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Abstract. Data Mining, or Knowledge Discovery in Databases, is a
fairly young research area that has emerged as a reply to the flood of
data we are faced with nowadays. It tries to meet the challenge to de-
velop methods that can help human beings to discover useful patterns in
their data. One of these techniques — and definitely one of the most im-
portant, because it can be used for such frequent data mining tasks like
classifier construction and dependence analysis — is learning graphical
models from datasets of sample cases. In this paper we review the ideas
underlying graphical models, with a special emphasis on the less well
known possibilistic networks. We discuss the main principles of learning
graphical models from data and consider briefly some algorithms that
have been proposed for this task as well as data preprocessing methods
and evaluation measures.

1 Introduction

Today every company stores and processes its data electronically, in produc-
tion, marketing, stock-keeping or personnel management. The data processing
systems used were developed, because it is very important for a company to be
able to retrieve certain pieces of information, like the address of a customer, in
a fast and reliable way. Today, however, with ever increasing computer power
and due to advances in database and software technology, we may think about
using electronically stored data not only to retrieve specific information, but
also to search for hidden patterns and regularities. If, for example, by analyzing
customer receipts a supermarket chain finds out that certain products are fre-
quently bought together, turnover may be increased by placing the products on
the shelves of the supermarkets accordingly.

Unfortunately, in order to discover such knowledge in databases the retrieval
capacities of normal database systems as well as the methods of classical data
analysis are often insufficient. With them, we may retrieve arbitrary individ-
ual information, compute simple aggregations, or test the hypothesis whether
the day of the week has an influence on the product quality. But more general
patterns, structures, or regularities go undetected. These patterns, however, are
often highly valuable and may be exploited, for instance, to increase sales. As
a consequence a new research area has emerged in recent years—often called



Knowledge Discovery in Databases (KDD) or Data Mining (DM)—in which hy-
potheses and models describing the regularities in a given dataset are generated
and tested automatically. The hypotheses and models found in this way can then
be used to gain insight into the domain under consideration, to predict its future
development, and to support decision making.

In this paper we consider two of the most important data mining tasks,
namely the construction of classifiers and the analysis of dependences. Among the
different methods for these tasks we concentrate on learning a graphical model
from a dataset of sample cases. Furthermore, our emphasis is on possibilistic
graphical models, which are a powerful tool for the analysis of imprecise data.

2 Graphical Models

An object or a case of a given domain of interest is usually described by a set
of attributes. For instance, to describe a car we may use the manufacturer, the
model name, the color etc. Depending on the specific object or case under con-
sideration these attributes have certain values, for example, Volkswagen, Golf,
red etc. Sometimes only certain combinations of attribute values are possible,
for example, because certain special equipment items may not be chosen simul-
taneously, or certain combinations of attribute values are more frequent than
others, for example, red VW Golf are more frequent than yellow BMW Z1. Such
possibility or frequency information can be represented as a distribution on the
Cartesian product of the attribute domains. That is, to each combination of
attribute values we assign its possibility or probability.

Often a very large number of attributes is necessary to describe a given do-
main of interest appropriately. Since the number of possible value combinations
grows exponentially with the number of attributes, it is often impossible to rep-
resent this distribution directly, for example, in order to draw inferences. One
way to cope with this problem is to construct a graphical model. Graphical
models are based on the idea that independences between attributes can be ex-
ploited to decompose a high-dimensional distributions into a set of (conditional
or marginal) distributions on low-dimensional subspaces. This decomposition (as
well as the independences that make it possible) is encoded by a graph: Each
node represents an attribute. Edges connect nodes that are directly dependent
on each other. In addition, the edges specify the paths on which evidence has to
be propagated if inferences are to be drawn.

Since graphical models have been developed first in probability theory and
statistics, the best-known approaches originated from this area, namely Bayes
networks [Pearl 1988] and Markov networks [Lauritzen and Spiegelhalter 1988].
However, the underlying decomposition principle has been generalized, resulting
in the so-called valuation-based networks [Shenoy 1992], and has been transferred
to possibility theory [Gebhardt and Kruse 1996]. All of these approaches lead
to efficient implementations, for example, HUGIN [Andersen et al. 1989], PUL-
CINELLA [Saffiotti and Umkehrer 1991], PATHFINDER [Heckerman 1991], and
POSSINFER [Gebhardt and Kruse 1996].



2.1 Decomposition

The notion of decomposition is probably best-known from relational database
theory. Thus it comes as no surprise that relational database theory is closely
connected to the theory of graphical models. This connection is based on the
notion of a relation being join-decomposable, which is used in relational database
systems to decompose high-dimensional relations and thus to store them with
less redundancy and (of course) using less storage space.

Join-decomposability means that a relation can be reconstructed from certain
projections by forming the so-called natural join of these projections. Formally,
this can be described as follows: Let U = {A1, . . . , An} be a set of attributes
with respective domains dom(Ai). Furthermore let rU be a relation over U . Such
a relation can be described by its indicator function, which assigns a value of 1 to
all tuples that are contained in the relation and a value of 0 to all other tuples.
The tuples themselves are represented as conjunctions

∧
Ai∈U Ai = ai, which

state a value for each attribute. Then the projection onto a subset M ⊆ U of
the attributes can then be defined as the relation

rM

( ∧
Ai∈M

Ai = ai

)
= max
∀Aj∈U−M :
ai∈dom(Aj)

rU

( ∧
Ai∈U

Ai = ai

)
,

where the somewhat sloppy notation under the maximum operator is meant to
express that the maximum has to be taken over all values of all attributes in the
set U −M . With this notation a relation rU is called join-decomposable w.r.t. a
family M = {M1, . . . ,Mm} of subsets of U if and only if

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

rU

( ∧
Ai∈U

Ai = ai

)
= min

M∈M
rM

( ∧
Ai∈M

Ai = ai

)
.

Note that the minimum of the projections is equivalent to the natural join of
relational calculus, justifying the usage of the term “join-decomposable”.

This decomposition scheme can easily be transferred to the probabilistic case:
All we have to do is to replace the projection operation and the natural join by
their probabilistic counterparts. Thus we arrive at the decomposition formula

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

pU

( ∧
Ai∈U

Ai = ai

)
=

∏
M∈M

φM

( ∧
Ai∈M

Ai = ai

)
.

The functions φM can be computed from the marginal distributions on the at-
tribute sets M . This demonstrates that the computation of a marginal distri-
bution takes the place of the projection operation. These functions are called
factor potentials [Castillo et al. 1997]. Alternatively, one may describe a decom-
position of a probability distribution by exploiting the (generalized) product rule
of probability theory and by using conditional distributions.



The possibilistic case is even closer to the relational one, because the decom-
position formula is virtually identical. The only difference is that the relations r
are replaced by possibility distributions π, i.e., by functions which are not re-
stricted to the values 0 and 1 (like indicator functions), but may take arbitrary
values from the interval [0, 1]. In this way a “gradual possibility” is modeled with
a generalized indicator function. As a consequence possibilistic graphical models
may be seen as “fuzzifications”’ of relational graphical models.

Of course, if such degrees of possibility are introduced, the question of their
interpretation arises, because possibility is an inherently two-valued concept. In
our research we rely on the context model [Gebhardt and Kruse 1993] to answer
this question. However, since the common ways of justifying the maximum and
minimum operations are not convincing, we have developed a different justifica-
tion that is based on the goal of reasoning with graphical models. Details about
this justification can be found in [Borgelt and Kruse 2002].

2.2 Graphical Representation

Decompositions can very conveniently be represented by graphs. In the first
place, graphs can be used to specify the sets M of attributes underlying the
decomposition. How this is done depends on whether the graph is directed or
undirected. If it is undirected, the sets M are the maximal cliques of the graph,
where a clique is a complete subgraph, which is called maximal if it is not a
proper part of another complete subgraph. If the graph is directed, we can be
more explicit about the distributions of the decomposition: We can employ con-
ditional distributions, because the direction of the edges allows us to distinguish
between conditioned and conditioning attributes. However, in the relational and
the possibilistic case no changes result from this, since the conditional distri-
butions are identical to their unconditional analogs (because in these calculi no
renormalization is carried out).

Secondly, graphs can be used to represent (conditional) dependences and
independences via the notion of node separation. What is to be understood by
“separation” again depends on whether the graph is directed or undirected. If
it is undirected, node separation is defined as follows: If X, Y , and Z are three
disjoint sets of nodes, then Z separates X and Y if all paths from a node in X
to a node in Y contain a node in Z.

For directed acyclic graphs node separation is defined as follows [Pearl 1988]:
If X, Y , and Z are three disjoint sets of nodes, then Z separates X and Y if
there is no path (disregarding the directionality of the edges) from a node in X
to a node in Y along which the following two conditions hold:

1. Every node, at which the edges of the path converge, either is in Z or has a
descendant in Z, and

2. every other node is not in Z.

With the help of these separation criteria we can define conditional indepen-
dence graphs: A graph is a conditional independence graph w.r.t. a given (multi-
dimensional) distribution if it captures by node separation only valid conditional



independences. Conditional independence means (for three attributes A, B, and
C with A being independent of C given B; the generalization is obvious), that

P (A = a,B = b, C = c) = P (A = a | B = b) · P (C = c | B = b)

in the probabilistic case and

π(A = a,B = b, C = c) = min{π(A = a | B = b), π(C = c | B = b)}

in the possibilistic and the relational case.
These formula also indicate that conditional independence and decomposabil-

ity are closely connected. Formally, this connection is established by theorems,
which state that a distribution is decomposable w.r.t. a given graph if the graph
is a conditional independence graph. In the probabilistic case such a theorem is
usually attributed to [Hammersley and Clifford 1971]. In the possibilistic case
an analogous theorem can be proven, although some restrictions have to be
introduced on the graphs [Gebhardt 1997, Borgelt and Kruse 2002].

Finally, the graph underlying a graphical model is very useful to derive ev-
idence propagation algorithms, because transmitting evidence information can
be implemented by node processors that communicate by sending message to
each other along the edges of the graph. Details about these methods can be
found, for instance, in [Castillo et al. 1997].

3 Learning Graphical Models from Data

Since a graphical model represents the dependences and independences that hold
in a given domain of interest in a very clear way and allows for efficient reason-
ing, it is a very powerful tool—once it is constructed. However, its construction
by human experts can be tedious and time-consuming. As a consequence recent
research in graphical models has placed a strong emphasis on learning graph-
ical models from a dataset of sample cases. Although it has been shown that
this learning task is NP-hard in general [Chickering et al. 1994], some very suc-
cessful heuristic algorithms have been developed [Cooper and Herskovits 1992,
Heckerman et al. 1995, Gebhardt and Kruse 1995].

However, some of these approaches, especially probabilistic ones, are re-
stricted to learning from precise data. That is, the description of the sample cases
must contain neither missing values nor set-valued information. There must be
exactly one value for each attribute in each of the sample cases. Unfortunately,
this prerequisite is rarely met in applications: Real-world databases are often
incomplete and useful imprecise information (sets of values for an attribute) is
frequently available (even though it is often neglected, because common database
systems cannot handle it adequately). Therefore we face the challenge to extend
the existing learning algorithms to incomplete and imprecise data.

Research in probabilistic graphical models tries to meet this challenge mainly
with the expectation maximization (EM) algorithm [Dempster et al. 1977, Bauer
et al. 1997]. In our own research, however, we focus on possibilistic graphical



models, because possibility theory [Dubois and Prade 1988] allows for a very
convenient treatment of missing values and imprecise data. For possibilistic net-
works no iterative procedure like the EM algorithm is necessary, so that consid-
erable gains in efficiency can result [Borgelt and Kruse 2002].

3.1 Learning Principles

There are basically three approaches to learn a graphical model from data:

– Test whether a given distribution is decomposable w.r.t. a given graph.
– Construct a conditional independence graph through conditional indepen-

dence tests.
– Choose edges based on a measurement of the strength of marginal depen-

dence of attributes.

Unfortunately, none of these approaches is perfect. The first approach fails, be-
cause the number of possible graphs grows over-exponentially with the number
of attributes and so it is impossible to inspect all of these graphs. The second
approach usually starts from the strong assumption that the conditional inde-
pendences can be represented perfectly and may require independence tests of
high order, which are sufficiently reliable only if the datasets are very large.
Examples in which the third approach yields a suboptimal result can easily be
found [Borgelt and Kruse 2002]. Nevertheless, the second and the third approach,
enhanced by additional assumptions, lead to good heuristic algorithms, which
usually consists of two ingredients:

1. an evaluation measure (to assess the quality of a given model) and
2. a search method (to traverse the space of possible models).

This characterization is apt, even though not all algorithms search the space of
possible graphs directly. For instance, some search for conditional independences
and some for the best set of parents for a given attribute. Nevertheless, all employ
some search method and an evaluation measure.

3.2 Computing Projections

Apart from the ingredients of a learning algorithm for graphical models that
are mentioned in the preceding section, we need an operation for a technical
task, namely the estimation of the conditional or marginal distributions from a
dataset of sample cases. This operation is often neglected, because it is trivial
in the relational and the probabilistic case, at least for precise data. In the
former it is an operation of relational calculus (namely the relational projection
operations, which is why we generally call this operation a projection), in the
latter it consists in counting sample cases and computing relative frequencies.
Only if imprecise information is present, this operation is more complex. In this
case the expectation maximization algorithm [Dempster et al. 1977, Bauer et
al. 1997] is drawn upon, which can be fairly costly.



In possibility theory the treatment of imprecise information is much simpler,
especially if it is based on the context model. In this case each example case
can be seen as a context, which allows to handle the imprecision conveniently
inside the context. Unfortunately, computing projections in the possibilistic case
is also not without problems: There is no simple operation (like simple counting),
with which the marginal possibility distribution can be derived directly from the
dataset to learn from. A simple example illustrating this can be found in [Borgelt
and Kruse 2002]. However, we have developed a preprocessing method, which
computes the closure under tuple intersection of the dataset of sample cases.
From this closure the marginal distributions can be computed with a simple
maximum operation in a highly efficient way [Borgelt and Kruse 2002].

3.3 Evaluation Measures

An evaluation measure (or scoring function) serves the purpose to assess the
quality of a given candidate graphical model w.r.t. a dataset of sample cases, so
that it can be determined which model best fits the data. A desirable property of
an evaluation measure is decomposability. That is, the quality of the model as a
whole should be computable from local scores, for instance, scores for cliques or
even scores for single edges. Most evaluation measures that exhibit this property
measure the strength of dependence of attributes, because this is necessary for
the second as well as the third approach to learning graphical models from data
(cf. section 3.1), either to assess whether a conditional independence holds or to
find the strongest dependences between attributes.

For the probabilistic case there is a large variety of evaluation measures,
which are based on a wide range of ideas and which have been developed for
very different purposes. In particular all measures that have been developed for
the induction of decision trees can be transferred to learning graphical models,
even though this possibility is rarely fully recognized and exploited accordingly.
In our research we have collected and studied several measures (e.g., information
gain (ratio), Gini index, relieff measure, K2 metric and its generalization, mini-
mum description length etc). This collection together with detailed explanations
of the underlying ideas can be found in [Borgelt and Kruse 2002]. Furthermore
we have developed an extension of the K2 metric [Cooper and Herskovits 1992,
Heckerman et al. 1995] and an extension of measure that is based on the mini-
mum description length principle [Rissanen 1983]. In these extensions we added a
“sensitivity parameter”, which enables us to control the tendency to add further
edges to the model. Such a parameter has proven highly useful in applications
(cf. the application at DaimlerChrysler, briefly described in section 4).

Evaluation measures for possibilistic graphical models can be derived in two
ways: In the first place, the close connection to relational networks can be ex-
ploited by drawing on the notion of an α-cut, which is well known from the theory
of fuzzy sets [Kruse et al. 1994]. With this notion possibility distributions can be
interpreted as a set of relations, with one relation for each possibility degree α.
Then it is easy to see that a possibility distribution is decomposable if and only
if each of its α-cuts is decomposable. As a consequence evaluation measures for



possibilistic graphical models can be derived from corresponding measures for
relational graphical models by integrating over all possible values α. An example
of such a measure is the specificity gain [Gebhardt 1997], which can be derived
from the Hartley information gain [Hartley 1928], a measure for relational graph-
ical models. Variants of the specificity gain, which results from different ways of
normalizing it, are discussed in [Borgelt and Kruse 2002].

Another possibility to obtain evaluation measures for possibilistic networks
is to form analogs of probabilistic measures. In these analogs usually a product
is replaced by a minimum and a sum by a maximum. Examples of measures
derived in this way can also be found in [Borgelt and Kruse 2002].

3.4 Search Methods

The search method used determines which graphs are considered. Since an ex-
haustive search incurs prohibitively large costs due to the extremely high number
of possible graphs, heuristic methods have to be drawn upon. These methods
usually restrict the set of considered graphs considerably and use the value of
the evaluation measure to guide the search. In addition, they are often greedy
w.r.t. the model quality in order to speed up the search.

The simplest search methods is the construction of an optimal spanning tree
for given edges weights. This method was used first by [Chow and Liu 1968]
with Shannon information gain providing the edge weights. In the possibilistic
case the information gain may be replaced with the abovementioned specificity
in order to obtain an analogous algorithm [Gebhardt 1997]. However, almost all
other measures (probabilistic as well as possibilistic) are usable as well.

A straightforward extension of this method is a greedy search for parent nodes
in directed graphs, which often starts from a topological order of the attributes
that is fixed in advance: At the beginning the evaluation measure is computed for
a parentless node. Then parents are added step by step, each time selecting the
attribute that yields the highest value of the evaluation measure. The search is
terminated if no other parent candidates are available, a user-defined maximum
number of parents is reached, or the value of the evaluation measures does not
improve anymore. This search method is employed in the K2 algorithm [Cooper
and Herskovits 1992] together with the K2 metric as the evaluation measure. Like
optimum weight spanning tree this learning approach can easily be transferred
to the possibilistic case by replacing the evaluation measure.

In our research we have also developed two other search methods. The first
starts from an optimal spanning tree (see above) and adds edges if conditional
independences that are represented by the tree not hold. However, the edges that
may be added have to satisfy certain constraints, which ensure that the cliques
of the resulting graph contain at most three nodes. In addition, these constraints
guarantee that the resulting graph has hypertree structure. (A hypertree is an
acyclic hypergraph, and in a hypergraph the restriction that an edge connects
exactly two nodes is relaxed: A hyperedge may connect an arbitrary number of
nodes.) The second methods uses the well-known simulated annealing approach
to learn a hypertree directly. The main problem in developing this approach



was to find a method for randomly generating and modifying hypertrees that is
sufficiently unbiased. These two search methods are highly useful, because they
allow us to control the complexity of later inferences with the graphical model
at learning time. The reason is that this complexity depends heavily on the size
of the hyperedges of the learned hypertree, which can be easily constrained in
these approaches.

4 Application

In a cooperation between the University of Magdeburg and the DaimlerChrysler
corporation we had the opportunity to apply our algorithms for learning graph-
ical models to a real-world car database. The objective of the analysis was to
uncover possible causes for faults and damages. Although the chosen approach
was very simple (we learned a two-layered network with one layer describing the
equipment of the car and the other possible faults and damages), it was fairly
successful. With a prototype implementation of several learning algorithms, we
ran benchmark tests against human expert knowledge. We could easily and ef-
ficiently find hints to possible causes, which had taken human experts weeks to
discover. The sensitivity parameters which we introduced into two evaluation
measures (cf. section 3.3) turned out to be very important for this success.
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