
LEARNING VECTOR QUANTIZATION: CLUSTER SIZE AND CLUSTER NUMBER

Christian Borgelt

School of Computer Science
University of Magdeburg, Universitätsplatz 2

D-39106 Magdeburg, Germany
e-mail: borgelt@iws.cs.uni-magdeburg.de

Daniela Girimonte, Giuseppe Acciani

Department of Electrotechnics and Electronics
Polytechnic of Bari, Via Re David 200

I-70125 Bari, Italy
e-mail:{girimonte,acciani}@deemail.poliba.it

ABSTRACT

We study learning vector quantization methods to adapt the
size of (hyper-)spherical clusters to better fit a given data
set, especially in the context of non-normalized activations.
The basic idea of our approach is to compute a desired ra-
dius from the data points that are assigned to a cluster and
then to adapt the current radius of the cluster in the direc-
tion of this desired radius. Since cluster size adaptation has
a considerable impact on the number of clusters needed to
cover a data set, we also examine how to select the number
of clusters based on validity measures and, in the context of
non-normalized activations, on the coverage of the data.

1. INTRODUCTION

Learning vector quantization (LVQ) [7] is a well-known
prototype based clustering method, which describes a clus-
ter by a center and possibly some size and shape parameters.
It tries to adapt these parameters in order to fit the clusters
to a given data set. Closely related approaches arek-means
clustering [5, 4] and fuzzy clustering [2, 6].

In this paper we focus on LVQ variants that do not rely
on a normalization of the activations. Such methods are es-
pecially desirable, because the assignments of data points
to clusters that result from them are generally more intu-
itive. However, these methods suffer from the drawback
that normalization is an important means to achieve a mu-
tual dependence of the individual prototypes, without which
several clusters may end up in the same position. To solve
this problem, we employ a restricted hard clustering/winner
takes all scheme, which leads to a (limited) dependence of
the clusters without removing the possibility to have data
points that belong to some degree to several clusters.

2. LEARNING VECTOR QUANTIZATION

Learning vector quantization (LVQ) [7] is a well-known
method to form a quantized approximation of the distribu-
tion of an input data setX ⊂ IRp using a finite numberk

of reference vectorswi ∈ IRp, i = 1, 2, ..., k. These vectors
are stored in the connection weights of a neural network
with two layers, which is trained with competitive learning:
for each input~xj the closest reference vector~wc is deter-
mined (i.e.c = arg mini{|~xj− ~wi(t)|}). The corresponding
neuron “wins” the competition and is updated according to

~wc(t + 1) = ~wc(t) + α(t)(~xj − ~wc(t)),

whereα, 0 < α < 1, is a learning rate, which, starting
from an initial valueα0, reduces monotonically to zero (for
example, according toα(t) = α0 · ηt, 0 < η < 1).

In the standard version of LVQ only the “winner neu-
ron” is updated. However, the similarity of LVQ tok-means
clustering [5, 4] and thus also to fuzzy clustering [2, 6] sug-
gests a softened version, in which the weights are updated
according to the activation of a neuron, which may be com-
puted from a Cauchy (fCauchy(x) = 1

d2/σ2+1) or Gaussian

activation function (fGauss(x) = exp(− 1
2 ·d

2/σ2)). Both of
these functions depend on the ratio between the Euclidean
distanced and a (user-specified) reference radiusσ. In this
case several neurons may be updated for each data point.

3. NORMALIZATION AND DEPENDENCE

In softened LVQ (as well as in standard fuzzy clustering)
the neuron activations are usually normalized to sum 1 over
the neurons/clusters, so that each data point has the same
weight. This normalization makes the clusters dependent
on each other: whatever is gained in data point coverage
by one cluster must be lost by another. The same holds, of
course, also for hard LVQ with its “winner takes all” ap-
proach. Mutual cluster dependence is very important for
successful clustering, because it drives the clusters apart and
thus makes sure that all data points are covered. However,
it also has its drawbacks. For example, situations can occur
in which the (normalized) activation increases even though
one moves away from a reference vector [6].

To obtain a more intuitive cluster description, different
suggestions have been made. One of them is possibilistic

fuzzy clustering [8], in which there is no normalization of
membership degrees. Hence it can yield very intuitive clus-
ter descriptions. Unfortunately, possibilistic fuzzy cluster-
ing suffers from the fact that its objective function is truly
minimized only if all cluster centers are identical. In prac-
tice reasonable results are achieved only because the algo-
rithm gets stuck in local optima. But even then, clusters tend
to merge if they are not very well separated.

In this paper we draw on the idea of possibilistic fuzzy
clustering and do not normalize the activations to sum 1.
We try to overcome the resulting drawbacks by introduc-
ing a mutual dependence of the clusters through a restricted
winner takes all scheme. If a data point has a distance from
a reference vector that is less than a reference radius, it is
assigned exclusively to the corresponding neuron (or, more
generally, to the neuron yielding the highest non-normalized
activation) and only this neuron is updated. For a data point
outside the “winner takes all regions” non-normalized acti-
vations are computed and several neurons may be updated.

4. CLUSTER SIZE

To obtain a more flexible clustering scheme, one may make
the reference radiusσ in the activation functions neuron-
dependent, updating it in each iteration, so that clusters of
different size can be found. The general idea of the update
is to compute a desired reference radius from the data points
assigned to a cluster center/reference vector and then to

• set the reference radius to this desired radius or to
• change the current reference radius in the direction

of the desired radius using a learning rate as for the
update of the reference vectors.

The simplest choice for a desired radius is the average dis-
tance of the data points to a reference vector (or, alterna-
tively, the square root of the average squared distance), with
the data points weighted with the neuron activation. If on-
line training is used for LVQ, a similar behavior can be
achieved by updating the current radius according to

σi(t + 1) = σi(t) + α(t)(d(~x, ~wi(t)) − σi(t)),

whereα may be the same learning rate as the one that is
used for the neuron weights. In [1] a slightly more complex
scheme is used, which distinguishes whether a data point is
inside the (hyper-)sphere defined by the current radius (then
only this radius is decreased) or outside the radius (hyper-)
spheres of all clusters (then all radii are increased).

Other approaches are based on the relative weight of as-
signed data points, thus trying to find clusters that do not
differ too much in the number of data points they cover. An
example is frequency sensitive competitive learning [9], in
which the distance to a reference vector is modified accord-
ing to the number of data points that are assigned to this

reference vector, i.e.

dmod(~xj , βi) =
ni

n
d(~xj , βi),

whereni is the number of data points assigned to reference
vectorβi in the previous epoch andn is the total number of
data points. Obviously, this is equivalent to using a refer-
ence radiusr = n

ni
to modify the activation.

Drawing on this idea, we may also state explicitely that
our goal is to assign (roughly) the same number of data
points to each cluster. That is, we desiren

c data points per
cluster, wheren is the total number of data points andc the
number of clusters. If a given radiusr leads to an assign-
ment ofni data points, the desired radius is computed as

rdesired = r · n

c · ni
.

The rationale is to decrease the radius if the desired number
of data points is less than the current number and to increase
it if it is greater, thus balancing the number of data points.

It should be noted that if we do not normalize the neu-
ron activations, size adaptation can be slightly problematic,
because in this case the sum of the activations over all neu-
rons and all data points will, in general, differ from the total
number of data points. Depending on the method to de-
termine the desired radius, this can lead to collapsing clus-
ters in some cases (e.g., if the average distance is computed
from distances that are weighted with the activation). To
cope with this problem, we introduce a parameter by which
we multiply the computed desired radius before we use it to
adapt the current reference radius.

5. CLUSTER NUMBER

One of the main problems in clustering is how to deter-
mine the optimal number of clusters. Usually the user has to
specify how many clusters are to be found. Automatic ap-
proaches rely, for instance, on so-calledvalidity measures,
with which a given clustering result can be assessed, so that
the best cluster number can be determined. Well-known
validity measures, developed for classical and fuzzy clus-
tering, are [6]: The fuzzy hypervolume (FH), the partition
density (PD), and the average partition density (APD).

If we do not normalize the activations, another simple
scheme suggests itself: With each new cluster some more
data points should be covered. Hence we can compute the
(absolute) coverage of the data as the sum of the activations
over all data points and all clusters and stop adding clus-
ters once the relative coverage (i.e. the absolute coverage
divided by the number of data points) exceeds some user-
defined threshold. Alternatively, we may stop adding an-
other cluster if adding it increases the coverage only by a
small amount, so that it is likely that the new clusters mainly
steels data points from other clusters.

6. EXPERIMENTAL RESULTS

To illustrate the properties of different size adaptation meth-
ods in the context of non-normalized activations, we con-
ducted experiments on simple artificial data sets with two
point clouds of different size and with different numbers of
points, each at two different distances from each other (see
Figures 1, 2, and 3). To each of these data sets we applied
five variants of generalized LVQ. The cluster are depicted as
grey dots for the centers, dark grey circles at the reference
radius and light grey circles at two times this radius.

Diagramsa1 anda2 show the result of standard LVQ
(winner takes all) with adaptive cluster size. For diagramsb1

andb2 we used activation normalization to sum 1 and the
same desired radius for all clusters (average of the individ-
ual desired radii). For diagramsc1 andc2 we also used acti-
vation normalization to sum 1, but individual sizes for each
cluster. Diagramsd1, d2, e1 ande2 show results of cluster-
ing without activation normalization, but with a restricted
winner takes all scheme (if a data point is inside the dark
grey circle for the winner neuron, only this neuron is up-
dated). In diagramsd1 andd2 the desired radius is twice the
average distance of the data points (weighted with the ac-
tivation) from the cluster center, in diagramse1 ande2 we
applied the scheme that balances the number of data points
per cluster with reference radius factor of 0.8.

For the first two data sets (Figure 2, same cluster size,
same number of points) all algorithms work very well, even
though in the second data set the two clusters are very close
together. Note that the restricted winner takes all approach
can compete well with the other approaches.

For the second pair of data sets (Figure 2, different clus-
ter size, same number of points) results are less good. A
strict winner takes all almost fails since one cluster almost
collapses (diagrama2), i.e., the size adaptation interferes
harmfully with the cluster detection. The approach that tries
to capture the same number of points in each cluster (di-
agramse1 ande2) yields the best result—not surprisingly,
because it is tailored for such situations.

The last pair of data sets (Figure 3, different size, dif-
ference number of points, same density) leads to the biggest
problems. Here only the strict winner takes all approach (di-
agramsa1 anda2) leads to acceptable results, while all other
approaches have severe problems getting the cluster posi-
tions right. However, the results based on a restricted win-
ner takes all scheme and no normalization can still clearly
compete with the other approaches.

For our experiments on selecting the number of clusters
by the coverage of the data points we chose the well-known
wine data sets from the UCI machine learning repository
[3]. We used the attributes 7, 10, and 13, which are most
relevant. The results for clustering with restricted winner
takes all and no normalization are shown in table 1. Clearly

wine 1 2 3 4 5

FH 9.35 10.6 6.65 6.63 6.77
PD 12.5 11.1 18.1 18.1 18.2
APD 12.5 20.8 3119 2575 4266
coverage 130 131 160 157 163

Table 1. Selecting the number of clusters.

the coverage of the data points gives a very good indication
of the correct number of clusters (there are three classes),
because the coverage reduces if four clusters are used. For
other data sets we tried, the coverage could also compete
with the known validity measures.

7. CONCLUSIONS

In this paper we considered LVQ methods to adapt the size
of (hyper-)spherical clusters, especially in the context of
non-normalized activations. Our experimental results show
that, although normalization clearly helps the clustering
process and stabilizes it, usable results can often be achieved
without normalization if the desired radius is multiplied by
a user-specified parameter to achieve stability (where nec-
essary). It also turns out that without normalization a con-
sideration of the coverage of the data is a feasible method to
determine a good number of clusters.

8. REFERENCES

[1] G. Acciani, E. Chiarantoni, G. Fornarelli, and S. Vergura. A
Feature Extraction Unsupervised Neural Network for an En-
vironmental Data Set.Neural Networks16(3–4):427–436. El-
sevier Science, Amsterdam, Netherlands 1999

[2] J.C. Bezdek. Pattern Recognition with Fuzzy Objective Func-
tion Algorithms. Plenum Press, New York, USA 1981

[3] C.L. Blake and C.J. Merz. UCI Repository of Machine Learn-
ing Databases. Department of Information and Computer
Science, University of California, Irvine, CA, USA 1998.
http://www.ics.uci.edu/˜mlearn/MLRepository.html

[4] B.S. Everitt.Cluster Analysis. Heinemann, London, UK 1981
[5] J.A. Hartigan and M.A. Wong. Ak-means Clustering Algo-

rithm. Applied Statistics28:100–108. Blackwell, Oxford, UK
1979

[6] F. Höppner, F. Klawonn, R. Kruse, and T. Runkler.Fuzzy
Cluster Analysis.J. Wiley & Sons, Chichester, UK 1999

[7] T. Kohonen.Self-Organizing Maps. Springer-Verlag, Heidel-
berg, Germany 1995 (3rd ext. edition 2001)

[8] R. Krishnapuram and J. Keller. A Possibilistic Approach to
Clustering. IEEE Transactions on Fuzzy Systems, 1:98–110.
IEEE Press, Piscataway, NJ, USA 1993

[9] D. DeSieno. Adding a Conscience to Competitive Learning.
IEEE Int. Conf. on Neural Networks, Vol. I, 117–124. IEEE
Press, Piscataway, NJ, USA 1988

a1k b1
k c1k d1

k e1k

a2k b2
k c2k d2

k e2k

Fig. 1. Same cluster size, same number of points.

a1k b1
k c1k d1

k e1k

a2k b2
k c2k d2

k e2k

Fig. 2. Different cluster size, same number of points.

a1l b1
l c1l d1

l e1l

a2k b2
k c2k d2

k e2k

Fig. 3. Different cluster size, different number of points, same point density.

