there is still the restriction that only one density function is esti-
mated for each class. This is not always appropriate, especially under the normal
distribution assumption. A better fit can often be achieved, if more than one
“normal distribution cluster” per class is assumed. Such a generalization may be
achieved by exploiting ideas from fuzzy clustering, which we study in the next
section.

4 Fuzzy Clustering

The terms “classification” and “to classify” are ambiguous. In the preceding sec-
tions they are used to describe the process of assigning a class from a predefined
set to an object or case under consideration. In classical statistics, however, these
terms usually have a different meaning: They are used to describe the process of
dividing a dataset of sample cases into groups of similar cases, with the groups
not predefined, but to be found by the classification algorithm. This process is
also called classification, because the groups to be found are usually (and confus-
ingly) called classes. To avoid the confusion that may result from this ambiguity,
the latter process, i.e., dividing a dataset into groups of similar cases, is often
called clustering or cluster analysis, thus replacing the ambiguous term class
with the less ambiguous cluster. Nevertheless a reader should keep in mind that
in this section “to classify” has a different meaning than in the preceding ones
(except where explicitly indicated otherwise).

Cluster analysis is, as already mentioned, a technique to classify data, i.e.,
to divide a given dataset of sample cases into a set of classes or clusters. The
goal is to divide the dataset in such a way that two cases from the same cluster
are as similar as possible and two cases from different clusters are as dissimilar
as possible. Thus one tries to model the human ability to group similar objects
or cases into classes and categories.

In classical cluster analysis [2] each case or object is assigned to exactly
one cluster. That is, classical cluster analysis yields a crisp partitioning of a
dataset with “sharp” boundaries between the clusters. It is therefore also called
crisp cluster analysis. A crisp partitioning of the dataset, however, though often
undisputedly successful, is not always appropriate. If the “clouds” formed by the
data points corresponding to the cases or objects under consideration are not
clearly separated by regions bare of any data points, but if, in contrast, in the
joint domain of the attributes there are only regions of higher and lesser data

point density, then the boundaries between the clusters can only be drawn with
a certain amount of arbitrariness. Due to this arbitrariness it may be doubted,
at least for data points close to the boundaries, whether a definite assignment
to one class is justified.

An intuitive approach to deal with such situations is to make it possible that
a data point belongs in part to one cluster, in part to a second etc. Fuzzy cluster
analysis does just this: It relaxes the requirement that a data point must be
assigned to exactly one cluster by allowing gradual memberships, thus offering
the opportunity to deal with data points that do not belong definitely to one
cluster [3, 4]. In general the performance of fuzzy clustering algorithms is superior
to that of the corresponding crisp clustering algorithms [3].

Most fuzzy clustering algorithms are objective function based: They deter-
mine an optimal classification by minimizing an objective function. In objective
function based clustering usually each cluster is represented by a cluster proto-
type. This prototype consists of a cluster center (whose name already indicates
its meaning) and maybe some additional information about the size and the
shape of the cluster. The cluster center is an instantiation of the attributes used
to describe the domain, just as the data points in the dataset to divide. However,
the cluster center is computed by the clustering algorithm and may or may not
appear in the dataset. The size and shape parameters determine the extension
of the cluster in different directions of the underlying domain.

The degrees of membership to which a given data point belongs to the dif-
ferent clusters are computed from the distances of the data point to the cluster
centers w.r.t. the size and the shape of the cluster as stated by the additional
prototype information. The closer a data point lies to the center of a cluster
(w.r.t. size and shape), the higher is its degree of membership to this cluster.
Hence the problem to divide a dataset X = {x1, . . . ,xr} ⊆ IRn into m clusters
can be stated as the task to minimize the distances of the data points to the
cluster centers, since, of course, we want to maximize the degrees of membership.

Several fuzzy clustering algorithms can be distinguished depending on the
additional size and shape information contained in the cluster prototypes, the
way in which the distances are determined, and the restrictions that are placed
on the membership degrees. We confine ourselves to a subset of all possible
algorithms that is best suited to demonstrate the ideas we are interested in. To
be more precise, we consider the task to minimize the objective function

J(X,U,B) =
m∑

i=1

r∑
j=1

uα
ijd

2(βi,xj) (1)

subject to

r∑
j=1

uij > 0, for all i ∈ {1, . . . ,m}, (2)

m∑
i=1

uij = 1, for all j ∈ {1, . . . , r}, (3)

where uij ∈ [0, 1] is the membership degree of datum xj to cluster ci, βi is the
prototype of cluster ci, and d(βi,xj) is the distance between datum xj and pro-
totype βi. B is the set of all m cluster prototypes β1, . . . ,βm. The m× r matrix
U = [uij] is called the fuzzy partition matrix and the parameter α is called the
fuzzifier. This parameter determines the “fuzziness” of the classification. With
higher values for α the boundaries between the clusters become softer, with lower
values they get harder. Usually α = 2 is chosen.

Constraint (2) guarantees that no cluster is empty and constraint (3) en-
sures that the sum of the membership degrees for each datum equals 1. Fuzzy
clustering algorithms which minimize the objective function J subject to these
constraints are usually called probabilistic clustering algorithms, since the mem-
bership degrees for a given datum formally resemble the probabilities of its being
a member of the corresponding cluster.

The objective function J(X,U,B) is usually minimized by updating the
membership degrees uij and the prototypes βi in an alternating fashion, until
the change ∆U of the membership degrees is less than a given tolerance ε. This
approach is also known as the alternating optimization method.

Skeleton of a Fuzzy Clustering Algorithm

Fix the number of clusters m
Fix α, α ∈ (1,∞)
Initialize the fuzzy m-partition U
REPEAT

Update the parameters of each clusters prototype
Update the fuzzy m-partition U using equation (4) (see below)

UNTIL |∆U| < ε

To minimize the objective function J , the membership degrees are updated using
equation (4) below. This equation can be derived by differentiating the objective
function J .

uij =

1
m∑

k=1

(
d2(xj ,βi)
d2(xj ,βk)

) 1
α−1

, if Ij = ∅,

0, if Ij 6= ∅ and i /∈ Ij ,
x, x ∈ [0, 1] such that

∑
i∈Ij

uij = 1, if Ij 6= ∅ and i ∈ Ij ,

(4)

where Ij = {i|1 ≤ i ≤ m, d2(xj ,βi) = 0}, i.e., Ij represents (by their indices)
the set of all clusters, to whose centers the datum xi is identical.

Equation 4 is used to update the membership degrees in all probabilistic clus-
tering algorithms. In contrast to this, the formulae for computing the prototypes
vary depending on what additional information is included in the prototypes (size
and shape parameters) and how the distances are determined. Each choice leads
to a different algorithm.

The simplest choice, of course, is to include in the cluster prototypes only
the cluster centers and to use a Euclidean distance function (thus implicitely

fixing that the clusters are spheres of equal size). The result is the well-known
fuzzy C means algorithm, which was developed by Bezdek [3]. This algorithm,
however, is very inflexible and thus often leads to an insufficient fit to the data.
In addition, it cannot easily be interpreted probabilistically, which is important
for our considerations. Therefore, in the following, we discuss a more flexible
algorithm that is explicitely based on a probabilistic model.

In [8] Gath and Geva suggested a fuzzy clustering algorithm (the FMLE—
Fuzzy Maximum Likelihood Estimation) which is based on the assumption that
the dataset to be classified was generated by m n-dimensional normal distribu-
tions, where m is the number of clusters. To represent the necessary parameters,
each cluster prototype is a triple βi = (µi,Σi, pi), where µi is the expected
value of the multivariate normal distribution, Σi is the n×n covariance matrix,
and pi is the probability of the cluster ci, such that

∑m
i=1 pi = 1. Intuitively, µi

is the cluster center, Σi describes the size and shape of the cluster (the determi-
nant of Σi, for example, is a measure of the cluster size), and pi determines the
relative frequency of data points that are generated by the cluster ci. The set
of all cluster prototypes defines a complex probability density function on the
n-dimensional domain under consideration, from which the probability densities
at the data points in the dataset X can be determined.

The fuzzy maximum likelihood estimation algorithm classifies the data using
a maximum likelihood approach. That is, it tries to determine the parameters
of the cluster prototypes in such a way that the probability of the dataset (or,
to be more precise, the sum of the probability densities at the data points in the
dataset) is maximized. The rationale underlying this is that before observing
the data all sets of prototypes are equally likely. With this assumption, the
posterior probability of the dataset given the prototypes is a direct measure of
the probability of the prototypes given the dataset (simply apply Bayes rule).

To maximize the likelihood of the data, the distance measure used in the
fuzzy maximum likelihood estimation algorithm is inversely proportional to the
probability density as defined by a cluster prototype. To be more precise, the
distance is computed as

d(xj ,βi) = const. ·

(
pi√

|Σi|(2π)n
exp

(
−1

2
(xj − µi)T Σ−1

i (xj − µi)
))−1

.

Based on this distance measure the membership degrees are computed using
equation (4).

However, if the fuzzy maximum likelihood estimation algorithm is applied
exactly in the way outlined above, it tends to be unstable, mainly because of the
large number of degrees of freedom. To make it more stable, it is advisable to
introduce some restrictions. A serious problem that occurred frequently during
our experiments was that one of the clusters became very small, with the shape
either a sphere or a very thin and long ellipsoid. Therefore, in some experiments,
we restricted the relative size of the clusters by introducing a constraint on the
relative values of the determinants: If they deviate more than by a factor of three
from the average, they are forced back into the range defined by the average and

this factor. This lead to a much more stable behaviour and better results.
Let us now compare the fuzzy maximum likelihood estimation algorithm to

a naive Bayes classifier. If we assume that the attributes are independent of each
other given the clusters, just as we did for the naive Bayes classifier, then the
clusters are defined by their probability, their centers, and the variances for each
dimension (or, in other words, in the covariance matrix all elements but the
diagonal elements are zero). Intuitively, with this assumption, the clusters are
axis-parallel (see above). In this case the degree of membership of a datum to a
clusters is computed in much the same way as a naive Bayes classifier computes
the conditional class probabilities. Thus, an axis-parallel variant of the fuzzy
maximum likelihood estimation algorithm [13] can be seen as a direct analogon
of a naive Bayes classifier. The only difference, of course, is that a naive Bayes
classifier already knows the classes the cases in the dataset belong to, whereas the
clustering algorithm tries to find a good partitioning into classes. Nevertheless,
if there is class information, and if the attributes convey information about the
class, the class information can often be used to assess the quality of a clustering
result.

As an illustrative example we turn again to the iris data we already used
above. Figure 3 shows the result of the axis-parallel variant of the fuzzy maximum
likelihood estimation algorithm on the iris data, if all four attributes are used
(although—for technical reasons—only three dimensions are shown). On the left
the data points are connected to the centers of the clusters for which their degree
of membership is highest. The ellipsoids on the right indicate the 3σ-boundaries
of the multivariate normal distributions.6 It is easy to see that the result closely
resembles the result of the naive Bayes classifier.

If the assumption that the attributes are independent given the class does not
hold, the normal version of the fuzzy maximum likelihood estimation algorithm
can be applied. Since it uses a full covariance matrix, dependencies between the
attributes can be taken into account. Again we illustrate this with the help of
the iris data. Figure 4 shows the result of the normal version of the fuzzy max-
imum likelihood estimation algorithm, if all four attributes are used (although
only three dimensions are shown). On the left the data points are connected to
the center of the cluster for which their degree of membership is highest. The
ellipsoids on the right indicate the 3σ-boundaries of the multivariate normal dis-
tributions. Although this figure, especially the ellipsoids on the right, are a little
harder to visualize in three dimensions, it is fairly obvious that the fit to the
data is better than in figure 3.

As indicated, the results shown in figure 3 and 4 are computed using all at-
tributes of the iris data set. However, usually the iris data set is classified based
on the petal length and width only, since these are the two most informative
attributes. In addition, comparing the results to the results of the preceding
sections is easier, if we confine ourselves to these two dimensions. Of course,

6 The fuzzy data analysis program fcluster which was used to create these screen
shots can be obtained free of charge from our WWW-site:
http://fuzzy.cs.uni-magdeburg.de.

Fig. 3. The iris dataset classified with the axis-parallel variant of the fuzzy maximum
likelihood algorithm, all attributes used. The vertical axis is the petal width, the hori-
zontal the petal length and the depth is the sepal width. On the left each data point is
connected to the center of that cluster to which it has the highest degree of member-
ship. The ellipsoids on the right indicate the 3σ-boundaries of the multivariate normal
distribution.

Fig. 4. The iris dataset classified with the normal fuzzy maximum likelihood algorithm,
all attributes used. The vertical axis is the petal width, the horizontal the petal length
and the depth is the sepal width. On the left each data point is connected to the center
of that cluster to which it has the highest degree of membership. The ellipsoids on the
right indicate the 3σ-boundaries of the multivariate normal distribution.

this changes the results of the clustering algorithms, since the distance functions
change. Figure 5 shows the result of the axis-parallel variant of the fuzzy max-
imum likelihood estimation algorithm on the iris data, if only the petal length
and width are used. The clusters found are hardly distinguishable from the naive
Bayes clusters shown on the left in figure 2. If the three iris types are assigned
to the clusters and the dataset is classified (in the sense of predicting the iris
type), the number of errors is the same as for a naive Bayes classifier.

The result of the fuzzy maximum likelihood estimation algorithm, shown on
the right in figure 5, however, does not resemble the one obtained by a proba-

6

-
petal length

petal width

�����
����������
������
�

�
�
��

�
����
�
��������
���

�
������

◦◦ ◦◦
◦
◦
◦

◦
◦◦

◦

◦

◦

◦◦ ◦◦

◦

◦

◦

◦

◦
◦
◦◦

◦ ◦
◦

◦

◦◦◦
◦

◦◦◦◦
◦◦◦ ◦
◦

◦
◦

◦◦◦◦◦
◦

?

?
?

?

?
?

?
??

?

?
?
?

?

?
?

?

?
?

?

?

? ?
?

?

???

?

?

?
?

?

?
?

?
?

??

?

?
?

?

?
?

?

?
?

?

?

GHI
6

-
petal length

petal width

�����
����������
������
�

�
�
��

�
����
�
��������
���

�
������

◦◦ ◦◦
◦
◦
◦

◦
◦◦

◦

◦

◦

◦◦ ◦◦

◦

◦

◦

◦

◦
◦
◦◦

◦ ◦
◦

◦

◦◦◦
◦

◦◦◦◦
◦◦◦ ◦
◦

◦
◦

◦◦◦◦◦
◦

?

?
?

?

?
?

?
??

?

?
?
?

?

?
?

?

?
?

?

?

? ?
?

?

???

?

?

?
?

?

?
?

?
?

??

?

?
?

?

?
?

?

?
?

?

?

JKL
� iris setosa ◦ iris versicolor ? iris virginica

Fig. 5. Density functions generated by the fuzzy maximum likelihood estimation al-
gorithm for the iris data, three clusters, axis-parallel version (left) and normal version
(right). The ellipses are the 2σ-boundaries of the probability density functions. Petal
width and petal length used only.

6

-
petal length

petal width

�����
����������
������
�

�
�
��

�
����
�
��������
���

�
������

◦◦ ◦◦
◦
◦
◦

◦
◦◦

◦

◦

◦

◦◦ ◦◦

◦

◦

◦

◦

◦
◦
◦◦

◦ ◦
◦

◦

◦◦◦
◦

◦◦◦◦
◦◦◦ ◦
◦

◦
◦

◦◦◦◦◦
◦

?

?
?

?

?
?

?
??

?

?
?
?

?

?
?

?

?
?

?

?

? ?
?

?

???

?

?

?
?

?

?
?

?
?

??

?

?
?

?

?
?

?

?
?

?

?

MNOP
� iris setosa

◦ iris versicolor
? iris virginica

Fig. 6. Density functions generated by the
fuzzy maximum likelihood estimation algo-
rithm for the iris data, four clusters. The
ellipses are the 2σ-boundaries of the prob-
ability density functions. Only petal width
and length used.

bilistic network that takes into account the covariance of the two measures. Ob-
viously the problem is that the fuzzy maximum likelihood estimation algorithm
does not use any class information: Without such information the partitioning
found is much more likely than the the probabilistic network clusters.

Fortunately, we can exploit the fact that in fuzzy clustering, since no class
information is taken into account, we are not bound to using just one cluster per
class (as already mentioned above). We may choose freely, and if we take a closer
look at the iris data, a choice of four clusters suggests itself. Indeed, with this
number of clusters the algorithm yields a model that excellently fits the data as
shown in figure 6. The iris virginica cases have been divided into two clusters,
which, indeed, is what a human would do under these circumstances. It has to be
admitted though that even with the constraint on the cluster sizes introduced
above, the fuzzy maximum likelihood estimation algorithm is not completely

stable and that this is not the only classification we obtained. Fortunately, the
different results can easily be ranked by simply computing the value of the
objective function. Since this function has to be minimized, a smaller value
indicates a better solution. The value of the objective function for the result
shown in figure 6 is only half as large as the value for any other result we
obtained and thus this solution can clearly be regarded as the one to be chosen.

This example indicates how naive Bayes classifiers and maybe also proba-
bilistic networks can profit from fuzzy clustering. Using more than one cluster
per class can often improve the fit to the data and thus in the future we plan to
investigate combinations of the discussed methods.

5 Conclusions

In this paper we discussed the relationship between naive Bayes classifiers, proba-
bilistic networks, and fuzzy cluster analysis. As we hope to have made clear, both
probabilistic networks and the fuzzy maximum likelihood estimation algorithm
can be seen as generalizations of naive Bayes classifiers. However, they general-
ize them to different degrees. Whereas probabilistic networks only remove the
requirement that the multivariate normal distributions have to be axis-parallel
(by taking covariances into account), fuzzy clustering does not only this, but
also lets us use more than one cluster per class. Since the normal distribution
assumption, even if covariances are taken into account, is not always appropri-
ate, this opens up a route to enhance the capabilities of the former methods. The
idea is simply to split one or more classes into pseudo-subclasses, each with a
multivariate normal distribution of its own. To find a good split into subclasses,
fuzzy clustering methods may be used, as the example shown clearly indicates.

References

1. S.K. Andersen, K.G. Olesen, F.V. Jensen, and F. Jensen. HUGIN — A Shell
for Building Bayesian Belief Universes for Expert Systems. Proc. 11th Int. J.
Conf. on Artificial Intelligence (IJCAI’89, Detroit, MI, USA), 1080–1085. Morgan
Kaufman, San Mateo, CA, USA 1989

2. M.J.A. Berry and G. Linoff. Data Mining Techniques — For Marketing, Sales and
Customer Support. J. Wiley & Sons, Chichester, England 1997

3. J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York, NY, USA 1981

4. J.C. Bezdek and S.K. Pal. Fuzzy Models for Pattern Recognition — Methods that
Search for Structures in Data. IEEE Press, Piscataway, NJ, USA 1992

5. J. Dougherty, R. Kohavi, and M. Sahami. Supervised and Unsupervised Discretiza-
tion of Continuous Features. Proc. 12th Int. Conf. on Machine Learning (ICML’95,
Lake Tahoe, CA, USA), 194–202. Morgan Kaufman, San Mateo, CA, USA 1995

6. R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. J. Wiley &
Sons, New York, NY, USA 1973

7. K.J. Ezawa and S.W. Norton. Knowledge Discovery in Telecommunication Services
Data Using Bayesian Network Models. Proc. 1st Int. Conf. on Knowledge Discovery

and Data Mining (KDD’95, Montreal, Canada), 100–105. AAAI Press, Menlo Park,
CA, USA 1995

8. I. Gath and A.B. Geva. Unsupervised Optimal Fuzzy Clustering. IEEE Trans.
Pattern Anal. Mach. Intelligence 11:773–781. IEEE Press, Piscataway, NJ, USA,
1989

9. J. Gebhardt and R. Kruse. The Context Model — An Integrating View of Vague-
ness and Uncertainty Int. Journal of Approximate Reasoning 9:283–314. North-
Holland, Amsterdam, Netherlands 1993

10. J. Gebhardt and R. Kruse. POSSINFER — A Software Tool for Possibilistic
Inference. In: D. Dubois, H. Prade, and R. Yager, eds. Fuzzy Set Methods in
Information Engineering: A Guided Tour of Applications, 407–418. J. Wiley &
Sons, New York, NY, USA 1996

11. I.J. Good. The Estimation of Probabilities: An Essay on Modern Bayesian Meth-
ods. MIT Press, Cambridge, MA, USA 1965

12. D. Heckerman. Probabilistic Similarity Networks. MIT Press, Cambridge, MA,
USA 1991

13. F. Höppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy Cluster Analysis. J. Wi-
ley & Sons, Chichester, England 1999

14. R. Kruse, E. Schwecke, and J. Heinsohn. Uncertainty and Vagueness in Knowledge-
based Systems: Numerical Methods (Series Artificial Intelligence). Springer, Berlin,
Germany 1991

15. R. Kruse, J. Gebhardt, and F. Klawonn. Foundations of Fuzzy Systems. J. Wiley
& Sons, Chichester, England 1994

16. P. Langley, W. Iba, and K. Thompson. An Analysis of Bayesian Classifiers. Proc.
10th Nat. Conf. on Artificial Intelligence (AAAI’92, San Jose, CA, USA), 223–228.
AAAI Press and MIT Press, Menlo Park and Cambridge, CA, USA 1992

17. P. Langley and S. Sage. Induction of Selective Bayesian Classifiers. Proc. 10th
Conf. on Uncertainty in Artificial Intelligence (UAI’94, Seattle, WA, USA), 399–
406. Morgan Kaufman, San Mateo, CA, USA 1994

18. S.L. Lauritzen and D.J. Spiegelhalter. Local Computations with Probabilities
on Graphical Structures and Their Application to Expert Systems. Journal of
the Royal Statistical Society, Series B, 2(50):157–224. Blackwell, Oxford, United
Kingdom 1988

19. D. Nauck, F. Klawonn, and R. Kruse. Foundations of Neuro-Fuzzy Systems. J. Wi-
ley & Sons, Chichester, England 1997

20. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference (2nd edition). Morgan Kaufman, San Mateo, CA, USA 1992

21. A. Saffiotti and E. Umkehrer. PULCINELLA: A General Tool for Propagating
Uncertainty in Valuation Networks. Proc. 7th Conf. on Uncertainty in Artificial
Intelligence (UAI’91, Los Angeles, CA, USA), 323–331. Morgan Kaufman, San
Mateo, CA, USA 1991

22. G. Shafer and P.P. Shenoy. Local Computations in Hypertrees (Working Paper
201). School of Business, University of Kansas, Lawrence, KS, USA 1988

23. P.P. Shenoy. Valuation-based Systems: A Framework for Managing Uncertainty in
Expert Systems (Working Paper 226). School of Business, University of Kansas,
Lawrence, KS, USA 1991

24. J. Whittaker. Graphical Models in Applied Multivariate Statistics. J. Wiley &
Sons, Chichester, England 1990

