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Abstract. Since Hebb’s work on the organization of the brain [16]
finding cell assemblies in neural spike trains has become a vivid field
of research. As modern multi-electrode techniques allow to record the
electrical potentials of many neurons in parallel, there is an increasing need
for efficient and reliable algorithms to identify assemblies as expressed
by synchronous spiking activity. We present a method that is able to
cope with two core challenges of this complex task: temporal imprecision
(spikes are not perfectly aligned across the spike trains) and selective
participation (neurons in an ensemble do not all contribute a spike to all
synchronous spiking events). Our approach is based on modeling spikes
by influence regions of a user-specified width around the exact spike times
and a clustering-like grouping of similar spike trains.

Keywords: spike train, ensemble detection, Hebbian learning, continuous data,
multidimensional scaling

1 Introduction and Motivation

Modern multi-electrode arrays (MEAs) allow to record electrical potentials
simultaneously at many positions in a brain area [5]. In the raw recordings spikes
(i.e. brief, sharp increases in the extracellular electrical potentials recorded by
the MEAs, also called action potentials) are detected and processed by so-called
spike sorting [18] into the spikes of individual neurons according to their shapes
and amplitudes. The result is formally a set of point processes (lists of spike
times, one per neuron), which is called parallel spike trains.

Recordings of parallel spike trains are essential if one tries to understand how
a (biological) neural network encodes and processes information. One of many
competing theories is that information is encoded and processed by temporal
coordination of spiking activity, in particular, synchronous spiking activity, a
theory that was introduced by D.O. Hebb [16]. If it is correct, groups of neurons,
called cell assemblies, can be expected to emit spikes in a fairly synchronized
fashion. In order to be able to test this theory, efficient and reliable algorithms
are needed that can detect such synchronous spiking activity in MEA recordings.
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Fig. 1. Two sets of parallel spike trains, one of which shows only random noise (in-
dependent stationary Poisson processes, left), while the other (right) exhibits several
occurrences of synchronous activity of an assembly of 20 (randomly selected) neurons
(stationary Poisson processes with injected coincident spiking events, cf. [14, 13, 3]).

To demonstrate that this is a challenging task, Figure 1 shows dot displays
of two sets of artificially generated parallel spike trains, one of which exhibits
synchronous activity: by pure visual inspection it is essentially impossible to
discover the assembly, because the 20 assembly neurons are randomly selected
from the total of 100 neurons. However, detection algorithms face two even
harder challenges, which are not present in the data shown in Figure 1: temporal
imprecision, that is, spikes cannot be expected to be perfectly aligned across
the spike trains, and selective participation, that is, the neurons in an assembly
cannot all be expected to contribute a spike to all synchronous spiking events of
the assembly. The most common approach to deal with the former problem is to
discretize the originally continuous signal into time bins of equal length and to
consider spikes as synchronous if they lie in the same time bin [12]. This allows
further analysis by means of, for example, cross-correlograms [21], with which the
correlation of two (discretized) time series is measured and graphically displayed.

However, time binning has severe disadvantages: depending on how the time
bin boundaries fall between the spikes, two spikes that are actually very close
together in time may be considered as not synchronous (because they end up in
different time bins) [12]. On the other hand, spikes that are almost as far apart as
the time bin length may still be considered as synchronous if they happen to fall
into the same time bin. This can lead to a severe loss and distortion of synchrony
information [12]. In this paper, we try to overcome this problem by avoiding time
binning. We rather model each spike by an influence region in which other spikes
(of other neurons) may be considered as synchronous to it. Based on this model,
we then extend the approach presented in [4], which is based on time-binning the
data, to a continuous time treatment of spike trains, thus making much better
use of the time resolution of the recordings.



2 Related Work

Using pairwise comparisons of neurons or their corresponding spike trains with
each other has been shown to yield promising results in several publications over
the last years (such as in [10, 8, 25]).

A classical approach to detect joint spiking patterns in parallel spike trains is
the so-called accretion method [11], which works with time-binned data. Starting
from single neurons, this method iteratively accretes neurons into sequences as
long as another neuron shows significantly correlated activity (χ2 test) with the
already accreted neurons. However, accretion suffers from several drawbacks: it
works on sequences instead of sets, thus incurring high costs from redundant de-
tections (memory consumption, speed), but at the same time may miss assemblies
due to a restriction of the branching factor of the search. Alternatives consist
in improved approaches that exploit ideas from frequent item set mining (such
as [2]) and enumerate all subsets of neurons as long as a certain quality criterion
(e.g. minimum support, significant statistical test result) is met. However, the
need to enumerate large numbers of sets of neurons (exponential in the number
of neurons in the worst case) still makes them computationally costly.

In order to overcome this problem, we proposed a method that interprets
time-binned spike trains as binary vectors in a high-dimensional space (one di-
mension per time bin) [4]. Dimensionality reduction techniques such as Sammon’s
Mapping [24] or multi-dimensional scaling [6] onto a single dimension (placing new
data points onto the real line such that the pairwise distances of the new points
resemble the original distances as closely as possible) yield a sorting criterion for
the spike trains. Thus, instead of testing all pairs and subsets of neurons, a single
traversal of the sorted set of spike trains suffices to identify assemblies.

Still, this method still suffers from a problem called temporal jitter. The
spikes produced by the neurons may neither be perfectly timed nor does the
recording process ensure that they are recorded at the same time. The previously
mentioned methods can cope with this problem only as long as two originally
coincident events fall into the same time bin. In [12] a method is proposed that
shifts the spike trains against each other to cope with that problem. Several shifts
of integer multiples of the sampling resolution are performed and each time the
number of (exact) coincidences is counted. The sum over all these coincidences is
used as a measure of synchronicity between two trains. Yet, this approach still
requires an the spike train to be binned, making this method prone to effects
such as clipping. Also we may argue that although a coincidence may have been
found in this way, its significance may be less when the offset between the two
original spikes is larger.

A different approach considering the likelihood that a spike has been generated
as the result of spikes in different spike trains can be found in [19]. Here
a maximum-likelihood approach is used to calculate the influence strengths
between several spike trains at once. This comes at the cost of an increased
computational need, that we want to avoid.



Table 1. Contingency table for two binary vectors A and B.

B = 0 B = 1

A = 0 n00 n01 n0∗

A = 1 n10 n11 n1∗

n∗0 n∗1 N = n∗∗

Table 2. Different distance measures used for binary vector comparison.

Jaccard [17] dJaccard = n10+n01
n11+n10+n01

Tanimoto [23, 26] dTanimoto = 2(n10+n01)
n11+n00+2(n10+n01)

Dice [7] dDice = n10+n01
2n11+n10+n01

Correlation [9] dCorrelation = 1
2
− n11n00−n01n10

2
√

(n10+n11)(n01+n00)(n11+n01)(n00+n10)

Yule [27] dYule = n01n10
n11n00−n01n10

Hamming [15] dHamming = n01+n10
n∗∗

3 Finding Assemblies in Continuous Spike Train Data

Most of the previously mentioned methods rely on time-binning the spike trains
and thus suffer from the disadvantages (loss of synchrony information) pointed
out above. To cope with this problem, [22] introduces the notion of so-called
influence maps: intervals in which a spike may have influence. This approach is
similar to convolving spike trains with a kernel and using the overlap of such
convolved spike trains as a synchrony measure (see, e.g. [20]), but relies on
different kernels and can be generalized to more than two spike trains. The
overlap of two influence maps measures the amount or degree of synchrony of
the two spikes the influence maps were generated from. The highest degree of
synchrony can obviously be achieved by two perfectly aligned spikes. The sum
of the degrees of synchrony of individual spikes may be used as an indicator for
the correlation between two spike trains. We exploit this idea to improve our
approach [4].

In the discrete, time-binned case, the (dis-)similarity between two given spike
trains, represented as binary vectors with one element per time bin, is computed
from the elements of a 2× 2 contingency table (see Table 1). This table records
how often both, neither, or only one of two considered neurons produce a spike
in a time bin. There is an abundance of (dis-)similarity measures that can be
defined on such a table, from which we selected the ones listed in Table 2. They
cover some of the most interesting features of common binary distance measures.

3.1 Generalized Contingency Tables

The measures listed in Table 2 are designed for binary vectors. However, none of
them actually requires the implied restriction to integer entries in the contingency
table. Therefore we may generalize them by computing contingency tables with
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Fig. 2. Continuous spike train with three spikes at 0.2T , 0.6T and 0.825T , without and
with influence maps (r = 0.05T ).
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Fig. 3. Two continuous spike trains, one with three spikes at 0.2T , 0.6T and 0.825T
(solid) and one with spikes at 0.35T , 0.525T and 0.9T (dash-dotted). Overlap of influence
maps in darker gray.

real-valued entries by exploiting the influence maps introduced in [22]. The
fundamental idea may also be viewed as using binary vectors with a super-
countably infinite number of elements, one for each time in the recording period.

Formally, let t = {t1, t2, . . . , tn}, 0 ≤ ti ≤ T , be a sequence of spike times for
a given neuron, where T is the recording period. A user now chooses an influence
map, that is, a function f : R → R+

0 , which describes an influence region in
which spikes of other neurons may be considered as synchronous (possibly only
to some degree). In principle, these maps may have any shape, but for reasons
of simplicity we confine ourselves here to symmetric rectangular functions of a
user-specified width r. That is, we consider ∀t ∈ t :

ft : R→ {0, 1}, x 7→ ft(x) =

{
1, if |x− t| ≤ r

2 ,
0, otherwise,

as illustrated in Figure 2. This effectively turns the sequence of spike times into
a set of intervals MT = {[a, b] | ∃t ∈ t : a = max(0, t− r

2 ) ∧ b = min(t+ r
2 , T )}.

However, we have to take care of the fact that these intervals may overlap,
which makes the function view easier to handle. Instead of merging intervals, we
combine the functions ft for all t ∈ t, which yields the function

ft : R→ {0, 1}, x 7→ ft(x) = max
t∈t

ft(x) =

{
1, if ∃t ∈ t : |x− t| ≤ r

2 ,
0, otherwise.

This function describes where spikes of the considered neuron have influence and
can be considered synchronous with spikes of other neurons.

Consider now two neurons a and b with their sets ta and tb of spike times,
which give rise to functions fta and ftb . From these we derive the four functions

f
(i,j)
ab : R→ {0, 1}, x 7→ f

(i,j)
ab (x) =

{
1, if fta = i and ftb = j,
0, otherwise,



(a) dJaccard (b) dRogers, scaled (c) dDot, scaled

(d) dCorrelation (e) dYule (f) dHamming, scaled

Fig. 4. Distance matrices obtained from the respective distance measures. Distances are
encoded on a gray scale, where items have a lower distance the blacker the corresponding
square. 100 neurons with an injected assembly of size 20. Data points have been pre-
sorted such that the assembly appears in the lower right corner of the plot. Distance
measures marked as scaled have dmin = 0 and dmax = 1.0.

for all (i, j) ∈ {0, 1}2, which describe whether the argument x is inside the
influence region of a spike for both (if (i, j) = (1, 1)), neither (if (i, j) = (0, 0))
or only one of the neurons (if (i, j) = (0, 1) or (i, j) = (1, 0)). An example for
(i, j) = (1, 1) is shown in Figure 3. Intuitively, these four functions indicate where
in a (infinitely dimensional) binary vector with one element for each x ∈ [0, T ]
we have a situation that corresponds to an element of the 2 × 2 contingency
table shown in Table 1. Note that for all x ∈ [0, T ] exactly one of the four

functions f
(i,j)
ab (x), (i, j) ∈ {0, 1}2, has the value 1, while the other three are 0.

Therefore we can easily derive the elements of a generalized contingency table as

nij =
1

r

T∫
0

f
(i,j)
ab (x)dx

for all (i, j) ∈ {0, 1}2. Note that it is n00 + n01 + n10 + n11 = n∗∗ = T
r . This

shows how one can solve the counting problem, which consists in the fact that
the entries of a standard contingency table are counters of vector elements, but
we cannot count elements of a binary vector with super-countably many elements.
Note that the solution chosen here is in line with a time-binned approach, where
the width of the time bins, which corresponds to the width of the influence maps
in our approach, determines the total count n∗∗ in exactly the same way.



3.2 Evaluating Distance Measures

Being able to efficiently calculate distances between continuous spike trains, we
can evaluate the distance measures. As we want to discriminate between neurons
belonging to an assembly and those that exhibit only random noise, we take a first
look at plots of the distance matrices. In these plots large distances correspond
to whiter cells, while darker cells indicate a high similarity between two data
points. Figure 4 shows example plots for different distance measures.

As can be seen, only Jaccard, Dot, Correlation and Yule allow for a (visually)
clear discrimination of the assembly from the rest of the neurons. In addition,
Yule’s distance suffers from many small distances between neurons exhibiting
random noise, which can impede the detection. The remaining two distance
measures show no significant differences between neurons belonging to the injected
assembly and other neurons. Obviously the possible values for the distance
measure is in both cases not fully exhausted such that a visual inspection may
not be sufficient to reject these two distance measure at this stage. But even
normalizing the values in the distance matrix so that they lie in the range [0, 1]
does not lead to better result. Hence we will only consider the four distance
measures Jaccard, Dot, Correlation and Yule in the following.

3.3 Sorting by Non-Linear Mapping and Assembly Detection

To find a suitable ordering of the neurons for further testing it is necessary to
choose a sorting criterion. In [4] we already proposed to use Sammon’s non-linear
mapping [24] to reduce the dimensionality of the data set to only one dimension.
The resulting scalar can then be used to sort the neurons. In a linear traversal of
the sorted list the final tests are performed and the assemblies are detected.

Originally, in the discrete case, we performed χ2 tests for independence to
distinguish between correlated and non-correlated neurons. However, this test is
only properly applicable if we have actually countable events like coincidences,
which in the discrete case is the number of time bins. Only in this case the χ2

value is properly interpretable. In our current setup, however, even though we
can achieve an analogous sum of the contingency table entries (see Section 3.1),
applying the test in the same way appears to be a somewhat dubious procedure.

Similarly, choosing a time resolution (other than the width r of the influence
maps) to give a unit to the entries in the contingency table does not appear to
be appropriate, since the result of the χ2 test (whether it is significant or not)
depends directly on this choice. Suppose, for instance, that we have a recording
of one second length and choose one second as the time unit. As a consequence,
no entry in the contingency table can be higher than 1 (if measured in this unit).
Thus, for a χ2 distribution with one degree of freedom, we would have to lower
the level of significance to 0.68 in order to be able to reject the null hypothesis
of independence. On the other hand, using a millisecond resolution for the same
data may enable us to reject the null hypothesis, because of the wider range of
possible χ2 values. Hence we refrain from such an approach.



However, as the calculation of the χ2 value and the corresponding p-value is
only used to accept or reject whether a neurons is correlated with its neighbor
(in the sorted list of neurons), we can also argue that the distance measure itself
provides all relevant information. Neurons belonging to the same assembly have
lower distances between each other than to the rest of the neurons. This leads to
the following simple idea: we sort the neurons w.r.t. the value that is assigned to
them by Sammon’s non-linear mapping (or some other multi-dimensional scaling
method) to one dimension. Then we find the index k of the neuron such that

k = argmax
1≤i≤n

|xi − xi+1|,

which indicates the largest gap between two consecutive neurons (all indices refer
to the sorted list of neurons). We set the decision boundary in this gap and thus
obtain the two sets of neuron indices

A = {i | i ≥ 1 ∧ i ≤ k} and B = {i | i > k ∧ i ≤ n}.

We then report the set as assembly that has the least average inner-set distance:

dA =
1

k − 1
|xk − x1| and dB =

1

n− k − 1
|xn − xk+1|

4 Evaluation

To evaluate our method we artificially generate a set of n = 50 spike trains
(independent stationary Poisson processes with a firing rate of λ = 20Hz, which is
similar to the frequency with which cortical neurons fire) of T = 10s length, into
which synchronous spiking activity of 10 neurons was injected (coincidence firing
rate λc = 5Hz, background rate appropriately adapted to obtain equal overall
firing rates of 20Hz). Coincident spikes are copied from a mother process into
the spike trains with different copy probabilities p. In addition, the spike times
are uniformly dithered by ±5ms (independently for each neuron) to simulate
temporal imprecision as it may be present in a real life data set. The width of the
influence maps was chosen to be 15ms to be able to capture a jittered spike at
least partially if the dithering moved the coincidences far away from each other.
The possible outcomes that may occur in our test setup are:

1. The assembly has been correctly detected. No neuron is missing, no additional
neuron has been found (depicted as perfect). These are true positives.

2. The whole assembly has been found, but at least one additional neuron was
found (depicted as too many).

3. Only a subset of the assembly’s neurons has been found. At least one neuron
was missing (depicted as too few).

4. Only a subset of the assembly’s neurons has been found. At least one neuron
was missing. In addition at least one neuron has been found to belong to the
assembly that is actually independent (depicted as too few/too many).



5. Every neuron that has been reported belongs to the group of independent
neurons and not a single neuron of the true assembly has been reported
(depicted as wrong). These are false positives.

For each test 100 trials were run and the number of each type of error was
recorded. The results of these tests are shown in Figure 5.

We obtained no results for the dot product distance measure because during
the first run the test was canceled due to the surprisingly bad quality of the results
(see Figure 5, bottom) even if the copy probability is one. Further investigation
showed that the quality is only bad if the dimensionality reduction is performed
to produce only one dimension. Two dimensional plots reveal, that an algorithm
which calculates decision boundaries at arbitrary angles would very well be able
to distinguish between assembly and noise neurons in case of a dot product
distance measure (see Figure 7).

To compare the results obtained with the binned approach we conducted
exactly the same experiments for half of the copy probability settings as well.
The distance measures used are exactly the same, only that the spike trains
are treated as binary vectors. The numbers nij , i, j ∈ {0, 1} are calculated in
the usual way. What we can see is that the binning method is slightly more
prone to not finding the whole assembly or considering too many neurons while
never reporting any assembly that has to be labelled as wrong. The later may be
attributed to the fact that spikes that fall into the same time bin are counted as
if they were perfectly aligned, thus leading to a higher density of the assembly as
such, while the continuous calculation uses a more differentiated view on such
coincidences.
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Fig. 5. Assembly detection quality under varying conditions for the selective participa-
tion of neurons in synchronous spiking activity. The horizontal axis shows the probability
with which a spike is copied from the coincidence mother process. For the dot product
as the distance measure, experiments for lower copy probabilities were not conducted,
because of the disappointing results for a copy probability of 1.



In contrast the method proposed by used is able to detect the assembly as a
whole even when the copy probability is decreasing. Perfect findings are much
more common but only at the cost of reports of totally wrong assemblies. Having
a closer look at those false positives revealed that these were mostly single noise
neurons that were so different from all other neurons that the multidimensional
scaling placed them farther apart from the rest of all neurons than the gap
between assembly and noise neurons was.
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Fig. 6. Assembly detection quality under varying conditions for the selective participa-
tion of neurons in synchronous spiking activity. The horizontal axis shows the probability
with which a spike is copied from the coincidence mother process. The spike trains have
undergone a binning before being analysed with the same procedure to compare results.

5 Conclusion and Future Work

In this paper we presented a simple and efficient method for detecting assemblies
of neurons in continuous spike train data, which avoids the otherwise almost
exclusively applied time binning. As a consequence, the loss and distortion of
synchrony information resulting from binning the data can be avoided. The
additional challenges of temporal imprecision (imperfect spike alignment) and
selective participation (copy probabilities less than 1) can be handled with this
method while still recovering most of the assemblies at least partially. Although
the performance of our algorithm is fairly good, there are still many open problems
that need to be addressed. In the first place, additional tests on different types
of data need to be performed. Compared to algorithms that work on discretized
data the rate of false positives is significantly higher. This is partly due to the
multi-dimensional scaling that increases the likelihood of neighboring data points
having a small distance to each other. On the other hand a lot of information
about the structure of the data is lost, if multi-dimensional scaling to only one
dimension is performed. First tests have shown that this one dimension contains



about three times as much information as the next best dimensions, but keeping
two or more dimensions and finding assemblies with common clustering methods
or support vector machines may be worth looking into.

Fig. 7. Two dimensional plots of 50 neurons, assembly of size 10 (yellow) and dot
product as distance measure. Classification has been performed with only the x-axis
available. The upper left image shows the case where an assembly was completely found.
The upper right image shows the case, where only a single (noise) neuron was reported.
The lower left image shows the case, where some neurons were missed. The lower right
image shows the case, where too many neurons were found. On the right hand side the
distribution of error types for a copy probability of 1.0 is shown.
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5. Buzsáki, G.: Large-scale Recording of Neuronal Ensembles. Nature Neuroscience
7:446–461. Nature Publishing Group/Macmillian, New York, NY, USA (2004)

6. Cox, T.F.; Cox; M.A.A.: Multidimensional Scaling (2nd ed.). Chapman & Hall,
London, United Kingdom (2000)

7. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology
26:297–302. Ecological Society of America, Ithaca, NY, USA (1945)

8. Casey O. Diekman and P.S. Sastry and K.P. Unnikrishnan:Statistical significance
of sequential firing patterns in multi-neuronal spike trains.Journal of Neuroscience
Methods, 182(2):279–284 (2009)



9. Edwards, A.: An introduction to linear regression and correlation. WH Freeman,
New York, NY, USA (1984)

10. Feldt, S. and Waddell, J. and Hetrick, V. L. and Berke, J. D. and Zochowski, M.:
Functional clustering algorithm for the analysis of dynamic network data, Physical
Review E, 79(5):056104-1–056104-9 (2009)

11. Gerstein, G., Perkel, D., Subramanian, K.: Identification of functionally related
neural assemblies. Brain Research 140(1):43–62. Elsevier, Amsterdam, Netherlands
(1978)

12. Grün, S., Diesmann, M., Grammont, F., Riehle, A., and Aertsen, A.: Detecting
unitary events without discretization of time. Journal of Neuroscience Methods
94:67–79. Elsevier, Amsterdam, Netherlands (1999)

13. Grün, S., Abeles, M., Diesmann, M.: Impact of higher-order correlations on
coincidence distributions of massively parallel data. Dynamic Brain – from Neural
Spikes to Behaviors LNCS 5286: 96–114. Springer, Berlin / Heidelberg, Germany
(2008)

14. Grün, S., Diesmann, M., Aertsen, A.: Unitary events in multiple single-neuron
activity. I. Detection and significance. Neural Computation 14(1):43–80. MIT Press,
Cambridge, MA, USA (2002)

15. Hamming, R.: Error detecting and error correcting codes. Bell Systems Tech.
Journal 29:147–160. Bell Laboratories, Murray Hill, NJ, USA (1950)

16. Hebb, D.: The organization of behavior. J. Wiley & Sons, New York, USA (1949)
17. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes
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