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Abstract:
The quality of clustering results obtained with the k-means algorithm depends heavily on the
initialization of the cluster centers. Simply sampling centers uniformly at random from the data
points usually yields fairly poor and unstable results. Hence several alternatives have been sug-
gested in the past, among which Maximin (Hathaway et al., 2006) and k-means++ (Arthur and
Vassilvitskii, 2007) are best known and most widely used. In this paper we explore modifications of
these methods that deal with cases, in which the original methods still yield suboptimal choices of
the initial cluster centers. Furthermore we present efficient implementations of our new methods.

1 INTRODUCTION

If groups of similar objects are to be found in
given data, the k-means clustering algorithm is
among the most popular approaches. However,
a problem of the k-means algorithm is that its
success depends heavily on its initialization. If
the initial centers are poorly chosen, it may get
stuck in a local optimum far inferior to what may
be possible. This is often the case for the näıve
approach of choosing the initial cluster centers
uniformly at random from the data points.

Two common approaches to address this prob-
lem are the Maximin method (Hathaway et al.,
2006) and the k-means++ procedure (Arthur and
Vassilvitskii, 2007). In this paper, after a brief re-
view of the basic k-means algorithm in Section 2,
we consider in Section 3 extensions of these two
methods that aim at reducing the chances of low
quality center choices. These variants try to avoid
choosing outliers or centers that are too close to-
gether by restricting the data points from which
the next center may be chosen, either strictly or in
probability. In Section 4 we present experimen-
tal results on several standard benchmark data
sets, evaluating both result quality and number
of distance computations. The paper closes with
Section 5, in which we draw conclusions from our
experiments and their results.

2 K-MEANS CLUSTERING

The k-means algorithm finds a desired num-
ber k of clusters in a data set x1, . . . , xn ∈ Rm.
It starts by choosing k initial centers, e.g. by sam-
pling uniformly at random from the data points.
In the subsequent optimization phase, two steps
are executed alternatingly: (1) each data point is
assigned to the center that is closest to it and (2)
the centers are re-computed as vector means of
the data points assigned to them.

If ν(x) denotes the center closest to a data
point x, this update scheme can be written as

∀i; 1 ≤ i ≤ k : ct+1
i =

∑n
j=1 1(νt(xj) = cti) · xj∑n

j=1 1(νt(xj) = cti)
.

The upper indices indicate the update step and
1(φ) yields 1 if φ is true and 0 otherwise. νt(xj)
represents the assignment step, the fraction com-
putes the mean of the points assigned to center ci.

It can be shown that this update scheme must
converge, that is, must reach a state in which an-
other execution of the two steps does not change
the cluster centers anymore (Selim and Ismail,
1984). However, there is no guarantee that the
obtained result is optimal in the sense that it
yields the smallest sum of squared distances be-
tween the data points and the cluster centers they
are assigned to. Rather, it is very likely that the
optimization gets stuck in local optimum.



real[][] maximin (real data[][], int n, int k):
(* data: data points, n: number of data points, k: number of clusters *)
int i, j, imax; (* loop variables, array indices *)
real dsts[n], dmax, d; (* (min/max) distance to centers *)
int hcis[n]; (* highest used cluster indices *)
real ctrs[k][]; (* chosen initial cluster centers *)
ctrs[0] = data[randint(0, n-1)]; (* choose first center randomly *)
for i = 0 to n-1: (* compute distances to first cluster *)

dsts[i] = distance(data[i], ctrs[0]); hcis[i] = 0;
for j from 1 to k-1: (* select the remaining clusters *)

dmax = 0; imax = 0; (* init. max. distance and index *)
for i = 0 to n-1: (* traverse the data points *)

if dsts[i] <= dmax: continue; (* if less than maximum, skip point *)
while hcis[i] < j-1: (* traverse skipped clusters *)

hcis[i] += 1; (* compute distance to center *)
d = distance(ctrs[hcis[i]], data[i]);
if d < dsts[i]: (* if less than known distance, *)

dsts[i] = d; (* update the minimum distance *)
if d < dmax: break; (* if less than current maximum, skip *)

if dsts[i] > dmax: (* if larger than current maximum, *)
dmax = dsts[i]; imax = i; (* note new maximum and index *)

dsts[imax] = 0.0; (* mark the data point as selected *)
ctrs[j] = data[imax]; (* and add it to the set of centers *)

return ctrs; (* return the chosen cluster centers *)

Figure 1: Efficient implementation of the Maximin cluster center initialization.

3 K-MEANS INITIALIZATION

The quality of a k-means result depends heav-
ily on the initial centers. Poor choices can lead to
inferior results due to a local optimum. However,
improvements over näıvely sampling uniformly at
random from the data points are easily found, for
example the Maximin method (Hathaway et al.,
2006) (Section 3.1) and the k-means++ procedure
(Arthur and Vassilvitskii, 2007) (Section 3.2).

3.1 Maximin and Its Variants

Standard Maximin. A simple and straight-
forward method to obtain well dispersed initial
centers is the Maximin method (Hathaway et al.,
2006): the first center is sampled uniformly at
random from the data points. All subsequent
centers are chosen as those data points that maxi-
mize the minimum distance to the already chosen
cluster centers (hence the name “Maximin”).

A näıve implementation of Maximin com-
putes, after the first center has been chosen, the
distances of all data points to the most recently
chosen center and updates a minimum distance to
a center that is stored for each data point. This

requires
∑k−1

i=1 (n − i) ≈ (k − 1)n distance com-
putations. However, using ideas that are inspired
by approaches like (Elkan, 2003; Hamerly, 2010;
Newling and Fleuret, 2016a) for accelerating the

optimization phase, the number of distance com-
putations can be reduced (Yarikova, 2019).

The core idea is as follows: we store for each
data point a (minimum) distance to a center and
the index of this center. These distances are ini-
tialized with the distance to the first center and
all indices are set to zero. Any new center can ob-
viously only reduce the stored distances. Hence,
in the search for the maximum of the minimum
distances of data points to already chosen centers,
any data points with a smaller minimum distance
than the current maximum can be skipped, even
if not all distances to the currently chosen centers
have been computed. These distances are com-
puted only on a need-to-know basis: if the mini-
mum distance stored with a data point is greater
than the current maximum, it could yield the new
maximum, and hence distances to centers that
were skipped before are determined, but only as
long as the minimum distance of the data point
remains larger than the current maximum. Thus,
for data points close to some already chosen clus-
ter center, distance computations may no longer
be necessary. A formal description of this algo-
rithm in pseudo-code (somewhat Python-like) is
shown in Figure 1.

Trimmed Maximin. A core problem of the
Maximin method is that it tends to select out-
liers, that is, data points at the very rim of the
data point cloud. Although this ensures well dis-



persed initial centers, it also tends to select cen-
ters that are far away from other data points and
thus atypical for any clusters.

A simple solution to this problem is trimmed
Maximin (Hathaway et al., 2006), where in each
selection step a certain number s (or fraction) of
the farthest data points are trimmed. Hence the
data point with the (s + 1)-th largest minimum
distance to already chosen centers is selected.

Such an approach is easily implemented by re-
placing the single maximum distance dmax and
corresponding index imax in the algorithm in Fig-
ure 1 by a minimum heap of size s+ 1, which col-
lects the s+ 1 data points with the largest mini-
mum distances (Yarikova, 2019). We used a sim-
ple binary heap in our implementation. When-
ever a data point has a larger minimum distance
than the data point at the top of the heap, the
data point at the top of the heap is replaced (un-
less the heap is not yet full—then the new point
is simply added) and the new point sifts down in
the heap to its proper place. After all data points
have been processed, the data point at the top of
the heap is chosen as the next center.

Sectioned Maximin. An alternative to exclud-
ing extreme data points is to reduce at least the
chance that outliers are chosen by selecting the
data point with the largest maximum distance
not among all data points, but only in a (ran-
dom) subset of the data points (Yarikova, 2019).

This can be achieved with a simple modifica-
tion of the algorithm shown in Figure 1: The sub-
set size s ≤ n is passed as an additional parame-
ter. The loop “for i = 0 to n-1:” is replaced
by a loop “for r = 1 to s:” (r is a new vari-
able), while the variable i is initialized to zero
before it and updated by “i = (i+1) mod n;”
in each loop. In this way the subsets, from which
the next centers are chosen as those data points
with the largest minimum distances, are sections
of data points that are cut cyclically from the
(initially shuffled) data points. Note that choos-
ing s = n conveniently yields the original Max-
imin behavior as a special case (Yarikova, 2019).

3.2 k-Means++ and Its Variants

Standard k-Means++. The k-means++ proce-
dure (Arthur and Vassilvitskii, 2007) can be seen
as a randomized version of the Maximin method.
The data point with the largest minimum dis-
tance from the already chosen centers is not se-
lected absolutely, but is merely assigned a (signifi-
cantly) higher probability than other data points.

To be more specific, the probability that a data
point is chosen as the next center is proportional
to the square of the minimum distance it has to
already chosen cluster centers (sampling from a
d2-distribution). Thus data points that are far
away from all already chosen centers have a high
probability of being chosen, without the farthest
one being the only possible choice.

A standard implementation of k-means++ re-
quires, like a näıve implementation of the Max-

imin method,
∑k−1

i=1 (n − i) ≈ (k − 1)n distance
computations. Unfortunately, this cannot be
reduced so easily as for the Maximin method,
because all minimum distances to cluster cen-
ters need to be known for the random sampling.
For large data sets, the methods suggested in
(Bachem et al., 2016a; Bachem et al., 2016b)
may be useful, which yield an approximation of k-
means++ with the help of a Markov Chain Monte
Carlo method. We implemented these as well, but
since their results do not differ much for standard
benchmark data sets, we do not study them here.

Trimmed k-Means++. k-means++ still suffers
from two drawbacks: in the first place, outliers
again have a high probability of being chosen as
initial cluster centers. Secondly, even though data
points with a small minimum distance to already
chosen centers are assigned only a small probabil-
ity, the number of these data points naturally in-
creases as more centers are being selected. Hence
they collect considerable probability mass simply
by their number. As a consequence, the chance
that centers are chosen that are too close together
may be unfavorably high.

We address these problems with a trimming
approach based on quantiles (Yarikova, 2019):
data points with a minimum distance below a
user-specified lower quantile 1−ql or above a user-
specified upper quantile 1− qu cannot be chosen
as the next cluster center. (Note that we specify
both quantiles as 1 − q, because we want ql and
qu to refer to fractions of data points with the
largest minimum distances.)

Especially if the lower quantile is large (we
recommend to choose ql < 0.5), this also enables
an efficient implementation that can use (sim-
ilar to the trimmed Maximin method) a heap
to find the data points above the lower quan-
tile 1− ql. That is, we create a minimum heap of
size s = bql·nc, which collects the data points hav-
ing the s largest minimum distances to already
chosen cluster centers. This heap is filled in ex-
actly the same way as the one for trimmed Max-
imin. After all data points have been processed,



real[][] kmeanspp (real data[][], int n, int k, int s, int t):
(* data: data points, n: number of data points, k: number of clusters *)
(* s, t: number of data point from lower/upper quantile to end n *)
int i, j, isel; (* loop variables, array indices *)
real dsts[n+1], dcum[], d; (* (min/cum) distances to centers *)
int hcis[n]; (* highest used cluster indices *)
int heap[s], h[]; (* heap for largest min. distances *)
real ctrs[k][]; (* chosen initial cluster centers *)
ctrs[0] = data[randint(0, n-1)]; (* choose first center randomly *)
for i = 0 to n-1: (* compute distances to first cluster *)

dsts[i] = distance(data[i], ctrs[0]); hcis[i] = 0;
dsts[n] = -1.0; (* set distance sentinel for heap *)
for j from 1 to k-1: (* select the remaining clusters *)

heap[0] = n; j = s; (* set heap sentinel, start index *)
for i = 0 to n-1: (* traverse the data points *)

if dsts[i] <= dsts[heap[0]]: continue; (* if less than heap data, skip point *)
while hcis[i] < k-1: (* traverse skipped clusters *)

hcis[i] += 1; (* go to the next cluster *)
d = distance(ctrs[hcis[i]], data[i]);
if d < dsts[i]: dsts[i] = d; (* if less, update minimum distance *)

if dsts[i] <= dsts[heap[0]]: (* if less than heap data, *)
continue; (* skip the data point *)

if j > 0: j -= 1 (* get (next) position in heap *)
sift(heap, j, s, i, dsts); (* let new distance sift down in heap *)

if t <= 0: h = heap; (* if all in top quantile, use heap *)
else: (* if to trim uppermost quantile *)

quantile(heap, s, t-1, dsts); (* trim off t largest distances *)
if t < s: h = heap[t:]; (* get the remaining heap *)
else: h = heap[-1:] (* or at least the last element *)

dcum = cumsum([dsts[i] for i in h]); (* form cumulative sums *)
isel = searchsorted(dcum, dcum[-1] *random());

if isel >= len(h): isel = len(h)-1; (* sample randomly from d2 distrib. *)
isel = h[isel]; (* get chosen data point index *)
dsts[isel] = 0.0; (* mark the data point as selected *)
ctrs[j] = data[isel]; (* and add it to the set of centers *)

return ctrs; (* return the chosen cluster centers *)

Figure 2: Efficient implementation of the trimmed k-means++ procedure. The function sift performs a standard
sift down operation for a binary heap (as a simple array), called on the heap, the number of empty elements in
the heap, and the size of the heap, the data point and its distance. The function cumsum forms the cumulative
sums of the values in its parameter array; the function searchsorted finds the index of an element in an array.

the top t = bqu · nc data points (that is, the t
data points with the largest minimum distances)
may be trimmed from the heap using the quicks-
elect scheme (Hoare, 1961) for finding a quantile
quickly as well as collecting the values above the
quantile. A formal description of this algorithm
in pseudo-code (somewhat Python-like) is shown
in Figure 2 (Yarikova, 2019).

3.3 Local Outlier Factor

In order to prevent outliers from being chosen as
cluster centers (this is the main problem of the
Maximin approach, see above), we also tried find-
ing (potential) outliers first and excluding them
from the available choices for (initial) cluster cen-
ters. That is, the described methods for choos-
ing initial cluster centers were executed only on

those data points that were not labeled as out-
liers, while all data points were used in the sub-
sequent cluster optimization phase.

For detecting outliers we relied on the local
outlier factor measure (Breunig et al., 2000) in the
SciKitLearn (Pedregosa et al., 2011) implemen-
tation, using default settings (20 neighbors, au-
tomatic thresholding). For all used data sets, the
local outlier factors were computed and turned
into outlier indicators (thresholds determined as
described in (Breunig et al., 2000)), which could
then be passed in a separate file to the actual
clustering program. In this way we avoided hav-
ing to re-compute the local outlier factors again
for each clustering run, although execution times
were generally very low (see the last column of
Table 1 in the next section).



We also experimented with the somewhat
newer method of local outlier probability (Kriegel
et al., 2009), in the implementation that is pro-
vided by PyNomaly1. However, the execution
times were so much longer than those of the lo-
cal outlier factor implementation of SciKitLearn
that we soon abandoned this possibility.

4 EXPERIMENTS

For our experiments we used the data sets
shown in Table 1, most of which stem from (Fränti
and Sieranoja, 2018)2, although the data sets
“iris”, “wine” and “yeast” can also be found in
the UCI machine learning repository (Dheeru and
Taniskidou, 2017). The data set “hepta” (Ultsch,
2005) is part of the Umatrix package for R.3

These data sets have been used several times
in similar contexts (e.g. (Newling and Fleuret,
2016b; Fränti and Sieranoja, 2018)) and hence
may be viewed as standard benchmark data sets.
All data sets were z-score normalized in all di-
mensions, that is, transformed in such a way that
each dimension has a mean of zero and a standard
deviation of one. After an initialization with the
different methods described above, the actual k-
means optimization was conducted with the Ex-
ponion method (Newling and Fleuret, 2016a).

Experimental results on these data sets are
shown in Tables 2 to 6. Table 2 shows the number
of distance computations needed in the initial-
ization phase relative to the number needed in a
naive Maximim or a standard k-means++ imple-

mentation (i.e.,
∑k−1

i=1 (n−i) ≈ (k−1)n). Clearly,
the optimized form of Maximin can reduce dis-
tance computations considerably, often down to
less than half. Trimming comes, of course, at a
price, since the restrictions on the minimum dis-
tances that have to be considered are less strict.
(It does not suffice for a minimum distance to be
less than the current maximum to skip additional
distance computations, but it must be less than
the top x% of minimum distances.) Sectioned
Maximin, especially for small section sizes, re-
duces the number of distance computations the
most, sometimes to as little as a fifth.

As can be seen, the k-means++ procedure
clearly profits from trimming, and, not surpris-
ingly, profits the more, the tighter the trimming:

1https://github.com/vc1492a/PyNomaly
2http://cs.joensuu.fi/sipu/datasets/
3https://cran.r-project.org/web/packages/

Umatrix/index.html

data set m n k o time/s

iris 4 150 3 5 <0.01
wine 14 178 3 8 <0.01
yeast 8 1484 10 44 0.04
hepta 3 212 7 0 <0.01
r15 3 600 30 48 <0.01
d31 3 3100 31 215 0.02
a1 2 3000 20 82 0.02
a2 2 5250 35 181 0.03
a3 2 7500 50 261 0.04
s1 2 5000 15 158 0.03
s2 2 5000 15 123 0.02
s3 2 5000 15 67 0.03
s4 2 5000 15 97 0.02
birch1 2 100000 100 156 0.61
birch2 2 100000 100 2731 0.67
birch3 2 100000 100 857 0.61

Table 1: Used data sets and their properties: m:
number of dimensions, n: data points, k: clusters,
o: outliers (local outlier factor), “time/s”: time in
seconds for outlier computation (SciKitLearn).

Trimming allows similar optimizations of skip-
ping distance computations as Maximin: what
cannot enter the heap needs no update.

Table 3 shows the clustering error, measured
as the sum of squared distances between centers
and assigned data points. All results are averages
over 100 runs. Clearly, trimming very often im-
proves the initialization, although there are cases
(wine, yeast), where proper trimming parameters
are crucial. This is not too surprising, though, as
the best parameters depend on the level of con-
tamination of the data set with outliers.

If such outliers are identified before initializa-
tion by computing a local outlier factor (see Ta-
ble 4), the percentages become somewhat worse.
However, the reason for this is that the standard
Maximin method fares better, as it can no longer
select such outliers as cluster centers. The higher
percentages thus reflect the smaller base of stan-
dard Maximin rather than that trimming works
less well. Nevertheless the initialization still prof-
its considerably from trimming.

A better initialization is one thing, but does
this also improve the error of the final result after
optimization? Table 5 shows that this is actually
often the case, although results depend heavily
on the specific data set. Note, however, that this
table shows average errors over 100 runs, which is
not necessarily what is relevant. In practice, clus-
tering will be run several times with different ini-
tializations and then the best result gets selected.
W.r.t. best results over 100 runs (not shown) the
different approaches hardly differ for these data
sets (they usually find the global optimum if only



maximin kmeans++

opt trimmed sectioned std trimmed

1% 2% 5% 5% 10% 20% 20% 20% 10% 10% 5% 5%
data set 0% 2% 0% 2% 0% 1%

iris 60.9 73.7 76.2 80.4 51.6 52.4 53.6 100 86.0 86.6 78.7 79.4 72.5 72.3
wine 53.7 62.5 68.7 76.0 51.4 52.0 52.4 100 84.9 85.1 75.8 76.7 68.3 68.0
yeast 14.1 67.3 63.9 64.2 13.9 14.8 15.2 100 72.3 73.0 57.2 60.0 44.5 46.7
hepta 50.0 72.7 72.2 72.4 23.3 27.6 33.7 100 81.8 82.0 74.6 74.8 68.2 68.4
r15 35.9 40.6 42.7 51.5 34.3 36.3 35.8 100 74.4 74.7 61.0 61.0 51.4 50.9
d31 46.6 56.3 58.2 62.1 32.7 40.2 44.2 100 77.0 76.9 67.8 67.8 62.1 62.0
a1 38.4 51.8 54.5 60.6 23.3 32.8 36.4 100 76.9 76.9 67.4 67.3 60.4 60.3
a2 36.5 52.6 54.6 60.0 30.2 34.3 35.6 100 76.5 76.4 66.6 66.7 60.0 60.1
a3 35.8 52.9 54.9 60.3 32.3 34.9 36.0 100 76.2 76.1 66.7 66.6 60.3 60.3
s1 40.2 56.1 58.7 63.7 20.0 30.3 36.8 100 77.9 77.9 69.3 69.6 63.3 63.9
s2 40.2 54.6 56.9 62.6 19.4 29.2 35.8 100 77.6 77.7 68.7 68.8 62.4 62.7
s3 37.5 52.9 55.0 59.0 18.8 28.3 33.9 100 77.1 77.0 67.1 66.8 60.9 59.7
s4 40.7 53.8 55.8 61.0 18.5 27.9 34.5 100 77.0 76.8 67.5 67.3 61.2 60.7
birch1 31.0 49.6 52.6 58.4 28.6 29.8 30.3 100 75.8 75.7 65.7 65.6 58.5 58.5
birch2 38.6 46.3 48.2 56.2 34.0 36.1 37.4 100 75.1 74.9 64.0 63.8 56.1 55.7
birch3 32.4 43.2 45.7 52.6 29.3 30.8 31.5 100 72.0 71.8 61.0 60.5 53.1 52.4

Table 2: Numbers of dis-
tance computations for dif-
ferent initialization methods
on different data sets. All
numbers are percentages rel-
ative to a naive compu-
tation (both Maximin or
k-means++), which requires∑k−1

i=1
(n− i) ≈ (k− 1)n dis-

tance computations.

they are executed often enough). A lower average
error can be read as a higher chance to obtain a
good or even the best clustering result in a limited
number of runs, though.

An important insight gained from Table 5 is
that k-means++, the de facto standard for k-
means initialization, performs worse than Max-
imin on many data sets, sometimes considerably
(hepta, d31). In these cases trimming has a very
beneficial effect: not only does it reduce the num-
ber of distance computations, but it also makes
k-means++ competitive with Maximin again.

Finally, Table 6 shows that the trimming ap-
proaches also lead to gains in the number of up-
date steps (iris appears to be somewhat of an ex-
ception, but this may be acceptable given the bet-
ter result quality, see Table 5). For most data
sets, better results can thus even be obtained
in less time (or more runs can be conducted in
the same time, thus increasing the chance of ob-
taining a good result), not only by reducing the
needed number of distance computations in the
initialization, but also by reducing the number
of update steps and thus the number of distance
computations in the optimization process.

5 CONCLUSION

We developed two new initialization methods
for k-means clustering, namely sectioned Max-
imin and trimmed k-means++, and provided ef-
ficient implementations of all Maximin versions
(standard, trimmed, sectioned) as well as of
trimmed k-means++ (see also the URLs given be-
low, from where our software can be obtained).

As our experimental results demonstrate,
these methods can yield better clustering quality,
while at the same time reducing the number of
distance computations needed for the center ini-
tialization as well as the number of update steps
(and thus the distance computations) needed un-
til the k-means optimization procedure converges.

Somewhat surprisingly, finding outliers first
and excluding them from the choice of initial clus-
ter centers did not really improve the results—
likely, because trimming during initialization al-
ready handles outliers very effectively.

However, selecting an outlier as an initial clus-
ter center may not be so bad either. Since out-
liers are “surrounding” the data point cloud, they
may still be reasonably good choices for initial
cluster centers that are directed to their proper
places by the optimization procedure. This effect
may also explain why Maximin often outperforms
kmeans++. This demonstrates that the current de
facto initialization standard may be worse than it
is held to be, at least it can be improved upon.
Our trimming approaches make kmeans++ com-
petitive with Maximin again, though. However,
in terms of the number of needed distance com-
putations, Maximin still wins.

Software and Extended Results. Our imple-
mentations (Python and C, MIT License) as well
as extended result tables can be obtained at
http://www.borgelt.net/cluster.html

http://www.borgelt.net/docs/clsinit.txt

The first author gratefully acknowledges the fi-
nancial support from Land Salzburg within the
WISS 2025 project IDA-Lab (20102-F1901166-
KZP and 20204-WISS/225/197-2019).



maximin kmeans++

std trimmed sectioned std trimmed

1% 2% 5% 5% 10% 20% 20% 20% 10% 10% 5% 5%
data set 0% 2% 0% 2% 0% 1%

iris 100 109 103 73.7 60.6 65.9 77.7 65.9 60.3 57.7 68.1 61.7 81.6 71.6
wine 100 121 108 98.6 84.1 86.0 93.8 80.3 81.9 79.4 88.9 80.9 92.9 88.9
yeast 100 114 95.5 77.4 76.1 84.8 90.8 55.9 57.5 69.8 64.2 73.9 72.2 74.4
hepta 100 91.4 90.8 80.6 107 91.0 93.5 145 93.2 93.4 86.5 84.7 91.9 88.6
r15 100 67.1 60.2 56.7 62.9 69.9 78.3 62.8 58.7 57.9 60.4 57.5 61.6 58.0
d31 100 50.3 47.6 78.3 63.9 72.2 81.7 85.5 61.1 70.8 55.0 57.7 53.7 50.8
a1 100 62.4 61.1 66.7 76.4 82.6 89.4 78.8 66.8 66.3 63.9 62.0 64.2 61.8
a2 100 60.7 61.5 66.4 77.7 83.3 90.3 84.9 66.8 69.2 64.5 64.2 64.4 62.0
a3 100 62.3 64.6 67.1 77.5 84.9 90.3 87.7 69.1 71.1 64.8 67.1 64.3 62.3
s1 100 46.9 42.0 36.9 65.2 75.3 84.0 70.5 49.9 47.7 44.1 43.2 46.8 40.0
s2 100 50.6 44.9 45.4 69.4 78.5 85.1 64.7 52.5 51.6 49.9 46.0 51.8 46.2
s3 100 64.3 59.0 55.8 81.8 87.3 92.7 67.8 60.0 56.8 61.4 55.3 63.1 57.0
s4 100 61.5 57.1 51.0 79.3 83.8 89.8 64.4 57.5 53.3 57.5 52.5 59.0 55.3
birch1 100 78.6 78.6 81.7 95.1 96.6 98.4 102 83.9 86.9 81.3 82.4 80.6 79.7
birch2 100 61.6 63.7 84.6 93.0 95.4 97.7 75.0 61.4 80.9 60.3 74.6 60.5 63.5
birch3 100 58.4 55.9 62.4 90.6 93.8 96.0 53.8 49.8 56.6 50.9 56.0 53.7 53.7

Table 3: Average error (sum
of squared distances of data
points to closest clusters,
100 runs) directly after the
initialization. All columns
show percentages relative to
the column “maximin:std”,
which thus necessarily al-
ways shows 100%.

maximin kmeans++

std trimmed sectioned std trimmed

1% 2% 5% 5% 10% 20% 20% 20% 10% 10% 5% 5%
data set 0% 2% 0% 2% 0% 1%

iris 100 109 95.1 70.9 68.6 74.0 79.5 69.6 68.3 63.5 74.5 69.6 84.2 75.9
wine 100 97.5 101 91.2 86.5 89.7 92.9 88.9 86.1 83.9 87.2 84.2 93.4 89.8
yeast 100 103 84.1 82.3 78.6 84.5 91.3 59.5 61.3 77.9 66.6 81.3 72.3 79.5
hepta 100 91.0 91.2 80.8 102 90.1 92.3 156 91.4 95.7 86.9 84.9 91.2 87.7
r15 100 75.6 68.7 67.2 74.2 77.4 84.4 77.9 71.8 71.1 71.9 70.4 73.5 70.0
d31 100 60.3 58.2 98.0 71.4 78.4 85.9 109 74.8 81.4 67.9 70.7 63.6 62.6
a1 100 65.1 62.8 72.0 77.8 84.3 90.1 85.0 69.5 71.1 67.3 66.4 67.4 65.0
a2 100 66.3 64.3 72.2 80.0 86.1 90.5 91.7 74.5 77.2 69.9 72.0 69.6 67.9
a3 100 68.3 70.9 75.4 82.0 87.5 91.9 97.0 74.2 80.1 70.7 73.6 70.5 69.6
s1 100 55.5 48.3 43.0 72.5 79.3 88.6 78.7 56.1 57.1 52.3 50.9 51.8 45.9
s2 100 54.9 50.1 51.3 75.1 83.2 87.8 73.0 58.9 55.7 54.2 52.1 55.8 51.4
s3 100 64.1 61.0 54.9 82.1 87.2 92.7 72.0 61.2 58.4 61.9 57.0 62.6 57.7
s4 100 66.0 59.8 56.6 80.8 86.0 90.8 70.3 61.5 58.6 63.1 57.3 65.6 59.1
birch1 100 80.9 81.1 84.4 95.0 97.0 98.2 104 86.9 89.7 83.8 85.2 82.1 81.7
birch2 100 62.8 66.0 89.6 93.1 95.8 98.2 75.1 63.1 84.5 61.4 75.7 62.0 63.8
birch3 100 60.3 58.7 69.7 90.1 93.3 95.7 56.8 52.4 61.2 53.1 60.7 55.8 56.7

Table 4: Average error di-
rectly after the initialization
(100 runs), if found out-
liers are ineligible as clus-
ter centers. All columns
show percentages relative to
the column “maximin:std”,
which thus necessarily al-
ways shows 100%.
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